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Multi-scale Symmetry Detection of CAD models
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Abstract. Multi-scale symmetries are important to improve shape understanding of CAD
models and facilitate many engineering applications such as direct modeling and reverse
engineering. In order to extract multi-scale symmetries for various engineering applications,
a FSM (Frequent Sub-graph Mining)-based symmetry detection approach is proposed. Firstly,
a B-rep model is converted into congruence-labelled graph whose labels imply congruence
information among faces and edges. Secondly, complete multi-scale congruence features
are detected e�ectively using the method of frequent sub-graph mining. Thirdly, a set of
heuristic �lter rules are used to obtain important multi-scale features that �t local features
of model well from complete congruence features. Finally, complex symmetry structure of
every congruence feature is analyzed using a novel multi-scale congruence features based
method. The algorithmic performance is tested on various CAD models exhibiting rich
symmetries at multiple scales, and its applications on smart direct modeling and multi-scale
model simpli�cation are also shown.
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1 INTRODUCTION

CAD models are often constructed from features and sub-features recursively through di�erent forms of rep-
etition, and contain symmetries at di�erent geometric scales, see Figure 1. Multi-scale symmetry analysis
provides multi-level and coarse to �ne understanding of the models under study, which helps semantic under-
standing of the models and facilitates many downstream applications such as reverse engineering, intelligent
direct modeling, model simpli�cation and model retrieval etc. In this paper, we are interested in extracting
multi-scale symmetries from CAD models in boundary representations (B-rep); the CAD models are always
referred to B-rep CAD models in the paper for brevity, unless stated otherwise.

Extracting multi-scale symmetries from CAD models remains a challenging task. The main di�culties
come from the challenges that neither the hierarchies of the symmetry structures nor the symmetry relations
between di�erent model parts are known in a B-Rep model. Consequently, the symmetries can be detected in
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two possible ways, either �rstly extracting the symmetry scales or building the symmetry relations. However,
�rst detecting symmetry relations is much more di�cult, considering the complex compound structure of
symmetries among small-scale geometrical parts, see Figure 1 for example, and the di�culty of detecting non-
commutative structural regularity [17]. Thus, we choose in this paper to �rst extract multi-scale symmetric
regions and then to extract symmetry relations among these regions.

Obtaining meaningful shared geometrical patterns e�ectively and e�ciently is key to extract multi-scale
symmetric regions, as no feature information exists in B-Rep model and there are a large number of di�erent
geometrical patterns. In order to resolve the issue, frequent subgraph mining (FSM) method is introduced
in our method by mining frequent geometrical patterns in a given model. FSM is essentially a graph mining
approach, aiming to extract all frequent subgraphs whose occurrences are above a prescribed threshold. FSM
is well developed and lots of approaches have been proposed [6]. Noticing that CAD models are naturally
suited to graph representations, detecting congruent geometrical parts of a model sharing the same pattern,
or forming potential symmetric regions, can be achieved via applying FSM.

After detecting congruent geometric parts, we next detect of symmetric relations among these congruent
geometrical parts. The basic symmetric relations studied in this paper include re�ection, translation, rotation
relations, which are common and very important symmetry types exhibiting in CAD models. Additionally,
compound symmetry relations, or called symmetry structure, is also detected, as they represent important
design intent of the construction process of model.

In summary, the main contribution of the study is

� The multiscale symmetries are detected from a B-Rep model, which is seldom studied in previous work.

� The sub-graph mining technique is introduced to �lter unwanted symmetries and greatly reduces the
manual interaction, and can preserve various symmetries at di�erent scales.

� Various numerical examples on realistic CAD models are tested to demonstrate the approach's perfor-
mance.

1.1 Related work

Multi-scale symmetries from CAD models were seldom studied in previous studies, and the paper is the �rst
on this topic to our best knowledge. Most existing related work on detecting symmetries from CAD models
generally focus on extracting global [19, 7] or isolated local [11, 3, 12, 13] symmetries or symmetries at the
same scales. They seldom study important compound relations of di�erent symmetries types in the models.
Related work on detecting multi-scale symmetries and symmetric structure in the communities of computer
graphic and CAD is further explained below.

Pauly et al. [17] use the method of transformation space voting and commutative group theory to discover
structural regularity from mesh models. In this study, a variety of important structures are detected using
a uni�ed computational framework. However the approach did not consider re�ection symmetry and the
structural regularity including it.

