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ABSTRACT 

 
T-splines are now being increasingly used for design and analysis. However, there is 
a paucity of literature for the construction of closed and continuous surfaces 
especially bifurcations and multi-furcations using periodic T-Splines. This paper is an 
effort to experiment with T-splines and provide a clearer view to construct smooth 
bi-furcating and multi-furcating surfaces. These surfaces may be either open or 
closed surfaces. The results are encouraging and the experimentations provide the 

insight of the T-spline surface. 
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1. INTRODUCTION 

In recent years, surface modeling of the branched surfaces is widely applied in various fields of 
biomedical industry. These applications make use of scanned data set of the original object and 

reconstruct a new or modified version of the same object as per the design requirement. 
Mathematical models of bifurcating and multi-furcating surfaces are used in flow modeling of the 
cardiovascular and bronchial system [10] and also find its application in study and treatment of 
diseased coronary arteries [8]. Vukicevic et al. [14] used NURBS as a tool to increase the efficiency 
of XRA (X-ray angiography) procedure for the quantitative analysis of coronary arteries. Besides of 
all these biomedical applications, branched surface models are also used in automobile industry for 

design and analysis of engine manifold systems.  

1.1 Previous Related Work 

The construction of the branched surface faces complexities against best topological relation between 
adjacent contours, to maintain the geometrical continuity at junction [11]. In past, different 
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techniques have been used for preserving shape and continuity of the branched object upto certain 
level. Some initial attempts for the construction of bifurcating surface include the method of 
triangulation [9], joining of right circular cylindrical surfaces [5] and merging of half tubular Bezier 
patches [15]. These methods could not meet easily with the desired requirements of continuity and 

control over the surfaces. Although B-spline offers additional control over the surface through knot 
vectors unlike Bezier surface but the involvement of T-spline that allows a row of control point to 
terminate at an appropriate position, increases the flexibility of the surface with relatively less 
number of control points [12]. One possible solution to achieve the same quality of the surface is by 
merging of two or more B-spline surfaces of different knot vectors through T-spline [7],[12]. Ginnis 
et al [6] proposed an algorithm, which combined the concept of T-spline surface, surrounding curve 
and Euclidean Voronoi diagram, to generate one to many branching surface. These methods are good 

in the sense that smooth surface could be constructed however they lack the flexibility and speed of 

a single T-spline equation to construct such surfaces.  

The concept of the disjoint surface for generating branched object was explained by Bhatt et al. 
[3]. They used B-spline surface representation to developed bifurcating surfaces. A similar method 
for constructing disjoint surfaces was developed by Asthana et al. [1]. They constructed an iterative 
procedure to develop multiple bifurcating surface models. The model developed by [1] was capable 

of handling any order of B-spline surfaces in both of the defining directions along with G1 continuity, 
which was maintained by aligning the control polygon segment in a straight line. In case of T-spline 
surfaces, continuity can be achieved by allowing local refinement in the corresponding T-mesh hence 
the absence of local refinement is considered as a major constraint while working with the B-spline 
based surface model. The present work therefore is an effort towards describing a complex surface 
with the help of a single T-spline surface equation.  

1.2 Overview of this Paper 

A bifurcating surface can be obtained by joining of one contour of ith plane with two adjacent contours 
of (i+1)th plane depicted in Fig. 1. Whereas for multi-furcating surface one or both contours of (i+1)th 
plane behaves as a parent section, connected through adjacent contours of (i+2)th plane and so on.  

The Continuity of the parametric curves in T-spline surfaces are characterized by the set of 

independent knot vectors unlike B-spline and NURBS where set of global knot vector define the 
whole domain of the surface. The T-spline surface is a point-based spline, where basis function is 
defined for every vertex of T-mesh. The structure of the T-mesh is based upon the complexity of the 
desired surface. Local refinement in T-mesh, allows sharp change in a small region of the surface, if 
required.  
Here we put an effort to build a single T-mesh for bifurcating and multi-furcating surface which can 
further assist for surface fitting of branched object.  

 

 

 

Figure 1: Representation of Branched Object by Joining of Planner Contour/s. 

 

Plane 3 

Plane 1 

Plane 2 
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This work illustrates generation of bi-furcating and multi-furcating surface models by performing 
some experiments on T-mesh templates through local refinement at the required positions of the 
corresponding T-mesh. A presumed set of coordinates have been used which acts as control points 
for the generation of T-spline surface.  

