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ABSTRACT 

 
This research introduces a workflow based on a prototype tool that automatically 

encodes a massing design for exploration using a genetic algorithm. The workflow 
has been customised for an architecture class attended by computational design 

novices. It streamlines the process of running an algorithm-assisted design 
exploration, where students only need to (1) construct a 3D massing model, and 
(2) specify the geometrical parameters and their value range to be explored by the 
algorithm. The prototype tool uses the two inputs to automatically encode the 
design as a genetic problem and explore the design space with respect to density 
and solar objectives. The workflow is used by the students to complete a simplified 
massing design exercise. The workflow’s feasibility and effectiveness are evaluated 

and shown through usage data and feedback collected from the students. As the 
workflow and the tool are openly available, they have the potential to be adapted 
for use in other design scenarios. 
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1 INTRODUCTION 

Optimisation algorithms can be used in an architectural design exploration process to automatically 
generate a large number of design alternatives. Optimal design alternatives are then extracted and 
analysed to facilitate the understanding of the design problem and support design decisions. 
However, running such an algorithm-assisted exploration process requires expertise in such tasks 
as computationally encoding design concepts, automating the exchange of data between domain-

specific applications, and orchestrating the execution of these applications. Building professionals, 

both engineers and architects, have reported that the required expertise is one of the main 
obstacles to the adoption of optimisation algorithms in building design [1].  
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Motivated to overcome these obstacles for architecture professionals, we developed a 
streamlined workflow based on a prototype tool that enables computational design novices to 
readily run such an exploration process. In this paper, the streamlined workflow is customised for 
used in an architecture elective class. The effectiveness of the workflow is shown through 

quantitative and qualitative information collected from the class, where it was used for teaching 
the algorithm-assisted design exploration. The research’s contribution is in the development, 
demonstration and assessment of the workflow. As the workflow and the tools are openly 
available, they have the potential to be adapted or extended for other design scenarios.  

To put this work into context, we first discuss how our proposed workflow complements the 
existing ecology of optimisation tools. As the workflow has been customised for teaching an 
elective class, we then describe the educational context of the elective class, followed by the 

details of the workflow and the measurements used for evaluating the workflow. We conclude by 

discussing the feasibility and effectiveness of the workflow through the evaluations.  

1.1 Existing Optimisation Tools 

There are many available optimisation tools that can support an algorithm-assisted exploration 

process. We give an overview of the existing tools and classify them into four categories: 
standalone, CAD-based, simulation-based and Building Information Modelling (BIM)-based tools. 
We then describe the contribution of our proposed workflow and prototype tool in the context of 
this ecology of tools. 

Generic standalone optimisation tools provide a set of packaged optimisation algorithms that 
can be configured for used in a design problem; examples of these tools are GenOpt [2] and 
ModelCenter [3]. Unless the configurations are made available by other users, architects who want 

to use these tools will have to integrate the necessary CAD or simulation applications themselves. 

A CAD application is essential for manipulating the geometries of the building form when an 
architect wants to optimise form-related variables. The appropriate simulation applications are 
essential for evaluating the design alternatives with respect to the performance of interest. 
Integration of these applications requires a high level of programming knowledge as shown in a 
study that integrated both CAD and simulation applications with ModelCenter [4]. Architects who 

have a high level of programming skills can configure these tools to perform an optimisation 
process for any design scenario. 

In a CAD-based tool, optimisation algorithms and simulations are already integrated into the 
CAD application. Architects can orchestrate the exploration process within the familiar environment 
of a CAD application. They are only required to do programming through a Visual Programming 
Language (VPL) or write short programming codes to run an exploration process. Examples of 
these tools are Galapagos in Grasshopper Rhinoceros3D [5] and Optimo in Dynamo [6]. With the 

geometrical capability of a CAD application, VPL interface and a library of integrated simulation 
applications, architects equipped with elementary programming knowledge can encode their 
design concept creatively and orchestrate the exploration setup. Architects are free to use these 
for most design problems. The design variables to be optimised include building system and 
building form variables, and the performance objectives can range from energy consumption to 
spatial configurations. 

Simulation and BIM-based tools are usually developed to optimise a targeted set of design 

variables with respect to clear performance objectives, which require high-resolution building 
information for their execution. An optimisation algorithm is integrated within the simulation or 
BIM application. No programming skill is required as the workflow of the tool is streamlined to 
perform an optimisation task with limited versatility. Examples of these tools are jEPlus+EA [7] 
and ThermalOpt [8]. These tools are suitable for refining and optimising building system variables 

but not variables that drastically change building form, except for the H.D.S Beagle application [9].  

H.D.S Beagle has been developed to optimise both building system variables and complex 
building-form variables for a massing design with respect to spatial, energy and construction cost 
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objectives. The tool leverages the existing modelling interfaces of Revit, which include the 
conceptual massing module for encoding a design concept as a parametric massing model, the 
CAD modelling kernel for extracting spatial information to calculate the spatial and cost objectives, 
and the interoperability between Revit and Green Building Studio for running energy simulations 

for the energy objective. The tool has demonstrated high flexibility in encoding complex building 
forms in the massing design stage without the need for programming. The limitation is that an 
architect can only explore the design concept with respect to a defined set of performance 
objectives provided by the tool. Nevertheless, the tool streamlines the workflow for an algorithm-
assisted-exploration process, where an architect only must be familiar with the parametric 
modelling interface of a widely available commercial CAD tool. 