Wang et al. [20] propose an approach to �nd a symmetry-induced meaningful hierarchical organization of
an input 3D mesh model. They use a set of precedence rules to obtain a novel structural representation of 3D
objects. The presentation is built based on certain heuristic rules and provides a unique symmetric structure for
an input model. Di�erent from the study, multiple reasonable symmetric structures can be obtained through
our methods. This novelty of multiplicities is important as di�erent multiple symmetry explanations can be
generated from a given model.

Xu et al. [21] extracted multi-scale intrinsic symmetries through two levels of clustering from 3D mesh
models. In this approach, prominent and overlapping intrinsic symmetries at multiple scales can be extracted
robustly. However the notion of scale here is based on intrinsic distances instead of area of symmetry region,
so the approach cannot be applied in our scenario.
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Figure 1: Di�erent forms of repetition of features and sub-features recursively is shown in construct process of
model(top) and compound symmetry structure in small-scale geometrical parts brought by recursive repetition
(bottom).

Li et al. [13] introduced a concept of regularity feature tree to detect design intent from B-Rep CAD model
created by reverse engineering. Broken symmetries are also recovered in these researches [14], and symmetric
relations between di�erent parts are also related later on [15]. However, the symmetry relations are essentially
built on the same scale. Di�erent from this, the paper studies the challenging problem of detecting hierarchical
symmetries are di�erent scales.

2 BASIC CONCEPTS

Basic concepts of our algorithm are introduced in this chapter.
Scale: The scale of a geometrical region is de�ned by the area enclose by it. Multi-scale geometrical parts

represent geometrical parts whose areas vary.
Symmetry: Concept of symmetry is well de�ned [14, 16]. In the context of geometry, a symmetric structure

is a set of entities that are invariant under geometric transformations such as re�ections, translations, rotations.
In another way, we say that a geometric part M is symmetric with respect to another part M ′ in a model if
and only if a geometrical transformation T exists such that M = T (M ′). In this case, we say M and M ′

form a re�ectional symmetry, rotational symmetry, or translational symmetry if T is a re�ectional, rotational,
translational transformation.

In this paper, we focus on re�ectional, rotational, translational symmetries and the compound symmetry
(symmetry structure) formed by their combination; see �gure 2 for example.

Congruence: two geometric entities are congruent if they can be transformed into each other under an
isometric transformation [3]. If two geometrical entities form re�ectional, rotational or translational symmetries
with each other, they must be congruent.

Congruence features: Given a model M and its geometrical entity P , if another di�erent congruent
geometrical entity P ′ in M exists, we call P a congruence feature of M .

Congruence group: A congruence group G of a model M is a set of congruence features in M that are
congruent with each other; see the examples are shown in Figure 3.

Congruence-labelled Adjacency Graph (CLAG): A concept extended from AAG introduced by Joshi et
al. [8]. CLAG of a CAD model is a labelled graph represented as G (V,E,LV , LE), in which V is a set of
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Figure 2: Symmetries discussed in this paper: top are illustrations of three elementary symmetry type, bottom
are examples compound structures formed by the three elementary types.

Figure 3: Illustrations of congruence groups whose scales are varied, congruence features in congruence group
are marked red in �gure.

vertices representing faces of the CAD model, E ⊆ V × V is a set of edges representing two adjacent faces;
LV and LE are sets of vertices and edge labels. In addition, we use the same labels for vertices corresponding
to congruent faces, and same labels for edges sharing the same underly geometry (See Figure 4 for example).

Frequent sub-graph mining: Frequent sub-graph mining (FSM) is a frequent graph pattern mining
technique in data mining �eld [6]. FSM is used to extract all frequent sub-graphs whose occurrence frequency
is larger than a speci�ed threshold in a given graph database or a large graph.