Construction of a T-mesh is based on the arrangement of control points, used to define the 
shape of the desired surface. In section 2, the methodology to generate a closed and disjoint T-
spline surface (Stem and branched part) has been explained.  

2 METHODOLOGY 

The work started with a pre-assumed set of control points, through which a control polyhedron is 
made for an open bifurcating surface, closed bifurcating or multi-furcating surface as the case may 

be. It may be noted that for a real world problem, control polygon is derived from a real data set 

obtained from the concerned object. 

To generate a T-spline surface, T-mesh is used as a two-dimensional pre-image of control 
polyhedron. It is a rectangular grid where each edge of every rectangle represents a positive integer 
value termed as knot value. For a given T-mesh of order k and each control point Pi having associated 
weight wi,, the points on the T-spline surface S(u,v) can be evaluated by the equation: 

 

                                                               𝑆(𝑢, 𝑣) =
∑ 𝑤𝑖𝑃𝑖𝐵𝑖(𝑢, 𝑣)𝑁

𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1 𝐵𝑖(𝑢, 𝑣)

                                                                                             (2.1) 

 
Where Bi (u,v) are tenser products of univariate B-spline basis function given by: 

 
                                                                𝐵𝑖(𝑢, 𝑣) =  𝑁𝑖,𝑘(𝑢). 𝑁𝑗,𝑘(𝑣)  ,    (𝑢, 𝑣) ∈ 𝐷                                                                   (2.2) 

 

In a T-mesh, (u, v) represent knot coordinates for the anchor assigned as control points and D is the 
effective parametric domain to define a surface [12]. For odd degree polynomial each vertex of the 
T-mesh acts as a control point, and for even degree polynomial control point is considered to lie at 
the center of each rectangle of the T-mesh. Evaluation of the set of local knot vectors in both 
directions, for odd and even degree polynomial is explained by Bazilevs et al. [2]. 

2.1. Periodic T-mesh and Knot Vectors 

Construction of a T-mesh is based on the number of control points in each plane of control polyhedron 
(including repeated control points if any). One can insert or remove control points from T-mesh to 

maintain the shape of the surface according to the rule described in previous works [13]. 
 
The concept behind a periodic T-spline surface is same as that of B-spline surface or NURBS. 
However, a T-spline surface offers additional control due to local refinement. In order make a closed 

surface, first and last control points should be same with k-2 number of repeated control points, as 
shown in Fig. 2. For a given control polyhedron, the number of control point will increase with order 
of the surface. Knot vector referring the first and last control point of the supporting parametric 
domain D, must have same knot interval to make this surface close, otherwise it will create 
overlapping or open surfaces. The parametric domain of the surface in u and v direction is considered 
as 𝑢𝑚𝑖𝑛 to 𝑢𝑚𝑎𝑥  and 𝑣𝑚𝑖𝑛 to 𝑣𝑚𝑎𝑥 respectively. The knot value assigned to the parametric domain is 

determined by arrangement of control points in T-mesh and order of the surface.  
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Figure 2: T-mesh of a Closed Surface, using Periodic Knot Vectors and First Row of Control Polygon 
(Right): (a) T-mesh and Control Polygon for Order k=4, (b) T-mesh and Control Polygon for Order 
k=3, (c) T-mesh and Control Polygon for Order k=2. 
 

In the above example, where for k=2, minimum 5 control points are required to make a closed 
surface (as first and fifth control point are same) as shown in Fig. 2(c). While for k =3 and k=4, one 
and two control points have been repeated respectively as shown in Fig. 2(b) and Fig. 2(a).  

2.2 Generation of Closed Disjoint T-spline Surface 

The methods to generate disjoint B-spline surface has already been described previously [1]. The 
method of uni-directional disjoining through T-spline has been explained, to define the branched part 
of the surface. The repetition of the control point at the point of disjoining will depend upon the order 

of the surface. Fig. 3 shows two rows of a T-mesh (with respect to odd and even order) through 
which disjoining of the surface have been done.  