H.D.S Beagle is potentially a suitable tool for computational design novices to run the 

algorithm-assisted-exploration process. However, the encoding of a design concept as a 

parametric model can still be a difficult task for novices. Thus, we developed our tool and workflow 
to lower the learning curve by automating the construction of a parametric model, while still 
allowing flexibility in geometry manipulation. We positioned the proposed workflow as a quick and 
easy way for architecture professionals to learn the algorithm-assisted-exploration process by 
performing it. Once the architects have experimented with the process and see potential use in 

their design, they can learn programming and use the tools mentioned here. They can also 
perform a one-time customisation of our workflow with help from programmers for their own 
design process without the need to learn programming. In comparison to H.D.S Beagle, all the 
tools used and integrated into our workflow are freely available (download links in section 4), and 
the prototype tool is open-source. In the next section, we will demonstrate how the workflow was 
customised for an architecture elective class, where students who are novices were able to use the 
workflow for executing algorithm-assisted design exploration. 

2 METHOD 

The architecture elective class was taught in Singapore Polytechnic and was titled Vertical Studio 
Elective: Parametric Solar Massing Design Exploration. The two-week, forty-hour, workshop-based 
elective class was a means for tutors to experiment with new teaching content and to enable 
interactions between students from different academic years. There were multiple classes that 
taught different topics ranging from digital fabrication to 3D animation. Students chose the class 
they preferred to attend and were assigned their class through a balloting system. At the end of 

the balloting exercise, our class had 28 students consisting of four third-year, two second-year and 
22 first-year students.  

According to a survey, most of the students had some experience with 3D modelling tools; 

SketchUp and AutoCAD were the most common tools, and only five first-year students had no 
experience in any computational design tools. Most students had no experience with parametric 
modelling, except for four upper-year students who had used either Dynamo or Grasshopper. All 

students except one had not used simulation tools in design. Four students reported having 
experience in programming. Lastly, all students reported no experience in the use of optimisation 
algorithms in their design process. 

In a two-week period with most students being computational design novices, we felt that it 
was impractical for the students to master and run an optimisation process for any design 
exploration scenario. Instead, the aim was to introduce the algorithm-assisted exploration process 
through a hands-on simplified massing design exercise using our proposed workflow.  

2.1 The Simplified Massing Design Exercise 

Massing design is a crucial phase in an architectural design process, where architects compose and 
manipulate massing models to quickly assess and decide the building form in relation to its 
surroundings [10]. Apart from architectural quality, it is also important to assess other qualities of 

the building form to facilitate better building performance in the later design stages. With only 
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geometrical data available from the massing models, we identified two performance objectives and 
their evaluation methods suitable for assessing the massing designs: Floor Area Ratio (FAR) and 
Useful Solar Façade to Floor Area Index (USFFAI). Thus, in our simplified massing design exercise, 
we asked the students to design an office building in a hot and humid climate (black plot shown in 

Figure 1) with respect to these two objectives, while not focusing on other aspects such as costing 
and structural feasibility. 

FAR is the ratio of the net floor area of the building to the plot area; a higher FAR denotes a 
denser plot. The USFFAI is the ratio of the façade area receiving annual solar irradiation within a 
user-defined range to the floor area. The USFFAI is the combination of the Daylight Façade to Floor 
Area Index (DFFAI) and Non-Solar Heated Façade to Floor Area Index (NSHFFAI), which 
respectively are the ratio of the façade area receiving solar irradiation above a minimum 

illumination to the floor area and the ratio of the façade area receiving solar irradiation equal or 

below a maximum value to the floor area [11]. A high USFFAI indicates a building form has high 
solar potential in achieving good daylighting and a low cooling load. An appropriate solar 
irradiation range is dependent on the climate of the building’s location. Details of the evaluation 
methods will be described in section 2.3.2.  
  

 
Figure 1: The site and the plot of interest (black) of the massing design exercise. 

 

The students were asked to design a building with as high density and as high solar performance 
as possible, which meant generating building forms that could achieve high FAR and high USFFAI. 

A building with high FAR has more floor area to be day-lit, which will require higher glazing area. 
The higher glazing area increases the probability of having a high cooling load due to the solar 
heat gain through the increased glazing area. Thus, it is essential that a building form with high 
FAR also has high USFFAI in the massing stage, to facilitate placement of glazing for good thermal 
performance in the later design stages. These two performances are contradictory: the increase in 

floor area reduces the USFFAI. The students are required to find a building form of the right 

compactness. If the form is too compact, there will not be enough external surfaces for 
daylighting; else there might be too many surfaces causing over-heating.  

We divided the massing design exercise into three stages to teach the algorithm-assisted-
exploration process. The division is based on our experience in using the algorithm-assisted design 
exploration, where we move from manual exploration to semi-automatic parametric exploration, 
and eventually to engage an algorithm to automatically generate design alternatives. The first two 
stages aim to facilitate the formulation process, where students experiment with encoding, 

generating and evaluating design alternatives of different design concepts. A design concept is 
defined as an idea evolved to a point where it is possible to represent it as a massing model. A 
design alternative is generated by manually editing a 3D model or automatically generated by 
parameterising the model.   

The first stage, concept exploration, requires the students to explore at least three different 
design concepts by modelling and evaluating them as massing models. In the second stage, 
parametric exploration, the students identify at least one design concept they feel has the highest 

potential for achieving good architectural qualities and performances, then perform parametric 
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explorations on the massing model of the identified design concept. After performing the exercises 
in the first two stages, the students should have chosen at least one design concept and decided 
the parameterisation of the massing model. The third stage, algorithmic exploration, requires the 
student to run an optimisation process on the chosen design concept, and analyse the design 

alternatives to identify high-performing and architecturally desirable designs.  