Symmetry structure: Symmetry structure is used to model compound symmetry relations amongst con-
gruence features of a congruence group; see Figure 2 for example, and is formalized as a tuple (N0, {〈Ti, ni〉}).
Here, N0 is a representative congruence feature of G, 〈Ti, ni〉 represents a kind of generation operation that
maps symmetry transformation Ti onto congruence features that have been obtained ni times to generate new
congruence features. Accordingly, {〈Ti, ni〉} represents all the congruence features in G that can be obtained,
and (N0, {〈Ti, ni〉}) represents all congruence features of G and symmetry relations amongst G through a
series of generate operations.

vertexFigure 4: Illustration of CLAG, left is CAD model, right is corresponding CLAG, vertex labels of CLAG are a
series of color name, edge labels are marked using alphabet, edges connected to vertex F17 are not shown in
right �gure for clearness
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3 APPROACH OVERVIEW

Our multi-scale symmetry detection algorithm takes a B-Rep CAD model as input and returns multi-scale
congruence features and their corresponding symmetry structures or generative model. The main idea is to
�rst extract complete multi-scale congruence features of the model, and then to use heuristic rules to �lter
meaningless congruence features, �nally to analyze high-level symmetry structure of each set of congruence
features.

Congruent geometrical parts of model may be repeating design features. These features in various domains
have di�erent geometrical characteristics, and it is very challenging to obtain them from a B-Rep model that
only contains geometrical and topological information. In order to extract complete multi-scale congruence
features to meet designer requirements, the method of frequent sub-graph mining is introduced to mine
complete multi-scale congruence features from input model.

There are a large number of congruence features, and redundant congruence relations exist among them.
Thus, a set of geometric heuristic rules are further used to �lter congruence features that are meaningless in
most situations so that rich and non-redundant congruence relations can be kept after �ltering.

At last four main types of important symmetry relations and symmetry structure are detected for every
congruence feature: re�ection symmetry, rotate pattern, linear pattern and rectangular pattern.

The overall steps of the approach are explained below.

1. Step 1: Convert input model to a graph formulation CLAG (congruence-labelled adjacency graph) for
multi-scale congruence feature extraction.

2. Step 2: Use Frequent sub-graph mining(FSM) [6] method to mine in CLAG, and to extract complete
multi-scale congruence features. FSM is a frequent graph pattern mining technique in data mining
�eld. It is used to extract all frequent sub-graphs whose occurrence frequency is larger than a speci�ed
threshold in a given data set, given data set can be a graph database or a large graph.

3. Step 3: Filter meaningless congruence features from features obtained in step 2;

4. Step 4: Symmetry structure are detected for every congruence feature that is kept in step 3.

Pseudo code of the whole approach is showed in Algorithm 1.

Algorithm 1: Multi-scale symmetries detection

Input :
A: input B-Rep CAD model

Output :
N : a set of multi-scale congruence feature groups
G: symmetry structure of corresponding congurence feature group

1: CLAG = CLAGConstruction(A)
2: C = FSMOfConGrpExtract(CLAG,A)
3: N = Filter(C)
4: Set G to empty set
5: for congruence feature group Ni in N do
6: Gi = SymStruDetect(Ni,N), add Gi to set G
7: end for
8: return N ,G

Computer-Aided Design & Applications, 16(1), 2019, 50-66
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


55

4 TECHNICAL DETAILS

In this section, technical details on each step of the overall algorithm are further explained.

4.1 Construction of CLAG

CLAG is a kind of graph structure that contains congruence information of a CAD model. CLAG is used to
extract shared geometrical patterns via applying FSM, and the patterns are to be used for obtaining important
symmetric relations later on. Storing congruence information in CLAG is key issue here, and we use the same
label to represent the congruence relation amongst various geometric entities.

One key issue to solve in this step is to determine whether two faces or edges are congruent. It is solved
here via converting it into a problem of discrete point alighnment problem using the approach proposed in [3].
Speci�cally, a set of representative feature points are �rst extracted from the geometrical entities, which is
su�cinet to unqiuely represent the geometry of the entities. These points includes those asosciated to all
vertices of an entity, together with some key points sampled following a certain sampling way. These points
are determined based on the geometry of each entity and does not depend on speci�c boundary representation
of the model. After this, we then convert the problem of congruence detection into a problem of determining
whether an isometry exists between the two sets of feature points. Further algorithmic details on generating
the sample points, and setting an appropriate mapping tolerance are referred to [3].

Built on this, the CLAG construction process is explained below:

1. Step 1: Cluster congruent faces of model A into the same set, and give every set a di�erent face label.

2. Step 2: Based on the results obtained in step 1 for each face, add a corresponding vertex label to each
vertex of CLAG based on its associated face label.