 

   
                                              
 
Figure 3: T-mesh to make Disjoint Surface using Periodic Knot Vectors and corresponding Sectional 
View of Control Polygon (Right): (a) T-mesh and Control Polygon for Order k=4, (b) T-mesh and 

Control Polygon for Order k=3, (c) T-mesh and Control Polygon for Order k=2. 
 

k=4 

k=3 

k=2 

a) 

b) 

c) 

a) 

b) 

c) 

k=4 

k=3 

k=2 

𝒏𝒅𝒌 = 𝟑 

𝒏𝒅𝒌 = 𝟑 

𝒏𝒅𝒌 = 𝟐 𝒏𝒃 = 𝟐, (Bifurcation) 
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Multiplicity of the control point has been done for three reasons. First one is to maintain periodicity 
as mentioned in sub-section 2.1, to create junction and the third reason is for disjoining of the 
surface. The number of disjoining points for bifurcation (𝑛𝑑𝑘) in a T-mesh has been decided by order 

of the surface. In case of multi-furcation, the total number of disjoining points (𝑁𝑑𝑘) could be 

determined using 𝑛𝑑𝑘 and number of control polygon used in first plane of control polyhedron (𝑛𝑏). 

The generalized rule for multiplicity of the control points and knot value with respect to odd and 

even order of the surface has been given in sub-section 2.3.   

In Fig. 3, control points represented by red dots in T-mesh are repeated number of the control 
point for disjoining the surface. If 𝑚𝑐𝑑 is the multiplicity of the control point at disjoint, then: 

For k=2,        𝑚𝑐𝑑 = 1    ,   𝑃3 and 𝑃4 are point of discontinuity (Fig. 3(c)). 

For k=3,      𝑚𝑐𝑑 = 2   ,    𝑃3 = 𝑃4 and 𝑃5 = 𝑃6 are point of discontinuity (Fig. 3(b)). 

For k=4,      𝑚𝑐𝑑 = 3   ,    𝑃3 = 𝑃4 = 𝑃5 and 𝑃6 = 𝑃7 = 𝑃8 are point of discontinuity (Fig. 3(a)). 

2.3 Generalized Rule to Create Bifurcating and Multi-furcating Surface through T-spline 

In this sub-section, some generalized relations have been developed through observations which are 
based on experimental results. These relations are employed to create T-mesh for the respective 
branched surface. The construction of a two dimensional (u for x-axis and v for y-axis) T-mesh is 
done from a pre-defined control polyhedron. This T-mesh is divided into three parts in v-direction 
which are branched part, junction and stem part. To create junction the multiplicity of the control 
point has been taken as k in control polygon. Each repeated control point carries different knot vector 

corresponding to the T-mesh. 

Under a specified domain, moving towards v direction will cause generation of curves along u 
direction. Input data is given as:  

 Same order k in both of the parametric direction. 
 x, y, z coordinates of the control points, represented by 𝑃𝑖,𝑗 in the corresponding T-mesh. 

 Number of planes h, containing control polygon/s (equal to number of rows in T-mesh), along 

v direction. Here h is the plane of minimum number of control points. The condition for the 
least number of plane in v direction is: 

ℎ𝑚𝑖𝑛 >  k  

If the number of control points in 𝑖𝑡ℎ plane is represented by 𝑛𝑖, total number of control point in T-

mesh can be written as : 

                                                                                                 𝑁 = ∑ 𝑛𝑖   

ℎ

𝑖=1

                                                                                     (2.3) 

The set of local knot vectors for each control point of T-mesh are inferred by shooting ray method 

[2]. The generalized set of local knot vector in u and v direction in absence of disjoining are: 

 (𝑇𝑖,𝑗
𝑙𝑜𝑐)

𝑢
=  {𝑡𝑗+𝑚}

𝑚=0

𝑘
            1 ≤ 𝑖 ≤ ℎ   

      (𝑇𝑖,𝑗
𝑙𝑜𝑐)

𝑣
=  {𝑡𝑖+𝑚}𝑚=0

𝑘                1 ≤ 𝑗 ≤  𝑛𝑖 

In order to separate the two contours, multiplicity of the knot value (𝑚𝑘𝑑) at the end and start of the 

knot vectors, corresponding to the disjoining points (two different control point with same knot value 
in T-mesh) should be same as the multiplicity of control point (𝑚𝑐𝑑):    

 For even order (k >2)                𝑚𝑘𝑑 =  
𝑘

2
+ 1 =  𝑚𝑐𝑑   

 For odd order                            𝑚𝑘𝑑 =  
𝑘+1

2
= 𝑚𝑐𝑑 

In case of k=2, multiplicity of control point and knot value has been taken as one. The repeating 
pattern of the control points for disjoining may vary according to the order and number of branching 

in the surface. For 2𝑛𝑑 order, single bifurcation, the number of disjoining points are two, referred in 

Fig. 3 and for 𝑘𝑡ℎ order it may be assumed as 𝑛𝑑𝑘.  
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 (a)                                                                                      (b) 

 
Figure 4: A T-mesh Focusing ℎ𝑡ℎ row and corresponding Control Polygon: (a) T-mesh and its Control 

Polygon of Minimum Number of Control Points (Black), (b) T-mesh along with an Additional Control 
Point (Red) 𝑛𝑒, within Each Knot Span and its Control Polygon.  