2.2 Overview of the Proposed Workflow for the Massing Design Exercise 

We introduced a workflow based on SketchUp and the prototype tool for the three-stage massing 
design exercise, as shown in  

Figure 2. In this workflow, students conceive a design concept, geometrically model it as a 
massing model in SketchUp, export it into the Collada format and input it into the prototype tool. 
The prototype tool does not have a graphical interface. The students access the prototype tool 

through a Python Integrated Development Environment (IDE) called Spyder with inputs shown in  
Figure 2. Details of the prototype tool are elaborated in section 2.3. The site model in Collada 
format and weather file in EPW format were provided to the students and remained constant 
throughout the exercise. In class, the students followed the workflow and used different modules 

of the prototype tool for the different design stages of the exercise.  

The module for the first stage, concept exploration, takes in a massing model and evaluates it 
based on the metrics, FAR and USFFAI. Additional inputs include a site model and a weather file 
for running the Radiance simulation. All building masses in the Collada file must be modelled as 
close-shells and plots and terrain as open-shells to facilitate the processing of the geometries. The 
modelling specification is described in [12]. The module then documents the FAR and USFFAI 
values in a performance model in Collada format. The performance model visualises the solar 

irradiation result in false colour ( 

Figure 2). It can be viewed in any 3D modelling application. Furthermore, a comma-separated 
value (CSV) log file documents the results and properties of the generated design alternatives. 

 

The module for the second stage, parametric exploration, generates and evaluates a design 
alternative based on a massing model and its parameterisation specifications. The module requires 

the same inputs as the concept exploration module, but with an additional set of parameterisation 
specifications used by the morphological operators to auto-parameterise the massing model. 
Morphological operators, a combination of several geometrical transformations controlled by one or 
multiple parameters, are capable of generating complex building forms [13] and have been 
successfully used in design practice [14]. We implemented six single-parameter morphological 
operators for students to parameterise their massing models: height, taper, twist, slant, bend and 
orient. The parameterisation specification is elaborated in section 2.3.1. The module outputs a 

massing and performance model of the generated design alternative and a CSV log that 
documents all the inputs and performance results of each generated design alternative. The log is 
useful for providing an overview and reviewing the exploration process.  

The module for the third stage, algorithmic exploration, runs an optimisation process based on 
an auto-parameterised massing model and a set of parameter ranges. The module takes the same 
input as the concept exploration module, but with the additional specification of parameter ranges. 
A parameter range consists of three numbers that define the minimum, maximum and interval of a 

parameter. For example, to explore the effect of twisting a massing model, by specifying 0o, 90o 
and 5o, twist values between 0o-90o in intervals of 5o will be generated. The module runs an 
optimisation process based on the specified set of morphological operators and parameter ranges 
and produces many design alternatives. Details of the optimisation algorithm used are elaborated 
in section 2.3.3. The module outputs an Extensible Markup Language (XML) file that documents all 

the design alternatives named according to their generation sequence and a massing and 

performance model for each design alternative. The XML file is described in [15]. The module also 
outputs an optimisation log that documents the optimisation settings and speed. 
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Figure 2: Summary of the workflow for the three-stage massing design exercise. 

 

Another module for the third stage, an analysis module, takes in the XML file generated from the 
optimisation process and extracts the design alternatives on the Pareto front. The students can 

also specify performance ranges to filter out design alternatives. For example, by specifying a FAR 
range of 3.5-5.5 and USFFAI range of 0.08-0.1, the module will extract the design alternatives 
within these ranges. The design alternatives are visualised in a scatter plot. From the plot, the 
students can identify alternatives of interest and visualise the alternatives’ 3D performance model. 

This module enables the students to interactively and iteratively explore the optimal design 
alternatives. They will eventually choose their final design alternatives based on their own 

judgment after assessing the trade-offs between performances and architectural considerations.  
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2.3 Developing the Prototype Tool for the Massing Design Exercise 

The prototype tool performs four core tasks to support the simplified massing design exercise: 

auto-parameterisation of the massing model for generating design alternatives (section 2.3.1); 
FAR and USFFAI evaluation of the design alternatives (section 2.3.2); exploration of the design 
concept using an optimisation algorithm with respect to FAR and USFFAI; and extraction of the 
Pareto front and filtering the design alternatives from the optimisation result (section 2.3.3). We 
developed the prototype tool using the Python library, Py4design, previously known as Pyliburo 
[15]. 

2.3.1 Auto-Parameterisation of a Massing Model  

To auto-parameterise a massing model, the prototype tool first auto-converts the massing model 
into a semantic model [12], followed by the auto-parameterisation of the semantic model [16]. We 

extended the auto-parameterisation method to include morphological operators using the 
PythonOCC-based modelling kernel in Py4design.  

Table 1 explains and illustrates the morphological operators. Students are only required to input a 
massing model and specify the morphological operators with the corresponding parameter values 
to parameterise their massing model.  
Figure 3 illustrates two auto-parameterised models. 

 

Operator  Transformations  Parameter Illustration  

Height  
Scales the building 
form in the z-axis to 

vary its height. 

The resultant building 

height in metres. 

 

Taper 

Gradually narrows 
the building form 
either from the top 

to bottom or vice 

versa. 

The ratio of the roof 

area to the footprint 
area. If the value is 
bigger than 1.0, the 
operator increases the 
roof area, and the 
building form is 
gradually tapered from 

top to bottom. If the 

value is less than 1.0, 
the operator decreases 
the roof area, and the 
building form is 
gradually tapered from 
bottom to top.  

 

 

Twist  
Gradually twists the 
building form along 
the z-axis. 

The rotation of the roof 

plate along the z-axis in 
degrees. The building 
form is gradually twisted 
to this rotation. 
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Slant 
Gradually slants the 
building form in the 
x-axis direction. 