3. Step 3: Determine the edge label for each edge in CLAG based on its adjacent faces in model A. If the
two edges share the same adjacent faces, add the same edge label in CLAG; otherwise, generate a new
edge label for it.

4.2 Extract multi-scale congruence groups

In order to extract multi-scale congruence group, the FSM method is �rst used to mine frequent subgraph
patterns and to get the corresponding embeddings from CLAG. As one-one mapping exists between vertex set
of CLAG and face set of model, every pattern and its embeddings have a corresponding candidate congruence
group whose members are potentially congruent.

After this, congruence-based clustering is carried out for each candidate congruence group to get congruence
groups whose members are indeed congruent through geometrical veri�cation. As FSM method can mine all
the frequent patterns in CLAG, all the congruence groups in a model can be obtained via the proposed
approach. It also direclty works for di�erent sizes of region areas, or across multiple scale.

The pseudo code of this stage is depicted in Algorithm 2. We �rst introduce the important concept of
embedding in FSM. If a sub-graph Gi of input graph G is isomorphic to a given graph pattern P , Gi is called
one embedding of P in G, as illustrated in Figure 5. In fact, FSM is used in our method to extract all frequent
sub-graph patterns whose frequency of occurrence, namely count of embeddings, is above a given threshold
from CLAG. The whole process includes three steps: generating candidate sub-graph pattern; detecting all
embeddings of the patterns generated from CLAG; computing frequency of occurrence of the current candidate
patterns, pruning patterns whose frequencies are below a given threshold. The above three steps repeat until
all processed. The main issue in this process is how to generate candidate sub-graph pattern and to compute
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Algorithm 2: Congruence Groups Extraction Using FSM (FSMOfConGrpExtract)

Input :
A: input B-Rep CAD model
CLAG: Congruence-labelled adjacency graph of A

Output :
{Ci}: Complete Multi-Scale Congruence Groups

1: PatSet ← empty sub-graph pattern set of CLAG
2: EmbeddingsSet ← empty set of Embeddings Set
3: Pi = FFSM-Generate(PatSet,CLAG), generate new sub-graph pattern
4: while Pi is not empty pattern do
5: {Ei} ← FindEmbeddings(Pi,CLAG), �nd all embeddings of Pi in CLAG
6: if cardinality of {Ei} is greater than 1 then
7: add Pi to PatSet, add {Ei} to EmbeddingsSet
8: end if
9: Pi = FFSM-Generate(PatSet)

10: end while
11: {Ci} ← empty set of congruence group
12: for each embedding set {Ei} in EmbeddingsSet do
13: {Cj} ← Congruence-Cluster({Ei},A)
14: add {Cj} to {Ci}
15: end for
16: return {Ci}

frequency of occurrence of candidate patterns e�ciently. Note that �nd all embeddings of candidate sub-
graph pattern involves a complex process of detecting isomorphic subgraphs within an input graph, which is
essentially a NP-hard problem and time-consuming.

We use the CAM (Canonical Adjacency Matrix), proposed in [5], to improve e�ciency of the time-
consuming process of frequent subgraph mining. CAM is a canonical labelling strategy, and it takes maximal
lexicographic order in all sequences obtained from adjacency matrices of a given graph. It is to identify one
graph pattern uniquely and facilitates isomorphism checking. The main behind it is that the isomorphic graphs
have the same canonical labels and the canonical labels of non-isomorphic graphs are non-isomorphic. CAM
has suboptimal property, exploring CAM tree construct of suboptimal CAMs can generate candidate sub-graph
pattern e�ciently. Based on these consdierations, we choose CAM as our labelling strategy and FFSM (fast
frequent sub-graph mining) [5] to implement function FFSM-Generate, which is used to generate candidate
sub-graph patterns for e�ciency improvement.

The anchor edge technology used in HSIGRAM method in [9] is also introduced in the proposed approach
to �nd all embeddings of a given pattern to speed up computing e�ciency. The anchor edge is used as a
constraint of subgraph isomorphism to reduce search space as we only need to search subgraph around anchor
edge. The technology can help to keep balance between space and time expenses, based on which we choose
to implement the function FindEmbeddings.

