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ABSTRACT 

 

This work proposes a method for recognizing the main 13 Facial Action Units and the 
6 basic emotions. The methodologies rely on Differential Geometry to extract 
relevant discriminant features from the query faces, and on some linear quantities 
used as measures: Euclidean, geodesic, and angles between 17 automatically 
extracted soft-tissue landmarks. A thresholding system which evaluates local 

properties of connected regions, selected through tailored geometrical descriptors, 
supports the identification of the AUs. Then, a technique based on crisp logic allows 
the identification of the global expression. The three-dimensional context has been 
preferred due to its invariance to different lightening/make-up/camouflage 
conditions. 
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1 INTRODUCTION 

Face expression recognition (FER) has registered a slow but growing interest among the scientific 
community from the Seventies. In the last decade, works published on this topic are more than 500 

per year, with a double amount reached in 2011-2014. They address the issue of automatically 
identifying from a facial image its emotion-based expression. This research branch was fostered by 
the psychological studies undertaken by Paul Ekman in 1970 [1] [2], who formulated the "theory of 
basic emotions", which are six: anger, disgust, fear, joy, sadness, surprise. Later in 1978, he 
presented his Facial Action Coding System (FACS) composed by Action Units (AUs), which are 

catalogued relying on relaxation or contractions of one or more facial muscles [3] [4]. More AUs 
define a facial expression. These have been often used as a basis for facial expression recognition 
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studies. Nonetheless, other researchers dealt with six or four facial expressions without analysing 
AUs. 
 

Among the varied contributions, some authors adopted approaches relying on geometrical 

descriptors such as curvatures and shape index. Berretti et al. used mean and Gaussian curvatures 
for detecting fiducial points (landmarks) in a 3D face expression recognition framework based on 
Scale Invariant Feature Transform (SIFT) descriptors applied to the detected points. They gained a 
global recognition rate (RR) of 78.43% [5]. Similarly, Bolkart and Wuhrer predicted landmark 
locations for entire facial motion sequences by adopting mean curvature, Gaussian curvature, and 
Shape Index, to automatically recognize dynamic face expressions. Final classification rates were 
90.71% to recognize the expressions anger, happiness, surprise and 90.60% to recognize happiness, 

sadness, surprise [6]. Broadbent et al. introduced the "area weighted histogram of shape index", 

curvedness, mean curvature, and Gaussian curvature as facial features to automatically distinguish 
between the six main expressions. Tests undertaken on the Binghamton University 3D Facial 
Expression Database (BU4DFE) database gave 95% accuracy [7]. 
 Fang et al. adopted shape index and spin images, “a representation of the geometric 
neighborhood around a specific point of a three-dimensional object”. Spin images encode point 

coordinates on the surface with respect to a local basis, i.e. oriented point. Average FER classification 
rates on BU4DFE database were 74.63% when all six Ekman's expressions are involved, 95.75% 
when only joy, surprise, and sad ones are taken into consideration [8]. Huang et al. mapped shape 
index on 3D facial surfaces to build a novel facial representation model. To test it, the authors 
conducted FER for static facial models of sixty subjects selected from the BU-3DFE, reaching a 83% 
RR with six expressions on static data [9]. Li et al. estimated point-by-point values of shape index 
and principal curvatures on facial depth maps for 3D FER with classification rates ranging from 76.4 

to 82%, depending on the composed feature/descriptor adopted (histograms), on six expressions of 

BU-3DFE [10]. The same dataset was adopted by Powar et al. for recognizing smiling (95% RR), 
surprised (92%), and sad (70%) expressions. Mean, Gaussian, and principal curvatures were used 
as features to describe facial surfaces and support comparison process [11]. Mean and Gaussian 
curvatures, and shape index, together with Curvedness, were also investigated by Savran et al. for 
automatically detecting facial 25 AUs obtaining different rates depending on the adopted method. 
96.3% is reached when the three-dimensional modality is used. Experimentations were carried out 

on Bosphorus and Cohn-Kanade databases [12] [13]. Shape index was evaluated by Zhen et al. for 
developing a muscle movement-based automatic 3D FER algorithm. The six expressions of the BU-
3DFE dataset were recognized with an average performance of 83.2% [14]. 
 Other geometrical descriptors were also adopted. Daoudi et al. introduced Scalar Vector Field 
(SVF) defined on radial curves of 3D faces for automatic 4D (3D video) expression recognition. The 
SVF grounds on Riemannian shape analysis and captures deformations occurring between three 