 
Let us consider the ℎ𝑡ℎ row of the T-mesh, depicted in Fig. 4(a), corresponding to stem part of the 

control polyhedron, which uses minimum five number of control points to make a closed surface. 

Since the surface is closed in horizontal direction, the parametric values 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 could be 

corresponding to the control points (CP) 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥. Consider Fig. 4(a) and Tab. 1 to determine 

the parametric domain in u-direction, the generalized relations for 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 has been given by 

Eqn. 2.4 and Eqn. 2.5. The number of control point in ℎ𝑡ℎ row can be taken as: 

 
𝑛ℎ =  𝑛𝑚𝑖𝑛 + (𝑘 − 2) 

 

𝑛𝑚𝑖𝑛 = 5 Even order Odd order 

order 
k=2 

(𝑛𝑚𝑖𝑛 = 𝑛ℎ) 

k=4 k=6 k=3 k=5 

𝑛ℎ 5 7 9 6 8 

(𝑃𝑚𝑖𝑛)𝑢 1𝑠𝑡 CP 2𝑛𝑑 CP 3𝑟𝑑 CP 2𝑛𝑑 CP 3𝑟𝑑 CP 

𝑢𝑚𝑖𝑛 𝑢1 𝑢2 𝑢3 𝑢2 𝑢3 

(𝑃𝑚𝑎𝑥)𝑢 5𝑡ℎ CP 6𝑡ℎ CP 7𝑡ℎ CP 6𝑡ℎ CP 7𝑡ℎ CP 

𝑢𝑚𝑎𝑥 𝑢5 𝑢6 𝑢7 𝑢6 𝑢7 

 
Table 1: Parametric Domain 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥, for 𝑘𝑡ℎ Order in Horizontal Direction.  

 

For even order                 (𝑃𝑚𝑖𝑛)𝑢=𝑛𝑚𝑖𝑛 − [𝑛𝑚𝑖𝑛 −
𝑘

2
]  and  (𝑃𝑚𝑎𝑥)𝑢 = 𝑛ℎ − [

𝑘

2
− 1]                          

(2.4) 

𝑣𝑚𝑖𝑛 =  𝑣1 and 𝑣𝑚𝑎𝑥 =  𝑣ℎ   

𝑛𝑑𝑘 =  2 + 
𝑘−2

2
 

 

For odd order           (𝑃𝑚𝑖𝑛)𝑢 =𝑛𝑚𝑖𝑛 − [𝑛𝑚𝑖𝑛 −
𝑘+1

2
]  and  (𝑃𝑚𝑎𝑥)𝑢 = 𝑛ℎ − [

𝑘−3

2
]                                            

(2.5) 

𝑣𝑚𝑖𝑛 =  𝑣1 and 𝑣𝑚𝑎𝑥 =  𝑣ℎ   

𝑛𝑑𝑘 =  2 + 
𝑘−1

2
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In presence of 𝑛𝑒 number of additional control points within each knot span as shown in Fig 4(b), 

control point (𝑃𝑚𝑖𝑛)𝑎𝑢 and (𝑃𝑚𝑎𝑥)𝑎𝑢 can be determined for both even and odd order by: 

(𝑃𝑚𝑖𝑛)𝑎𝑢 = (𝑃𝑚𝑖𝑛)𝑢 +  𝑛𝑒((𝑃𝑚𝑖𝑛)𝑢 − 1) 

(𝑃𝑚𝑎𝑥)𝑎𝑢 = (𝑃𝑚𝑎𝑥)𝑢 +  𝑛𝑒((𝑃𝑚𝑎𝑥)𝑢 − 1) 
 
The number of knot added within each knot span should be same. For one control point added in 
each knot span, 𝑛𝑒 =1. If 𝑛𝑏 is the number of control polygon employed in first row of the T-mesh, 

disjoint points in T-mesh can be given by: 
𝑁𝑑𝑘 =  𝑛𝑑𝑘(𝑛𝑏 − 1)  

 

By employing these relations for T-mesh, the final surface could be obtained using definition of T-

spline surface, given in Eqn. 2.1. The above relations are valid for serial bifurcation (extension of 
bifurcation into multi-furcation). 