Corresponding geometrical entities of embeddings in a set are extracted after using FSM. These geometrical
entities are candidate congruence features that form candidate congruence group. After this, geometrical
veri�cation is applied on these geometrical entities through extracting feature point set from geometrical
parts and verifying whether two feature point set are congruent according to the method proposed [3].
At last congruent geometrical parts are clustered to one same congruence group. These are what function
Congruence-Cluster does.
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Figure 5: Illustration of overlapped embeddings

Finally we introduce two important details in this stage. First is that threshold used in our FSM method is
1 because re�ection symmetry is one common and important type, if one pattern occurs more than 1 times in
model, it's candidate re�ection symmetry. In order to explore all possible situations, costs of FSM is huge as
threshold is low, lots of mature parallel computing methods can be used to speed the whole process, such as
GPU [18], map-reduce [1], and this is also one advantage of introducing FSM algorithm. Second is that the
frequency count of pattern is using maximum independent set (MIS) proposed in [9] when there are situations
that embeddings of pattern overlap with each other. As is shown in �gure 5, the frequency of pattern is 1
instead of 2 in our paper.

4.3 Congruence group �lter

After multi-scale congruent groups are extracted from a CAD model in the last stage, some congruence
groups are still redudant in most engineering applications. Actually, there are too many duplicate congruence
information among them because some congruence groups are covered by other congruence groups. Obtaining
fewer but better congruence information is very important for practical applications. The following three
heuristic rules are thus proposed to obtain congruence features that are thought most important.

1. Rule 1. Congruence groups whose members overlap in some areas should be �ltered;

2. Rule 2. Maximal congruence group should be kept;

3. Rule 3. Congruence group whose members are consistent with local feature should be kept.

The three rules are also illustrated in Fig. 6.
In general situation, a design that two repeated features share the common parts is very rare. But there

are a large number of congruence groups got in last stage that their members overlap. Rule 1 is used in our
�lter process as the advantages far outweight the disadvantages. If any two members of one congruence group
do not contain overlapped part, then this congruence group is non-overlapped congruence group. Rule 1 is
used to obtain non-overlapped congruence groups. Illustrations of non-overlapped congruence group are in
Figure 6 left.

As mentioned before, there are too many duplicate congruence information among congruence groups
obtained in 4.2. The reason is that members of some congruence groups are sub-region of other congruence
groups. We say a non-overlapped congruence group G = {Gi} (i = 0, 1, . . . ) congruence-cover another non-
overlapped congruence groupN = {Ni} (i = 0, 1, . . . ) ifG andN have same member count and there is one to
one mapping between members of G and N so that every member of N is sub-region of corresponding member
of G. If no congruence group can congruence-cover one congruence group, we say it has local-maximum
property and call it maximal congruence group. Maximal congruence group is special kind of congruence
group that contains maximum congruence information because any non-maximal congruence feature has one
corresponding maximum congruence feature that covers all congruence relations of it. Illustrations of maximal
congruence feature are in Figure 6 middle. In order to obtain rich and non-redundant congruence information,
rule 2 is proposed to extract all maximal congruence features.

Computer-Aided Design & Applications, 16(1), 2019, 50-66
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


58

Figure 6: Illustration of three congruence group �lter rules. Left: the left is a congruence group that contains
16 members that overlap, while the right is non-overlapping congruence group that contains 4 features made
up of the 16 entities in the left. Middle: the left is a non-overlapping congruence group that contains 8
members, while the right is the corresponding maximal congruence group that contains the congruence group
on the left. Right: the left is a congruence group whose member contains only a single face, while the right
is the corresponding local features.

Congruence groups whose members contain only one single face are meaningless in most situations as
feature-level congruence information is more important. In the view of humans, model often is decomposed into
multiple parts through concavity and convexity analysis and locality of faces. Every face has one corresponding
local geometrical parts. One face may belong to members of multiple maximal congruence groups, but generally
a unique one exists whose member best matches the local shape of the face. We think this maximal congruence
feature is most important, so rule 3 is proposed to obtain such maximal congruence feature, Illustrations are
in Figure 6 right.

We next introduce the congruence feature �lter process.

1. Step 1. Check whether members of every congruence group overlap. If they do overlap, �lter the
corresponding group; otherwise, keep the congruence group. After step 1, the set of non-overlapped
congruence group is obtained.