dimensional facial surfaces represented by sets of radial curves. The average accuracy, evaluated on 
BU4DFE, was 93.83%. The lower RR was obtained for the disgust expression (91.54%) which was 
confused with angry and fear ones [15]. Riemann geometry theory was also the basis of the work of 
Zeng et al., who developed a 3D FER framework to detect the six expressions within the BU-3DFE 
database. Average accuracy was 68.15% [16]. 
 This work proposes an automatic 3D facial AUs and emotion recognition algorithm for 
identifying Ekman’s action units and the six main expressions. The proposed method is based on 

descriptors from Differential Geometry background which are mapped point-by-point on facial 
surfaces, angles, Euclidean, and geodesic distances that are evaluated between automatically 
localized landmarks. The features support the definition of inter- and intra-expression variations 
quantities, thus fostering the identification of the proper AUs and emotion on the probe/query face(s).  

The system is designed for safety applications. The application scenario is Intelligent Drive for 

different purposes involving safe and user-friendly driving: facilitating a more natural human-
computer interaction between driver and car dashboard; detecting surprise/fear behaviours of the 

driver, i.e. “study of reactions”, when a unexpected event happens on the road; detecting micro 
sleeps, stress, fatigue, workload, and general attention of the driver. Besides general safety and 
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enhancement of interaction between vehicles and environment, these applications are also aimed at 
the implementation of procedures for special driving such as assisted or autonomous driving 
systems. 

2 METHOD 

 Action units are given by facial muscle movements and subsequent facial morphological 
changes at skin level. To conceptualize every AU on soft-tissues, compact features are to be extracted 
from the face to allow analysis and comparisons. The features used in this work are Euclidean and 
geodesic distances, and angles between 17 automatically extracted landmarks relying on previously 
developed techniques [17] [18] [19] [20] shown in Figure 1, and geometrical descriptors [21]. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1: The 17 landmarks adopted in this study to evaluate Euclidean, geodesic distances, and 
angles. OE outer – eyebrow, IE inner – eyebrows, EX exocanthions, EN endocanthions, N nasion, AL 
alae, PRN pronasal, SN subnasal, LS labrum superius, CH chelions, and LI labrum inferius. 

 The method accepts in input two facial 3D models of the same person: the serious pose and 
an expressive face, which is the query/probe face whose AUs are to be recognized by the algorithm. 

Features are evaluated both on the serious and the emotioned face. They will be respectively called 
basic and emotion features. Basic features involve distances and angles, while emotion ones also 

involve geometrical descriptors. Comparisons between basic and emotion features are made, and 
involved geometrical descriptors are evaluated to identify the AUs of the probe face, which are the 
first output of the method. Relying on the identified AUs, the global emotion acted by the query face 
is identified. Figure 2 shows the method scheme. 
 
2.1 Action Unit identification 
 

 The geometrical descriptors of this study are chosen among a set of twelve descriptors 
previously investigated [21]: the six coefficients of the first and second fundamental forms; the mean 
and Gaussian curvatures; the principal curvatures; the shape index and curvedness introduced by 

Koenderink and van Doorn [22]. In particular, this work only adopts the third coefficient of the second 
fundamental form, called g, and curvedness, identified by C. Both g and C rely on the derivatives 
and focus on the description of the surface curvature. These are formulas adopted in the algorithm: 
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Figure 2: Scheme of the proposed method. 
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where hx, hy,... are the derivatives with respect to x and y, k1 and k2 are given by 
 

𝑘1 = 𝐻 + 𝐻2 − 𝐾 
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where K is the Gaussian curvature and H is the mean curvature, given by 
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INPUT

• Serious face

• Its automatically localized landmarks

• Emotioned face of the same subject (query face)

• Its automatically localized landmarks

AU 
Recognition

• Feature extraction

• Comparison between basic and emotion distance, and angle-based 
features

• Evaluation of geometrical features on the emotioned face

• Identification of AUs of the query face

Emotion 
Recognition

• Crisp logic method

• Identification of possible global emotion of the query face with 3 best 
matches

OUTPUT

• AUs acted by the query face

• 3 possible emotions acted by the query face
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These two descriptors mapped point-by-point on a facial 3D model acquired via laser scanner are 

reported in Figure 3. 

 
Figure 3: From left to right: descriptor g mapped point-by-point on a 3D face model; descriptor C 
mapped on the same face. 