3 DISCUSSIONS ON EXPERIMENTS 

Experiments are carried out to form bifurcating and multi-furcating surfaces. Initially, T-mesh has 
been constructed for a simple open bifurcating surface. Although surfaces discussed in this section 
can be extended to any polynomial degree but most of the surfaces are generated through series of 

experiments performed on T-mesh having order k=4 in both of the parametric direction.  

3.1. Control Polyhedron Representation For Closed Surface 

The construction of control polyhedron is based on the shape of the desired surface. The control point 

layouts presented by Fig. 5, gives the geometrical arrangement of control points in parallel horizontal 

planes along the y-axis, forming rhombus shapes (either one or more) is referred to as a control 
polygon for that plane. These number of plane of control polygons, are equal to the number of rows 
in the corresponding T-mesh. The points lying in a control polygon decide the arrangement of knots 
(equal to the number of control points) in that row of T-mesh. The desired bifurcating surface can 
be created in three different ways. These layouts have been utilized and discussed further to 
construct T-meshes and corresponding surfaces.  
  

   
     (a)                                        (b)                                                       (c) 

 

Figure 5: Three Ways for Arrangement of Control Point in a Control Polyhedron of Bifurcating Surface: 

(a) Separation of Two Branches without Disjoining Technique, (b) Separation of Two Branches with 
Disjoining Technique, (c) Inverted Arrangement of Control Points. 

Junction 

Stem part 

Branches 
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The pattern of the control points in the control polyhedron has been shown in Fig. 5. However, the 
multiplicity of control points required to generate close and disjoint surface have not been depicted 
these figures. All the branching surfaces illustrated, have been generated by following one of these 
three patterns and will be discussed in upcoming subsections. The shape of the control polygon can 

be altered by adding control points, but the overall layout of the control polyhedron will remain 
same.     

3.2. Open and Closed Bifurcating T-spline Surface  

This subsection shows the T-mesh and corresponding surfaces which follow the layout of control 

polyhedron, displayed in Fig. 5 and utilize the methodology described in section 2. 

3.2.1 Open bifurcating surface 

The surface shown in Fig. 6 has been constructed by considering the same pattern of control point 
displayed in Fig. 5(a). However for open surface, control points have been removed from the layout 
in negative z-direction. The layout has been developed by to and fro repetition of the control point 

through the junction of the bifurcating surface. For each repeated control point, knot coordinates in 
T-mesh is different and can be determine from Fig. 6(a). Each vertex of T-mesh represents control 
point having knot coordinates (u, v). In order to create junction and branches, control point has 
been inserted in the T-mesh shown in Fig. 6(a). The repetition enables the surface to pass through 
the desired control point however this will degrade the continuity of the surface.  

3.2.2 Closed bifurcating surface 

The design of the closed bifurcating surface from first two arrangements of control points, illustrated 
by Fig. 5(a) and Fig. 5(b) has been addressed in this part. To achieve this, periodic knot vectors has 

been adopted in the definition of T-spline surface as given in Eqn. 2.1. The Layout of the control 
point shown in Fig. 5(a) has been taken to plot the T-mesh and corresponding surface, displayed in 
Fig. 7(a) and Fig. 7(b) respectively. The obtained closed surface is dominated by back and forth 

repetition of the control point to disjoint the branches from stem part, which results multiple 
parametric lines converged at the junction and are clearly visible in Fig. 7(b). 

 
(a)                                                                            (b) 

 
Figure 6: T-mesh (order k=4) and corresponding Open Bifurcating Surface using Pattern of Control 

Polyhedron Shown in Fig. 5(a): (a) T- mesh used for Construction, (b) Resulting Bifurcating Surface. 
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(a)                                                                          (b) 

 
Figure 7: T-mesh (order k=4) and corresponding Closed Bifurcating Surface using Control Polyhedron 
Shown in Fig. 5(a): (a) T- mesh used for Construction, (b) Resulting Closed Bifurcating Surface. 
 
 

 
 
 
 
 
Table 2: Data Utilized by Open and Closed Surfaces Shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9 

Respectively. 