The displacement of the 
roof plate to the x-axis 
direction in metres. The 
building form is 

gradually slanted to the 
displacement.  

 

Bend  
Gradually bends the 
building form to the 
x-axis direction.  

The rotation of the roof 
plate along the y-axis in 
degrees. The building 
form is gradually bent to 

the rotation. 
 

Orient 
Orients the building 
form in different 
directions. 

The rotation of the 
building form about its 
original orientation in 
degrees. 

 
 

Table 1: Descriptions of the morphological operators implemented in the prototype tool. 

 

 
 

Figure 3: Two parametric models and their design alternatives generated by the prototype tool. 

2.3.2 Evaluation of Design Alternatives 

For calculating FAR, the tool first slices the massing model into individual floor plates assuming a 
floor-to-floor height of four metres using the modelling kernel in Py4design. The tool then sums 
the floor areas and expresses the sum as a ratio of the plot area to obtain the FAR, as illustrated in  

Figure 4.    

For the USFFAI evaluation, the tool uses the Gencumulative Sky module [17], distributed with 
the Daysim lighting simulation that has been integrated into Py4design, to calculate the annual 
cumulative solar irradiation on any surface in a scene. The lower threshold, 245 kWh/m2, is the 
minimal irradiation required on the façade of the building to potentially daylight the interior and is 
based on the minimum mean facade illumination of 10,000 lux [18,19]. The upper threshold, 355 
kWh/m2, is the maximum irradiation permitted on the façade to reduce the potential of 

overheating a building interior in a hot and humid climate and is derived from the Envelope 
Thermal Transfer Value (ETTV) [20]. The calculations of the threshold values are described in 

Appendix A. The tool calculates the façade area that receives solar irradiation between these limits 
and expresses it as a ratio to the floor area of the building.  

Figure 4 shows a performance model of a design alternative with a FAR of 4.5 and an USFFAI 
of 0.01.  
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Figure 4: Calculation of FAR and USFFAI. 

2.3.3 Optimising and Exploring the Design Concept with NSGA2 

The prototype tool uses the Non-Dominated Sorting Genetic Algorithm 2 (NSGA2) implemented in 
Py4design for optimisation. NSGA2 is one of the most common variants of genetic algorithms. 

There are many other algorithms that could have been used for the workshop such as Particle 
Swarm and Ant Colony algorithms. But the emphasis of the workshop is on the exploration process 
and not on the algorithms. The topic of choosing optimisation algorithms for different design 
problems is beyond the scope of the workshop. As a result, we chose NSGA2 because genetic 
algorithms are the most common class of optimisation algorithm used for optimisation in building 
design [21]. They are highly adaptable and robust in finding good solutions for a wide range of 
optimisation problems. In this research, the algorithm is used to improve the performances of the 

design alternatives (section 2.3.2) by varying the values of the morphological operators (section 
2.3.1). 

The settings used by the tool for the NSGA2 optimisation are an initial population of 25, a 
crossover rate of 0.8 and a mutation rate of 0.1 for each reproduction. The tool limits each 
optimisation run to only 10 generations due to the time constraint of the workshop. Ten 
generations will generate a total of 250 design alternatives. The students are then able to explore 
the design alternatives by extracting the Pareto front or by filtering alternatives outside a specified 

performance range using the analysis module. 

2.4 Measurements for Evaluating the Workflow 

The set of measurements used for evaluating the workflow, adapted from [22], provides a basis 
for observing and assessing a workflow regarding technical and human factors. The measurements 

are divided into four categories that measure the design problem, process, product and user 
experience. As they were specific to [22], we only adopted the categorisation and adapted the 

measurements appropriate for assessing our workflow in our class.  

Measurements of the design problem, process and product categories were collected for each 
design concept, while measurements for the user experience category were collected for each 
student.  

Table 2 lists the measurements and explains their intent. We collected the measurements by 

analysing the files that the students submitted for the class, which included all their massing 
models, all the files generated by the prototype tool, and their slides of their final presentation at 
the end of the class. 
 

Category/Measurement What does it measure? 

Design problem (Per Design Concept) 

Massing model surface count Geometrical complexity of the model. 

Minimum and maximum number of parameters 
explored 

Complexity of the parametric model. 
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Design space (The maximum number of design 
alternatives that can be generated from the 
optimisation problem definition.)  

Complexity of the optimisation problem. 

Process (Per Design Concept) 

Performance feedback time per design alternative Speed of feedback provided by the workflow.  

Design exploration process with the workflow 

Qualitative account from the students’ 

presentation of the design exploration 
process. 

Product (Per Design Concept) 

Number of design alternatives explored 
Extent of the design space explored by the 
student using the workflow. 

Quality of design alternative  

Quality of the design alternatives (measured 

by the two performance objectives) explored 
by the student using the workflow. 

User experience (Per Student) 

Feedback on elective class 
Effectiveness of the class in teaching the 
algorithm-assisted-exploration process. 

 
Table 2: Measurements used in assessing the proposed workflow. 

3 RESULTS 

After the two-week elective class, 27 of 28 students completed the three stages of the design 
exercise. A summary of the collected evaluation measurements is shown in  

Table 3. Only Student-12 did not manage to complete the exercise. The student could only 
complete the first two stages of the massing design exercise, due to a combination of such 
difficulties as installation, adherence to modelling specifications, and the lack of computational 
time for an optimisation run.  