 The chosen AUs to be analysed and considered in this study are those strictly connected on 
the six basic emotions theorised by Paul Ekman [1] [2] [3] [4] (anger, disgust, fear, joy, sadness, 

surprise) and presented in Table 1 in conjunction with the related facial expressions. 

 

emotion Action Units 
anger AU4 AU23 AU24 

disgust AU9 AU10 AU16 
fear AU1 AU2 AU27 
joy AU6 AU12 
sadness AU1 AU15 
surprise AU1 AU2 AU26 

 
Table 1: AUs which compose every expression. 

 

The method follows a similar structure for all AUs, but is shaped differently according to each AU 
specificity. A training set of 140 faces of the public Bosphorus database including 10 males and 10 
females, each with 6 expressions plus the serious one, is used to experimentally design the 

methodology in terms of threshold and weight settings. The algorithm has been fully developed in 
Matlab®. 
 
 AU1 is “inner brow raiser”. Thinking about the movement of the eyebrow representing the 
AU as a vector from the initial and final locus of inner eyebrow (IE) landmarks, the movement 
connected to this AU can be tracked on the skin/soft-tissue. Three features are used to map this 
movement: 

o Euclidean distances between IE – EN, both on left and right side of the face; 
o geodesic distances between IE – EN, on both sides; 
o angles described by landmarks IE – N – EN, on both sides. 
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These features are shown in Table 2, together with the features used to identify all other AUs. All 
these measures are calculated using the coordinates of landmarks. Geodesic distances are computed 
using a Dijkstra-based algorithm. For this AU, no geometrical descriptors are adopted. 
 

 The process of identification of this AU is based on the final numerical value AU1 variable 
has. For each distance (two Euclidean and two geodesic in this case), if the distance evaluated on 
the emotioned face is greater than that on serious one, value 0.25 is added to AU1 variable. When 
all distances are evaluated, if AU1 variable is lower than or equal to 0.5, angles are evaluated; 
otherwise AU1 is set to 1, meaning the AU1 has been identified on the probe face. Angle evaluation 
is made by comparing the angles of the emotioned and serious face. For each angle (two in this 
case), if the angle of the emotioned face is greater than that on the serious one, value 0.25 is added 

to AU1 variable. If the final numerical value of the AU1 variable is greater than or equal to 0.75, AU1 

variable is set to 1, meaning that this AU has been identified on the query face; otherwise AU1 
variable is set to 0 and this AU has not been identified. The pseudo code of this identification is 
reported in Figure 4. 
 

AU1 = 0 

for all distances   % both Euclidean and geodesic 

    if distance_emotion > distance_serious 

    AU1 = AU1 + 0.25 

if AU1 <= 0.5 

then 

    for all angles 

        if angle_emotion > angle_serious 

        AU1 = AU1 + 0.25 

else AU1 = 1 

 

if AU1 >= 0.75 

    then AU1 = 1  % AU1 is recognized 

    else AU1 = 0  % AU1 is not recognized 

Figure 4: Pseudo code of the process of identification of AU1. 

 A similar feature evaluation based on distances and angles is made for the other AUs. The 
choice of features for each AU identification process is reported in Table 2. Similar assumptions, not 
elaborated here, are made for the other AUs. 
 

 AU features features on a face 

AU1  

inner brow 
raiser 

Euclidean distances  IE – 

EN  
geodesic distances   IE – 
EN 
angles    IE – N – EN  

 
AU2 
outer brow 
raiser  
 

Euclidean distances OE – 
EX  
geodesic distances   OE – 
EX 
angles    OE – N – EX  
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AU4 
brow 
lowerer  
 

Euclidean distances OE – 
EX IE – EN intraIE  
geodesic distances OE – 
EX IE – EN intraIE  
angles    OE – N – EX  
IE – N – EN  
geometrical descriptor  g 

 

AU6 
cheek 
raiser  
 

Euclidean distances   OE – 
AL intraAL  
geodesic distances OE – 
AL  
 

 
AU9 
nose 
wrinkler  
 

geometrical descriptor   C 
 

 
AU10 
upper lip 
raiser  
 

Euclidean distances   LS – 
SN  
geodesic distances   LS – 
SN  
angles    SN – CH – LS  

 
AU12 
lip corner 
puller  
 

Euclidean distances   LS – 
LI  
geodesic distances LS – LI   
angles    CH – CH – LS   
geometrical descriptor  g 