 
The surface displayed in Fig. 8(b) has been made to minimize the multiple parametric lines which 
are visible due to continuous repetition of control point as mentioned previously. In this approach, 
two parallel contours in branched part are separated by method of disjoining, as shown in Fig. 5(b).  
Methodology to generate closed disjoint surface from a T-mesh has already been addressed in sub-
section 2.2. In Fig. 5(b), minimum number of the control point has been utilized (started from stem 

part) to decide knot interval in the first three rows of the corresponding T-mesh shown in Fig. 8(a), 
after that knots have been inserted in order to create junction and branched part respectively. Newly 
acquired closed bifurcating surface as shown in Fig. 8(b) is smooth, continuous at the junction and 
carrying relatively less number of control points (Tab. 2) as compared to Fig. 7(b).  
 

  
(a)                                                                        (b) 

 
Figure 8: T-mesh (order k=4) and corresponding Closed Bifurcating Surface using Control Polyhedron 

Shown in Fig. 5(b): (a) T- mesh used for Construction, (b) Resulting Closed Bifurcating Surface. 
 

k=4,   Fig. 6 Fig. 7 Fig. 8 Fig. 9 

N 61 157 124 163 

h 7 7 7 7 

𝑢𝑚𝑖𝑛 to 𝑢𝑚𝑎𝑥 0 - 4 1 - 5 1 -5 2-10 

𝑣𝑚𝑖𝑛 to 𝑣𝑚𝑎𝑥 0 - 6 0 - 6 0 - 6 0 - 6 
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(a) 

 
(b)                                                                 (c) 

 

Figure 9: T-mesh (order k=4) and corresponding Closed Bifurcating Surface using Control Polyhedron  
Shown in Fig. 5(c): (a) T- mesh used for Construction of the Surface, (b) Resulting Bifurcating 
Surface, (c) Closed Bifurcating Surface with Interpolating Shading. 

3.2.3 Closed bifurcating surface using final control polyhedron 

This part introduced final layout shown in Fig. 5(c), and corresponding T-mesh illustrated in Fig. 
9(a). The relations given in sub-section 2.3, has been developed by considering the final layout to 
construct branching surfaces. Even though the bifurcating surfaces, obtained by employing the 
layouts, Fig. 5(b) and Fig. 5(c) are quite similar and shown by Fig. 8(b) and Fig. 9(b), still inverted 
(first row of T-mesh is taken from the branched part of the surface) arrangement of control points 
given by Fig. 5(c) has been found more convenient for multi-furcating surfaces. In case of multi-

furcating surface, maximum number of control point can be utilized as knot values in the first row 
of the T-mesh. 

While addressing a branched surface model, the number of control points has been increased as 
one move from stem to branched part. Extra control points have been added, to reduce the 
sharpness at the edges of the branches. To achieve the surface shown in Fig. 9(b), knot interval in 
the first three rows of the T-mesh, has been decided according to the branched part of the layout 

shown in Fig. 5(c) unlike previous one in which knot interval was decided according to stem part of 
the layout Fig. 5(b). The range of parametric value will increase with the number of control polygon 
used in branch part (for multi-furcating surfaces).  

3.3 Closed Multi-furcating T-spline Surfaces   

The method for constructing bifurcations using final layout, is further extended to multi-furcations. 

In order to maintain the flexibility of the T-mesh in multi-furcation, similar pattern of the control 
points have been incorporated with the method of disjoining.  

 

Stem 
Part 

Branched 
Part 

Junction 
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3.3.1 Asymmetric and symmetric closed multi-furcating surface  

When the number of branches evolved from parent branch is same then it is called symmetrical 
branching. The surface shown in Fig. 12 is an example of a closed symmetrical branched surface 
and when number of branches evolved are not same as shown in Fig. 11, is called a asymmetrical 
branched surface. The methodology employed to construct both of the surfaces are same but in 
asymmetric branching, the way of assigning knot interval in T-mesh has been changed shown in Fig 

.10. This change has been done to keep the same knot interval for the control points (corresponding 
to the supporting parametric domain) used to close the surface in their set of local knot vector.  
 

 
 

 
Figure 10:  Sectional View of the Control Polygon used to make first row of the T-mesh of a Closed 
Asymmetrical Surface Shown in Fig. 11.  
 