2. Step 2. Check whether every non-overlapped congruence group is a maximal congruence group. Filter
those congruence groups that are not maximal. As mentioned above, exploring CAM tree method is
used in our FSM method, one given congruence group can be judged whether is maximal e�ectively
through utilizing parent-child relation in CAM tree. After step 2, the set of maximal congruence groups
is obtained.

3. Step 3. Perform local feature analysis for every face. Then get local shape of every face, and �nd
maximal congruence feature whose member wrap the corresponding local shape most compactly. After
this, add the congruence group to �nal result set. After step 3, the �nal set of congruence groups is
obtained.

One important part of our �lter process is the local feature analysis for a given face as involved in step 3.
Convexity and concavity are used here because they are good clues to segment models. PCAAG and PCVAG
are proposed to utilize convexity and concavity. PCAAG is a kind of special attributed adjacency graphs (AAG)
of model proposed in [4], and there is one path for any two vertexes of PCAAG and every edge of the path is
composed of concave arc. Partly convex adjacency graph (PCVAG) can be de�ne in the same way of PCAAG,
just replace concave to convex. PCAAG and PCVAG can be used to recognize concave and convex geometrical
parts of model, but sometimes convex (concave) parts obtained using PCVAG (PCAAG) is too large. Thus
we only want to obtain local feature around given face. The concept of large-scale face is proposed to solve
this problem.

1. Step 1. Initialize faces set of result local feature FaSet to be input face Fi.
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Figure 7: Illustration of large-scale face evaluating, Fi of AdFaSet is yellow, faces of FaSet is red, ratio of
edge length is small in the example, so Fi is a large-scale face of FaSet

2. Step 2. Find adjacent faces set AdFaSet of FaSet, whose members has at least one convex adjacent
edge with the faces in FaSet.

3. Step 3. For every face Fj in AdFaSet, evaluate whether Fj is a large-scale face for current FaSet. If
we can �nd a face Fk that is not a large-scale face, add Fk to FaSet and then jump to step 2. If we
cannot �nd such face or AdFaSet is empty set, jump to step 4.

4. Step 4. The face set FaSet is a local feature that contains input face Fi.

Large-scale face is used in step 3, and the objective is to obtain a good local feature in case the convex
or concave feature does not �t local well. How to determine whether a face Fi of AdFaSet is a large-scale
face for FaSet is a key issue. Heuristic method is based on observations that, large-scale face Fi is usually
adjacent with other large-scale faces that does not belong to FaSet, and the adjacent edges Ea of Fi with
FaSet are a small portion of its total edges Et. So the ratio of edge length of Ea with Et is used to evaluate
whether Fi is a large-scale face with FaSet, as illustrated in Figure 7.

In the end, we comment here that the case of "virtual edge" may exist in a CAD models. For example,
two adjacent cylindrical or planar faces may be separated by "virtual" edges, although they actually have the
same underlying surface, and should be merged into a single one. The case can be overcome with the concept
of maximal decomposition primitives in [12].

4.4 Symmetry structure detection

We solve the problem of detecting multi-scale symmetries, through extracting multi-scale �rstly, then detect-
ing symmetries. As introduced in previous sections, symmetry structure formed by re�ection, rotation and
translation symmetry are symmetries that we are interested in as it cover most important symmetry relations
in CAD models. The symmetry structure detection process includes two aspects, compound manner and base
symmetry types, that is, the base symmetry types and how do these base symmetries form together symmetry
structures. The di�culty in detecting symmetry structure is how to decide the compound manner of symme-
tries among members of congruence group. Exploring compound manner is very challenging as the number
of arbitrary combinations of the three base symmetries is very large. Bene�ts from multi-scale congruence
groups obtained in last stage, the compound manner can be extracted easily through multi-scale analysis.
Then classic symmetry detection algorithm is used to detect base symmetry types after compound manner is
got, so that complete symmetry structure can be achieved �nally. How to get compound manner and base
symmetry types detection algorithm are explained in next sections.
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Using multi-scale analysis to extract compound manner is based on one observation: CAD model are
formed from repeated features and sub-features recursively. Because there are symmetries among sub-features
belonging to one parent feature, there are symmetries among the parent features, which results in complex
symmetry structures among sub-features of all parent features. Therefore, if we know symmetry structure
of parent features and symmetric relations among sub-features that belong to one parent features, symmetry
structure of all sub-features can be obtained through combing the two symmetries. Sub-features form small
scale congruence groups and parent features form large scale congruence groups in our context.