 

Nevertheless, based on Table 3, on average each student in the class explored four design 
concepts, three parameters in stage 2 and ran six generations of optimisation process in stage 3. 
The complexity of each student’s optimisation problem as indicated by the problem’s design space 
has a median of 14,275. Throughout the three stages of design, each student generated an 
average of 212 design alternatives with a feedback time of six minutes per alternative. A variety of 
design concepts and alternatives were explored where the surface count of the massing model 

ranges from six to 267 surfaces, the FAR ranges from 0.4 to 642.9, and the USFFAI ranges from 

0.0 to 0.16. Based on the survey after the class, 26 students felt the class facilitated their 
understanding of the algorithm-assisted-exploration process, and 24 of them would consider 
learning the optimisation tools introduced in the class for their next design assignment, as shown 
in the last two columns of  

Table 3. The feedback supports our claim that it is feasible for computational design novices to use 

the proposed workflow in executing the algorithm-assisted-exploration process. 

The students were asked to present their design process in class for us to qualitatively assess 
their work. From their presentation, we saw that students were able to quickly compare design 
alternatives using the performance indicators and use the false colour performance model to 
inform the improvements made to their subsequent designs in stage-1 and 2. They explored the 
design manually, and semi-automatically with parametric modelling in these two stages. In stage 
3, they chose a concept to parameterise and optimise based on their exploration in the previous 

stages. Most students were able to identify a concept of high potential and found better performing 
alternatives through the optimisation process, while some failed to do so.  

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 16(2), 2019, 269-288 

© 2019 CAD Solutions, LLC, http://www.cad-journal.net 
 

279 

Stud

ent 

ID 

Conce

pts 
Explor

ed 

Avg  
Parame

ters 

Explor

ed  

Avg 

Design 

Space 

Max 

Generati

ons Ran 

Min 

Surface 

Count 

Max 

Surface 

Count 

No. of Design 

Alternatives 

Explored at Each 

Stage  

Feedbac

k Time/ 
Alternativ

e (mins) 

Min 
FAR  

Max 
FAR 

Min 

USFF

AI 

Max 

USFFA

I 

Facilitat

e (yes, 
no, not 

sure) 

Consider 

(yes, no, 

not sure) 

1 2 3 

0 7 2 
13,85
1 

3 10 44 
27 44 75 

7 2 
176.
2 

0 0.06 
not 
sure 

not sure 

1 3 3 
12,90
0 

7 13 41 
20 9 325 

44 75 22.2 0 0.06 yes yes 

2 4 3 
13,85
1 

10 6 48 
6 27 250 

4 1.4 12.2 0 0.08 yes yes 

3 5 4 
152,3
61 

16 6 202 
9 10 650 

2 0.9 27.4 0 0.11 
not 
sure 

yes 

4 12 2 2772 1 6 76 
15 80 24 

13 3.2 
162.

5 
0 0.11 yes yes 

5 4 2 3249 6 6 13 6 9 150 12 2.6 20.4 0 0.04 yes yes 

6 3 3 2430 6 19 48 
7 47 150 

8 1.5 
642.
9 

0 0.04 yes yes 

7 3 4 
14,70
0 

7 9 18 
3 3 175 

10 1.2 11.7 0 0.07 yes yes 

8 3 3 
1,102,

773 1 6 48 4 77 50 10 2.1 29.5 0 0.09 yes yes 

9 3 3 7182 10 6 44 8 76 250 13 1.2 75 0 0.09 yes not sure 

10 5 3 1881 1 16 267 10 10 25 6 1.6 16.6 0 0.08 yes yes 

11 3 3 
35,73
9 

10 10 26 
9 3 250 

3 3.2 8.2 0.02 0.09 yes yes 

12 4 1 0 0 6 28 11 5 0 4 3.2 10 0 0.08 yes yes 

13 3 2 3249 2 13 28 3 2 50 8 4.5 8.8 0 0.03 yes yes 

14 7 3 8316 10 10 166 
14 95 400 

2 1.1 
173.

4 
0 0.16 yes yes 

15 9 4 
152,3
61 

6 6 52 
6 13 150 

2 0.5 30.1 0 0.06 yes yes 

16 3 4 
152,3
61 

7 6 21 
3 1 175 

19 2.3 29.6 0 0.09 yes yes 

17 3 3 
25,74
0 

2 14 182 
4 48 100 

5 2.4 9.1 0 0.07 yes yes 
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18 4 4 3072 6 6 8 5 24 150 2 1.2 9.7 0 0.06 yes yes 

19 3 4 
75,62
5 

4 16 32 
3 36 100 

9 2.8 12.6 0.01 0.1 yes not sure 

20 3 3 
22,87
8 

10 6 8 
4 25 250 

3 1.8 23.3 0 0.1 yes yes 

21 7 4 
62,37
0 

4 6 49 
12 22 100 

14 3.1 19.6 0 0.1 yes yes 

22 3 3 630 10 12 56 3 8 250 4 3.5 10.9 0.01 0.08 yes yes 

23 3 4 
1,231,

200 12 20 92 3 41 300 2 2.1 10.7 0 0.06 yes not sure 

24 3 2 N.A* 1 32 158 3 3 25 4 1.9 7.7 0 0.06 yes yes 

25 3 3 3360 8 10 26 6 17 200 9 7.3 33.6 0 0.05 yes yes 

26 5 4 
185,4
72 

4 6 29 
11 39 125 

8 1.6 34.6 0 0.1 yes yes 

27 3 4 
152,3
61 

7 17 94 
5 23 175 

2 0.4 12.3 0 0.11 yes yes 

 

Table 3:  Summary of the evaluation metric for each student (* = incomplete submission). 
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This will be further discussed in section 3.1. Despite this, they were able to zoom into 
alternatives of good performance using the filtering and Pareto ranking techniques. They then 
compared these alternatives based on the performance indicators and architectural considerations. 
Eventually, they made an informed decision in choosing their final design. We were encouraged to 

see the students put what had been taught in class into practice. 