 

AU15 
lip corner 
depressor  
 

Euclidean distances   LS – 
LI CH – LS oblique CH – 
LS    
geodesic distances LS – LI 
CH – LS    
geometrical descriptor  g 

 
AU16 
lower lip 
depressor  
 

Euclidean distances   LS – 
LI intraCH  
geodesic distances LS – LI   
angles    N – CH – LI   
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AU23 
lip 
tightener  
 

Euclidean distances  
intraCH  
geodesic distances   intra 
CH    
 

 
AU24 

lip pressor  
 

Euclidean distances   LS – 

LI  
geodesic distances LS – LI   
angles CH – CH – LS  
 

 
AU26 
jaw drop  
 
& 
 
AU27 
mouth 
stretch              

Euclidean distances   LS – 
LI  
geodesic distances LS – LI   
angles N – CH – LI  
 

 

 

Table 2: Features adopted to identify each AU. In the images shown on the third column, a face of 
the Bosphorus database, displayed both in 2D and 3D, is used to show distances and angle on the 
face. Euclidean distances are represented red-coloured; geodesic distances are yellow-coloured; 
angles are green. 
 
The identification process of AU9 is elaborated here to understand the adoption of geometrical 
descriptors. 
 
 AU9 is “nose wrinkler”. The significant skin-level aspect of this AU are the wrinkles laying on 
both sides of the nose branching off till mouth sides, shown in Figure 5. It is known for being typical 
of the disgusted expression. 
 

 The identification of this AU starts by mapping descriptor C, representing curvedness, on the 
facial map. Then, a region of interest is selected which could focus on the wrinkles area. A binary 
mask is applied to the selected region of interest; points with C ≥ 0.4 are put equal to 1, while others 
are null. Matlab function bwconncomp is used to separate different connected components. Finally, 
area and orientation properties of regionprops function are used to select the connected components 
with area > 90, meaning number of points > 90; orientation is evaluated on the components reaching 

this threshold. Orientation property computes the angle ∊ [-90°; 90°] between the x-axis and the 

major axis of the ellipse having the same moment of planar inertia of the region. If this angle is 
major than 30°, AU9 is identified and its variable is set to 1. 
 
2.2 Emotion recognition 
 

 When all AUs are tested and related variables set to 0 or 1, the algorithm evaluates the 
possible emotions of the query face. This evaluation, which gives only one best match among the six 

basic emotions (anger, disgust, fear, joy, sadness, surprise), relies on crisp logic techniques. 
Similarly to the AU identification process, emotions are analysed one by one. For each emotion, the 
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final decision about whether the emotion is likely or not is made by assigning importance weights to 
each AU composing the emotion (Table 1). These weights have been set by examining the expressive 
faces composing the training dataset. Depending on which and how many AUs are identified, a 
likelihood is assigned to the emotion: 0.99 if the emotion is extremely likely to be the emotion of the 

person of the query face; 0.66 if there is a medium possibility; 0.33 if the likelihood is low; 0 if there 
is not any probability. Figure 6 shows weights of the AUs and related emotion probabilities for each 
expression evaluation. 

  

 
 

Figure 5: From left to right. Above: disgusted expression of a face of the Bosphorus database with 
highlighted nose wrinkles; the same face in the form of 3D model; descriptor curvedness C mapped 

on the face (wrinkles area has higher values of descriptor C). Below: binary mask of the region of 
interest created by selecting points with C ≥ 0.4; identification of the connected components with 
function bwconncomp, each coloured differently; identification of the components for which the area 
was major than 90 thanks to function regionprops. 

Relying on these weight and probabilities, the system defines one to three possible emotions 
performed by the subject of the query face. 

3 RESULTS 

Experimentations in the testing phase have been carried out on 1539 complete and non-occluded 
faces of the Bosphorus database [23]. Among these faces, 618 faces have serious and expressive 
states, while 921 are faces representing specific AUs, in particular those addressed in this study, 
with the exception of AU6 which is not present in the Bosphorus database. The algorithm works with 

two faces per time: a serious face and an expressive/AU-based face of the same subject with an 
unknown emotion/AU to be identified by the system. 

Global AU recognition rate (RR) among AU-based faces is 82.53%. AU15 "lip corner depressor" 
reached the highest RRs (100%), followed by AU1 “inner brow raiser” (97.73%), AU27 "mouth 
stretch" (95%), and AU26 "jaw drop" (91.18%). The lowest RR (52.17%) was gained by AU9 "nose 

wrinkler".  