  
           (a)                                                                   (b) 

 
(c)                                                                   (d) 

 
Figure 11: T-mesh (order k=4) and corresponding Asymmetrical Closed Multi-furcating Surface: (a) 
T- mesh used for the Construction of the Surface, (b) Enlarged View of Circled Part of T-mesh, (c) 

Resulting Multi-furcating Surface, (d) Closed Multi-furcating Surface with interpolating shading. 

 
Fig. 10 gives the idea of sectional views of the three control polygon lies in the first plane of control 
polyhedron (similar to Fig. 5(c)). In order to preserve closeness of the surface, the knot values 

A 

B 

2 
2 

2 
2 

1 
1 1 1 

1 1 1 
1 
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for control points that lie within A and B has been arranged in such a way that it can achieve equal 
knot interval with respect to the local knot vector of the closing control points.  

 
(a)                                                                          (b) 

 

Figure 12: Symmetrical Multi-furcating Surface (order k=4): (a) Resulting Multi-furcating Surface, 
(b) Closed Multi-furcating Surface with Interpolating Shading. 

 
To design a multi-furcating surface, control polygon in the first plane may vary according to the 

branches required in the higher generation of the surface. For a simple bifurcating surface, the 
number of control polygon in the first plane has been taken as two shown in Fig. 3(a) and the number 
of control points in the first row of T-mesh varies accordingly. The surface shown in Fig. 12(a) is a 

symmetric multi-furcating surface in which four control polygons has been used in the first plane of 
control polyhedron. Same number of control polygon has been used in tri-furcation shown in Fig. 
13. 

 
(a)                                                                   (b) 

 
Figure 13: Tri-furcating Surface (order k=4): (a) Tri-furcating Surface in Parametric Space, (b) 
Closed Tri-furcating Surface with Interpolating Shading. 

 

K=4,   Fig. 11 Fig. 12 Fig. 13 
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 N 300 369 429 

h 9 9 9 

𝑢𝑚𝑖𝑛 to 𝑢𝑚𝑎𝑥 4 - 20 4 - 20 4 - 28 

𝑣𝑚𝑖𝑛 to 𝑣𝑚𝑎𝑥 0 - 8 0 - 8 0 - 8 

 
Table 3: Data Utilized by Multi-furcating Surfaces, Shown in Fig. 11, Fig. 12, and Fig. 13 Respectively. 

 
The range of parametric domain in u-direction will be more in case of trifurcation since three branches 
evolved from stem part of the surface.     

4 COMPARISON OF LAYOUTS FOR CONSTRUCTION OF BRANCHING SURFACE 

The results of experiments performed on the arrangement of control points and corresponding T-
meshes has been discussed in the previous section. Extension of the first layout (Fig. 5(a)) to make 
multi-furcating surface has been aborted due to complexity in the repetition of control points and 

discontinuities obtained in resulting bifurcating surface.  

Use of the second layout (Fig. 5(b)) has been found simple for the construction of bifurcating 
surface through T-mesh. In the first row of T-mesh, knot values are placed according to the control 
point in stem part (minimum number of control points). As one move from stem to branched part 
knots are inserted in between the previously assigned knots to get the desired shape. In case of the 
multi-furcating surface when control point has been increased, it becomes difficult to insert more 

control points in between previously assigned knot values.  

The final model of the control polyhedron (Fig. 5(c)) has been found more appropriate for the 
extension of bifurcation into multi-furcating surface. In final layout, knots have already been 

assigned according to the maximum number of control points (branched part), thus to maintain the 
shape of the surface one need to remove control points as moving away from the branched part.  

Although the method to create bifurcation is same in both second and third layout but the 
construction of T-mesh from the third layout has been found good enough to achieve the required 

closed, multi-furcating surface.                               

5 CONCLUSIONS  

In the present work, some experiments have been performed on T-mesh templates to construct 
bifurcations and multi-furcations. These experiments show that use of disjoint surface in periodic T-
spline is an effective method to construct smooth and continuous branched surface. However, in 
case of multi-furcation, it is difficult to maintain the flexibility of the T-mesh for upper level branching 

with respect to the lower level bifurcation. This problem can be resolved by altering the T-mesh 

according to the pattern of control point shown in the final layout. These methods can be applied in 
applications where smooth reconstruction of bifurcating or multi-furcating part is required.  
 
Kritika Joshi, http://orcid.org/0000-0002-1622-8785  
Amba D. Bhatt, http://orcid.org/0000-0003-0022-1930 
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