In the survey conducted at the end of the class, a third of the students expressed that the 
design process was new to them and found it “interesting,” while the rest of the class had left the 
open-ended feedback section blank. Three of the students expressed interest in understanding the 
underlying algorithm of the prototype tool, and two students envisioned the design process as 
“helpful” and “relevant” for their future architectural education. Student-20 was able to correctly 
summarise the intention of the class in his presentation, where he pointed out the workflow had 

enabled him to experiment with parametric modelling and algorithm-assisted exploration without 
the need to perform any programming.  

We qualitatively examined the submitted presentation slides of the students to understand 
how they used the workflow for design exploration. We identified two methods: linear and parallel. 
In the linear method illustrated by student-21’s exploration process (Figure 5a), students 
modelled, tested and improved design concepts they wanted to explore in stage-1, chose one or 

multiple concepts from stage-1 for parameterisation in stage-2, adjusted the parameters to 
understand the parameter’s effect on the performance, then identified one or multiple design 
concepts and their parameter range from stage-2 for stage-3. In the parallel method illustrated by 
student-10’s exploration process (Figure 5b), the students tested new design concepts for each 
stage. Because we recommended the linear method for the exploration while noting the 
acceptability of testing new concepts for each stage, only two students used the parallel method.   

 
Figure 5: Two main exploration methods: (a) a linear method as illustrated by student-21’s 
exploration process (b) a parallel method as illustrated by student-10’s exploration process. 

3.1 Performance of the Design Alternatives 

So far, we have shown that most of the students were able to run an algorithm-assisted design 
exploration process, which is usually a task reserved for advanced users. Next, we examined in-
depth the workflow’s effectiveness in generating high-performing design alternatives. In a multi-
objective design problem, the performance of design alternatives is determined by the strength of 
the Pareto front they belong to. A Pareto front consists of design alternatives not dominated by 
other alternatives. A design alternative is dominated by another alternative when the other 
alternative performs better in one objective and as well in other objectives. The strength of the 

Pareto front is quantified by the c-measure and s-measure [23]. The c-measure compares two 
Pareto fronts and calculates the fraction of design alternatives of each front that are dominated by 
the other front; the front that dominates more design alternatives is declared the dominating 
front. The s-measure calculates the size of the dominated area of the Pareto front; a bigger size 
indicates higher performing design alternatives on the front. We calculated the s-measure using 

the Python implementation [24] of the hyper-volume algorithm-3 [25]. These measurements are 

used only for the evaluation of the workflow’s effectiveness. As the students were not expected to 
produce multiple Pareto fronts, these measurements were not taught and used in class.  
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The students were primarily ranked on how many other Pareto fronts their front dominated 
and secondarily on the size of their s-measure. We used only feasible design alternatives for 
computing the Pareto front’s strength. There were 5262 feasible alternatives out of the total 5941 
design alternatives explored by the class. This was an oversight as we did not expect students to 

maximise the FAR to such an excessive extent. Looking at the design alternatives generated and 
the plot of the exercise, we decided that feasible design alternatives have a FAR less than 15, as 
we feel a FAR higher than 15 is too dense and tall for the plot. The issue of using FAR as an 
objective will be further elaborated in section 3.2. For this analysis, we extracted the Pareto front 
out of all the feasible design alternatives generated by each student from all the 3 stages.  

 

Table 4 provides a descending order of the students’ Pareto front strength. There is no 

observed relationship between the number of design alternatives explored and the performance of 
those design alternatives. Student-3, who explored the most number of design alternatives, is 
ranked twelfth while student-12, who explored the least number of design alternatives, is ranked 
sixteenth. This shows that it is not guaranteed that a student who explored more design 
alternatives will necessarily find better-performing design alternatives than a student who explored 
lesser alternatives. Finding better performing design alternatives than others is highly dependent 

on the individual and the circumstances. 

 

Rank 
Student 
ID 

Dominated 
Fronts 

S-
Measure 

Front 
size  

Alternatives 
on Pareto 
from Stage1 

Alternatives 
on Pareto 
from Stage2 

Alternatives 
on Pareto 
from Stage3 

1 21 27 1.3 7 0 0 7 

2 4 24 1.08 6 0 2 4 

3 8 24 0.96 5 0 5 0 

4 20 22 1.07 10 0 1 9 

5 16 22 0.88 3 0 0 3 

6 25 22 0.73 7 2 0 5 

7 19 20 0.94 6 0 5 1 

8 10 20 0.87 2 1 1 0 

9 27 18 0.89 5 1 2 2 

10 2 17 0.76 7 0 3 4 

11 7 17 0.75 5 0 0 5 

12 3 17 0.71 12 0 1 11 

13 26 16 0.79 14 0 12 2 

14 0 16 0.7 11 6 2 3 

15 22 12 0.68 4 0 3 1 

16 12 11 0.65 5 1 4 0 

17 14 10 0.91 10 1 9 0 

18 9 10 0.78 47 0 3 44 

19 1 10 0.63 12 0 1 11 

20 11 10 0.62 5 0 2 3 

21 17 8 0.5 7 0 3 4 

22 18 6 0.46 13 0 3 10 
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23 6 4 0.46 4 0 4 0 

24 5 4 0.4 4 0 2 2 

25 23 3 0.41 10 0 10 0 

26 15 2 0.39 19 0 1 18 

27 13 1 0.23 5 0 0 5 

28 24 0 0.23 4 0 2 2 

 
Table 4: Student ranking based on the strength of their Pareto front. 