Scale-over is introduced to model this kind of relation among multi-scale congruence groups. If one
member of congruence group N contains multiple members of congruence group G, we call N scale-over
G. If there is no congruence group K so that N scale-over K and K scale-over G, then we call G is
child of N , N is parent of G. If N is parent of G, then symmetries among members of N is applicable to
members of G because members of G are sub-regions of members of N . This kind of parent-child relations
exist among multi-scale congruence groups are used to analyze compound manner of symmetries among
members of small scale congruence group. Assume that symmetry structure of N is

(
N0, {

〈
TN
i , ni

〉
}
)
, N0

is one congruence feature of N , (G0, G1, · · · , Gt) are members of G and sub-regions of N0 as N is parent
of G. After symmetry detection is carried out on (G0, G1, · · · , Gt), one generate step

(
G0, {

〈
TG, t

〉
}
)
can

be obtained, then symmetry structure of G is
(
G0, {

〈
TG, t

〉
, {
〈
TN
i , ni

〉
}}

)
. In order to utilize parent-child

relations to analyze symmetry structure of congruence groups e�ciently, global scale-over trees whose vertex
is congruence group are set up �rstly. Then a top-down symmetry structure analysis is carried out for these
trees using depth-�rst traversal and method above.

Base symmetry type detection is the next work after solving the problem of compound manner. It is resolved
based on the following assumption: compound relations of symmetry structures in CAD models can be solved
using multi-scale analysis. We focus on re�ection, rotation, translation symmetries in this step. Re�ection
symmetry is obtained through mirror plane vote method similar to [19]. Classic point-based method proposed
by Peter Brass [2] is used to extract rotate pattern and linear pattern from congruence features through using
center of gravity of feature point set of them. Rotation symmetry and translation symmetry can be extracted
from rotate pattern and linear pattern easily.

Compound relations of symmetry structure rely on multi-scale parent-child relations analysis totally in
our method, our base symmetry detection algorithm just detect base symmetry types and choose one best
type. Key issue here is to determine the most important symmetry relations of congruence features if there
are multiple choices. A set of heuristic rules are proposed to determine this. Patterns are prior to re�ection
symmetry because there are a large number of re�ection symmetry relations among patterns, for example,
any two member of rotate pattern is re�ection symmetric with each other. Patterns whose count of members
is larger is more important because regularity is stronger if count of members is larger. Re�ection symmetry
relation whose pairs is larger is more important because we think one mirror plane that is shared by more
symmetry pair is more important.

5 RESULTS AND APPLICATIONS

In this section, a range of complex CAD models are used to test two important aspects of our algorithm
including multi-scale congruence groups extraction and symmetry structure detection. We also show how the
results can be used to two important applications of smart direct modeling and multi-scale model simpli�cation.

Multi-scale Congruence Group Extraction. Figure 8 shows results of multi-scale congruence group
extraction for 6 di�erent CAD models. For each model, the source model is marked red, and the same color
shows scale-cover parent-child relations of the corresponding congruence groups. Figure whose borders are
dashed show one member of congruence group for clearness as members are hard to distinguish sometimes.

Anc101_a. Four congruence groups are extracted from the model. Members of the congruence group are
good features including hole and concave features, especially the congruence groups marked by yellow border.
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Its members are two-level concave features, any single level concave feature does not appear in result, which
claims that our �lter rules are e�ective.

Kim is also a classic model in feature recognition domain. Note the congruence groups marked by blue
border, the scale-over parent-child relations are rich among these congruence groups, which can be used to
analyze complex symmetry structures of the smallest scale congruence group. Especially both four elements
and eight elements congruence groups marked by blue border are extracted, which shows the comprehensiveness
of our multi-scale extraction algorithm.

Drivetrain is a practical CAD model whose scales are rich and the compound manner of symmetries is
rich. The multiple branches among congruence groups marked by yellow border show that our method can
got various symmetry explanation of model. Because 4-element and 6-element congruence groups sharing the
same parent are both extracted in our result, and members of them overlap with each other, it ultimately
leads to di�erent results in [20]. The method proposed in [20] only chooses one symmetry type of them to
get its symmetry hierarchy, which may lead to unexpected case in losing some symmetry information.