Global AU RR among expression-based faces is 75%. AU1 “inner brow raiser” was the action unit 

which was identified the most (92.30% RR) and AU16 “lower lip depressor” was the least (56.25% 
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RR). In this set, a trend has been observed in these RRs regarding the involvement of the mouth. 
Action units concerning mouth muscular movements gain lower RRs when other facial movements 
(global facial expressions) are present. The mouth is the most moving parts of the face; thus, the 
behaviour of geometrical descriptors changes more in the mouth area than in any other facial zone. 

This is the reason why the lower RRs concern the mouth in expression-based faces. 

 
 

 
ANGER    DISGUST   FEAR 

 
JOY   SADNESS   SURPRISE 
 

 
Figure 6: Selection rules for each expression. For each emotion, specific weights assigned to each 
AU support the definition of the presence probability of that emotion. HIGH is 0.99; MEDIUM is 0.66; 
LOW is 0.33; NULL is zero. 
 

Overall, 79.18% is the global RR for the whole testing database including 1539 faces. Table 3 sums 
up the RRs for each AU. 

  
AU RRs 

 
 

AU-based expression-

based 

tot 
 

 
# faces 921 618 1539 

 

 
AU1 97.73% 92.30% 95.01% 
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AU2 85.86% 76.92% 81.39% 

 

 
AU4 82.83% 62.58% 72.70% 

 

 
AU6 na  87.56% 87.56% 

 

 
AU9 52.17% 62.52% 57.35% 

 

 
AU10 65.67% 60.00% 62.84% 

 

 
AU12 93.00% 87.51% 90.26% 

 

 
AU15 100.00% 87.54% 93.77% 

 

 
AU16 83.08% 56.25% 69.66% 

 

 
AU23 73.13% 56.27% 64.70% 

 

 
AU24 70.77% 81.25% 76.01% 

 

 
AU26 91.18% 87.51% 89.34% 

 

 
AU27 95.00% 87.52% 91.26% 

 

 TOT 82.53% 75.83% 79.18%  

      
Table 3: Recognition rates (RRs) of each Action Unit (AU). 

 

Regarding expression recognition, the testing has been carried out on the 618 expression-based 

faces of the Bosphorus dataset. An overall 73.62% RR is obtained.  

In terms of computational time, each image is elaborated in approximately 40 seconds, in which 
a 15% is dedicated to expression recognition; 35s are required only for AU detection, as geodesic 
distance evaluation is responsible for most of this time. 

A direct comparison between these results and those obtained in current literature is not 
possible, due to the different conditions of experimentations in terms of database, adopted 

expressions, and results form. Globally, the proposed methodology gave about 79% and 73% for 
action unit recognition and expression recognition, respectively. Taking into consideration the 
contributions relying on geometry, these results match the state of the art accuracy, which ranges 

between 70% RR [11] and 96.3% [12][13]. The novelty of this work relies on the adoption of 
geometrical descriptor g, distances and angles as key features and on the development of a 
deterministic methodology based on connected facial points to identify AUs and emotions. This is 
something new in the branch of 3D FER. 

4 CONCLUSION 

 This work introduces a semi-automatic algorithm for detecting 13 Action Units and 
recognizing the six basic emotions. The proposed method is based on descriptors coming from 
Differential Geometry, which are mapped point-by-point on facial surfaces, angles, Euclidean and 
geodesic distances between 17 automatically localized landmarks. For each query expressive face, 
the method compares its features to the respective features of the serious face of the same subject; 

specific geometrical evaluations are made to detect relevant soft-tissue surface behaviours which 

define the AUs. Then, a crisp logic technique is adopted to recognize the emotion. Experimentations 
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carried out on the 3D Bosphorus facial database brought to a 79% RR for AU recognition and a 73% 
RR for the expression recognition. 

Although the method is still preliminary, it discloses a vein to automatic FER techniques. 
Improvements of the presented methodology would involve: the integration of other techniques such 

as neural networks and statistic techniques; the adoption of newly designed (geometrical) features; 
the enlargement of the experimental facial dataset, including AU specific faces of the Bosphorus 
database and other 3D databases like FRGC and BU-3DFE; the management of camouflages and 
holes (occlusions); the analysis of other AUs.  
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