 

However, we do believe that on an individual level, students will find better performing design 
alternatives compared to their initial alternatives with the exploration of more alternatives. This is 
evident when we examine the composition of the Pareto front. The last three columns in  

Table 4 show the number of alternatives on the front that are generated from the different 
stages. On average, the Pareto front consists of 7%±15%, 40%±35%, and 53%±37% 
alternatives generated from stage-1, 2 and 3 respectively. According to  

Table 3, on average, each student explored 8±6, 28±26 and 176±134 design alternatives in 
stage-1, 2 and 3 respectively. Most of the alternatives on the Pareto front are generated in stage-2 
and 3 as more alternatives are explored in these two stages. The relationship is illustrated in 
Figure 6. We performed a t-test to see if the improvements between the stages, generating more 
alternatives that were on the Pareto front, are statistically significant. The t-test shows the 
improvement in performance between stage-1 and 2 is significant (stage-1 to 2: t (28) = 4.61, p 

= 8.71e-05). However, the improvement between stage 2 and 3 proved to be not statistically 

significant (stage-2 to 3: t (28) = 0.87, p = 0.39). Despite the lack of significance for the 
improvement, the best performing design alternatives on the global Pareto front of the 5262 
design alternatives are mostly (7 out of 8) generated in stage-3 ( 

Figure 7). This fact demonstrates the effectiveness of the algorithm-assisted exploration process in 
finding good performing alternatives.  

 
Figure 6: The average number of design alternatives explored in each stage in relation to the 
composition of an average Pareto front consisting of alternatives from stage 1, 2 and 3. 
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Figure 7: The Pareto front of the 5262 feasible design alternatives explored by the class consists of 
seven stage-3 and one stage-2 design alternatives. 

 

The main disadvantage of the algorithm-assisted exploration process is the high computational 
time. The advantages are that it automatically generates many good design alternatives. However, 

there were six students (student-0, 6, 14, 19, 23 and 26) who were able to find better performing 
alternatives manually in stage-1 and 2 compared to their alternatives from stage-3. Their Pareto 

fronts consisted mainly of design alternatives from stage-1 for student-0 and stage-2 for the rest 
of the students. They were able to out-perform the optimisation algorithm by spending a 
considerable amount of time manually exploring a substantial number of design alternatives. There 
are two main reasons that this happens. First, FAR can be easily maximised by increasing the 
height of the building (further discussed in section 3.2). Second, manual exploration gets trapped 
in local optima. When students find a good alternative, some of them tend to make only minor 

modifications to their model to stay within that performance range. As a result, although they 
found many good design alternatives, the alternatives covered a much smaller space on the front. 
Although it is possible to out-perform the optimisation algorithm, manual exploration requires 
more person-hours compared to computational hours, and it is less reliable as shown by the case 

that most students still found their best-performing alternatives in stage-3. Students-4, 8, 9, and 
17 had explored a similar number of design variants in stage-1 and 2 as the previous six students 
but were unable to out-perform the optimisation algorithm, highlighting the usefulness of running 

an optimisation. 

3.2 Discussion 

The results show us the feasibility and effectiveness of the proposed workflow, particularly the 
benefits of a couple of features. First, breaking down the algorithm-assisted exploration process 
into three stages – concept, parametric and algorithmic exploration – was appropriate and 

facilitated the students’ understanding of the exploration process. Each stage consisted of an 
independent task that progressively guided the students towards running an optimisation process. 
The auto-parameterisation method enabled the standardisation of the main design input for the 
prototype tool as a massing model across the three stages. This ensured smooth transitions 

between the three stages, thus allowing flexibility in supporting different forms of exploration 
methods, whether the student prefered exploring linearly, in parallel, manually or algorithm-

assisted.  
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In retrospect, we could have broken the task down further by adding an extra stage to prepare 
massing models. Accompanying the preparation stage would be a preparation module of the 
prototype tool to check and highlight non-adherences of the massing models to the specifications. 
This will ensure the massing models are ready for the subsequent stages and reduce the student’s 

frustration when the prototype tool fails to execute, which occurred in class especially when the 
massing models were complex. Unfortunately, we did not collect data on instances where the 
prototype tool failed to execute. Our data consisted only of what the students submitted for the 
exercise. Thus, actual usage patterns and data of failed instances were not available as most 
students submitted only the successful design concepts. These data would have been very useful 
for improving the robustness of the tool. From students’ feedback and troubleshooting in class, the 
failure to execute was mostly related to geometrical operations regarding the auto-

parameterisation process. The main human cause was students not modelling according to the 

specifications. The main technical cause was that the geometrical transformations of the 
morphological operators were not sufficiently implemented to handle complex geometries robustly.  

The second effective feature was the use of performance indicators and the visualisation of 
performance results using false-colour 3D models. This was evident during presentations, where 
students compared alternatives using the indicators and supported their design modification by 

referring to the false-colour 3D model. Performance indicators are straightforward and effective for 
comparison because they summarise the performances into a single value. However, more detailed 
feedback such as the false-colour 3D models is required for design modifications to building forms. 