Monster, Engine, Focus are all practical CAD models. 10 elements and 12 elements congruence groups
marked by yellow border in Monster show two interpretations of the linear pattern, including concave feature
interpretation and convex feature interpretation as both of them can �t local feature well. The fact shows
that our algorithm does not lose reasonable congruence groups arbitrarily. Scale of members of 6 elements
congruence groups marked by blue border in Engine are very small features, which re�ects that our algorithm
does not ignore rich symmetries among small features.

Focus is another example to show that our �lter rules are e�ective. There are a large number of congruence
groups extracted from Focus before �lter, because there are various repeated geometrical patterns in the model
due to the translation and rotation patterns, but only four reasonable congruence groups are left after the
�lter process.

Symmetry Structure Detection. Figures 9 and 10 show results of symmetry structure detection for
congruence groups. Six congruence groups that are small-scaled and have complex symmetry structure of
di�erent forms are used here to show the e�ectiveness of our algorithm. Geometrical parts marked red in
the �gure with red border show the one member of congruence group, and we use manner of generation to
demonstrate the symmetry structure. Di�erent compound manners of base symmetries are showed in our
examples, where one example showing compound of re�ection symmetries, two examples showing compound
of re�ection symmetry and translation symmetry, two examples showing compound of re�ection symmetry
and rotation symmetry, one example showing compound of translation symmetry and rotation symmetry. As
showed in the results, re�ection symmetry type can be handled well using the proposed approach, di�erent
from previous approach proposed in [17] that is di�cult to handle such symmetry types.

Smart Direct Modeling. Figure 11 shows two examples of smart direct modeling. Important symmetric
semantics is obtained through our multi-scale symmetries analysis. User can keep important symmetry seman-
tics of model unchanged during direct modeling process to make editing process more intelligent as it's shown
in �gure 11.

Multi-Scale Model Simpli�cation. Figure 12 shows an example of multi-scale model simpli�cation.
Multi-scale congruence groups are extracted and scale-cover relations among them are analyzed in our algo-
rithm, so multi-scale model simpli�cation is performed through �lling all congruence features whose scale is
smaller than speci�ed scale utilizing scale-cover relations obtained.

6 CONCLUSION

The paper presents a novel approach to detect multi-scale symmetries from CAD models. These multi-scale
congruence groups are believed an important aspect for various engineering applications. One important
contribution of the study is that the introduced FSM method provides a customizable framework to extract
di�erent kinds of multi-scale congruence groups from CAD models through di�erent pruning strategies. In
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Figure 8: Multi-scale Congruence Group Extraction Result

addition, a novel approach to analyze symmetric structure of congruence groups is also proposed. Performance
of the proposed approach was also applied to two important applications, the intelligent direct modeling and
multi-scale model simpli�cation.

Limitations and future work. Although important multi-scale symmetries are detected from CAD models
using the proposed approach, it mainly works for regular models, that is, models composed of planes and
quadratic surfaces. Free-form CAD models are not taken into account in the study because multi-scale
congruence detection of free-form surfaces is a challenging issue and requires further research e�orts. Further
taking into account of concpets like CAD feature-tree may help to resolve the issue [10].

The proposed symmetry detection algorithm at present mainly works for structures formed through mirror
symmetry, translational symmetry, rotatation symmetry in di�erent geometric scales. Although such symme-
tries cover most popular symmetries in CAD models, future research e�orts are still needed to detect more
complex symmetric structures formed through composition of these symmetries. In particular, the approach
is only valid when there is no interactions between features. Other techniques have to be further developed
to handle cases of interaction features.

In the end, we also point out that the applied FSM technique, although very e�ective in detecting various
congruence relations, is on the other hand also very time consuming as exhaustive congruence patterns have to
be explored. Due to these reasons, directly applying the approach to highly complex models containing a variety
of frequent patterns may be too time consuming for practical applications. Developping more advanced pruning
techniques or including geometric heuristics in the FSM approach is still required for e�ciency improvement.
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Figure 9: Symmetry Structure Detection Result 1

Figure 10: Symmetry Structure Detection Result 2
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Figure 11: Application of Smart Direct Modeling

Figure 12: Application of Multi-scale Model Simpli�cation
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