The use of indicators is effective for comparison and for objectives in optimisation processes, 
but it is important to choose the right indicators. We chose FAR and USFFAI as the performance 
objectives for the design problem. However, the two indicators have a huge disparity in sensitivity 
towards design modification. FAR is highly sensitive while USFFAI is highly insensitive to the 

modifications. This can be seen by comparing the much bigger FAR range to the USFFAI range of 
the design alternatives. It was not within our expectation to have such a huge FAR range, as we 
expected the students to constraint their exploration within a certain reasonable range of FAR. 
Students were confused because of the disparity during the exploration, as the FAR value changed 
easily with modifications while the USFFAI value remained nearly constant. In particular, the FAR 
is easily maximised with an increase in the building height. On the other hand, it is difficult to 
improve the USFFAI, as the students are required to carefully manipulate their massing to receive 

the appropriate amount of solar irradiation on the facade. Thus, to improve the exercise, we would 
use FAR as a constraint rather than an objective and choose another environmental-related 
indicator such as the solar potential for using photovoltaic panels. The solar potential contradicts 
the USFFAI, where we need to maximise the solar irradiation on the façade. This would remove the 
disparity and increase the need for careful articulation of the massing to utilise solar potential fully. 

The drawback we see from the result is the small size of the Pareto fronts generated by the 

students. This was mainly due to the time constraint of a two-week class. The maximum number 
of generations and the alternatives explored among the students in stage-3 were 16 and 650, 
respectively, which were achieved by student-3 as shown in  

Table 3. It is common to generate and evaluate thousands of alternatives in an optimisation 
process. The exploration of 650 alternatives for an optimisation process is insufficient, which can 
be seen from the small sizes of the global Pareto front ( 

Figure 7) and the individual Pareto fronts ( 

Table 4 and Figure 5). While the optimisation algorithm generated stronger design alternatives 
than both the conceptual and parametric exploration stages, the full potential of using optimisation 
algorithms was not fully illustrated to the students. 
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4 CONCLUSION 

The proposed workflow enabled most of the students to run an algorithm-assisted-exploration 
process within a two-week, forty-hour class. We demonstrated the feasibility of using the proposed 
workflow as a way for novices to learn and experiment with the algorithm-assisted-exploration 

process. The effectiveness of the workflow is shown through the result, where the performances of 
a student’s designs significantly improved as compared to his initial designs as he subsequently 
explores more design alternatives in stages-2 and 3. The results highlight the effectiveness and 
the need to integrate parametric modelling and optimisation algorithm into the design process for 
rapid generation and evaluation of design alternatives. The proposed workflow is an example of 
how these advanced techniques can be made accessible and integrated into the design process. 

There are many improvements that can be made to the workflow, based on the limitations 

mentioned in section 3.2. A priority is to improve the robustness of the prototype tool to handle 
complex geometries by developing better implementations of the morphological operators. This 
will then be followed by a series of improvements: 1) developing the preparation module as 
mentioned to support better segmentation of the optimisation task; 2) addition of new 
morphological operators and evaluation methods for the tool to adapt to a wider spectrum of 
design scenarios; 3) improvement in the speed of the optimisation process through the use of a 

faster algorithm or parallel computing; and 4) design of a graphical interface and investigating the 
development of a web-based application for a more reliable collection of usage data for analysis. 
The prototype tool and the guides for the class are openly available [26]. We encourage interested 
individuals to contribute to the development of the tool. Although the workflow was customised 
and used in a class, the methods used for developing the workflow have the potential to be 
adapted for use by computational design novices in other design scenarios. 
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6  APPENDIX A 

The maximum annual cumulative irradiance threshold for Useful Solar Façade to Floor Area 
(USFFAI) is derived from equation A1 based on the ETTV equation. For calculating the Irrupper, we 
assumed a worst-case scenario of a fully glazed building with WWR of one, a minimum ETTV value 
of 50W/m2 as stated in Green Mark, a typical Uf  of Singapore of 2.8 W/m2K (BCA 2010), ∆T equal 
to 3.4K, and SC of 0.5 [20].   

 

Irrupper = ((ETTV - ∆T (WWR)Uf)/SC) x hdaylight(A1) 

 

where Irrupper is the maximum annual cumulative irradiance threshold for USFFAI in Wh/m2, 
ETTV is the Envelope Thermal Transfer Value in W/m2, ∆T is the temperature difference in K, WWR 
is the window wall ratio, Uf is the thermal transmittance of the fenestration in W/m2K, and SC is 
the shading coefficient of the fenestration.  

The minimum mean illuminance threshold of 10,000 lx can be converted into irradiance using 
equation A2. Using the converted value from equation A2 in A3, the minimum annual cumulative 
irradiance threshold for USFFAI is obtained. For the classroom study, we used Radiance’s luminous 
efficacy value of 179 lm/W to convert daylight target of 10,000 lux on a vertical facade to W/m2. 
We subsequently performed a climate-based simulation to characterise the luminous 

efficacy. Using Daysim, which can output both the hourly illuminance and the irradiation values, 
we obtained the cumulative annual values of irradiance and illuminance and found that 110 lm/W 

is an appropriate value for Singapore. When the luminous efficacy value is 110 lm/W, the lower 
threshold of the USFFAI, needed for daylight, is higher than the upper threshold, which limits heat 
gain. In this case, instead of using a single indicator (USFFAI), one needs to use two competing 
indicators (NSHFFAI & DFFAI) for the optimisation, as mentioned in section 2.1.  

We ask the readers to exercise caution when using the USFFAI indicator, as the luminous 
efficacy is not a constant and is dependent on climatic conditions. Our use of 179 lm/W for the 
exercise does not invalidate the evaluation results of the proposed workflow, as the assessment of 

the workflow is independent of the indicator used for optimisation.  

 
Irr = Ill/LE (A2) 

 
where Irr is irradiance in W/m2, LE is the luminous efficacy in lm/W, and Ill is the illuminance in 
lux. 

 
Irrlower = Irr x hdaylight (A3) 

 
where Irrlower is the annual cumulative irradiance in Wh/m2, hdaylight is the annual daylight hours. 
Singapore’s has 4383 daylight hours annually.  
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