
COMPUTER-AIDED DESIGN & APPLICATIONS, 2017
VOL. 14, NO. 4, 535–548
http://dx.doi.org/10.1080/16864360.2016.1257195

Inducing production rules to extend existing design grammars: The parse/derive
method

Julian R. Eichhoff a, Jens Schmidt b and Dieter Roller a

aUniversity of Stuttgart, Germany; bIILS Ingenieurgesellschaft für Intelligente Lösungen und Systeme mbH, Germany

ABSTRACT
Graph-rewriting is a promising computation model for computer-aided design (CAD) applications
that operate ongraph-baseddesignmodels. Graph-rewriting-basedCAD systems rely onpredefined
production rules. These rules encode the set of possible actions that may be taken within the design
process to make changes to the current design. This paper presents a method for automatically
inducing newproduction rules from existing sample designs. Themethods applicability is illustrated
in context of conceptual spacecraft design. Results gained from experiments, where existing rules
were deliberately left out and had to be rediscovered, show that the induced rules are often similar
or identical to the original rules.

KEYWORDS
Graph-rewriting; design
grammar; rule induction; rule
inference

1. Introduction

Throughout product development, various design meth-
ods rely on graph-based models to represent different
aspects of product designs. In Systematic Design [16]
or the German engineering norm VDI 2221 [22], for
instance, graphs are used to depict functionality, con-
cepts for physical realization, modularity, and geometri-
cal embodiment. In recent years there has been a grow-
ing interest in graph-based notations that may serve
as a common representational framework over multiple
phases of product design. Most prominent example for
this is the Systems Modeling Language (SysML) [15], a
dialect of the Unified Modeling Language (UML) [14],
which is well known in software engineering. SysML par-
ticularly targets complex systems-of-systems engineering
projects, where traceability of design decisions has to
be ensured over subsequent phases of design matura-
tion, over different engineering disciplines, and over the
topology of integrated sub-systems.

Graph-rewriting (also known as graph-production) is
a computation model that is philosophically rooted in
the concept of model transformation. By means of so-
called production rules, graph-rewriting systems trans-
form a source graph into a (set of) target graph(s).
Graph-rewriting has been used in several applications for
computer-aided design (CAD) [1,6,11–13,17–21]. The
design compiler “43” [1], for instance, is a comprehensive
CAD environment that uses UML to represent all
aspects of product design, i.e., from requirements, over

CONTACT Julian R. Eichhoff julian.eichhoff@informatik.uni-stuttgart.de

functional modeling and principle design to geometry,
manufacturing, and even product documentation. This
is possible due to the very general applicability of
UML on the one hand. On the other hand, graph-
rewriting production rules allow to transform an exist-
ing model (e.g., requirements specification) into a new
model, which is more detailed (e.g., functional decom-
position) or captures different aspects (e.g., embodiment
design).

However, handcrafting such rules can become a
tremendous effort — a well-known problem in the field
of expert systems, called the “knowledge engineering bot-
tleneck”. This paper, an extension of the CAD conference
paper [7], demonstrates the application of the so-called
parse/derive method with respect to a case from concep-
tual spacecraft design. This method is capable of auto-
matically inducing production rules from given design
graphs in context of an incomplete set of existing produc-
tion rules. The latter is also a central aspect by which the
parse/derive method is distinguished from most of the
existing works in the field of rule induction for graph-
rewriting. Previous approaches focused at inducing a
complete rule set from scratch without considering the
integration of an existing rule set, e.g., [2,3,10]. [5] in
turn addressed a similar rule induction problem, where a
rule had to be induced in context of a fixed rule sequence
involving existing rules. In this paper, however, we are
particularly interested in finding the most appropriate
rule sequence for rule induction.

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0002-8748-8904
http://orcid.org/0000-0003-4049-1046
http://orcid.org/0000-0002-2438-5676
mailto:julian.eichhoff@informatik.uni-stuttgart.de
http://www.cadanda.com


536 J. R. EICHHOFF ET AL.

The remainder of the paper is structured as fol-
lows. First, section 2 draws analogies between product
development and graph-rewriting to provide a common
understanding on how graph-rewriting is able to sup-
port computer-aided design. Section 3 introduces the
proposed rule induction method, whose application is
then demonstrated with respect to conceptual spacecraft
design in section 4. Concluding remarks and suggestions
for future work are given in section 5.

2. The duality between product development
and graph-rewriting

This section delineates how product development prob-
lems map to graph-rewriting problems. The motivating
hypothesis behind this is stated in the following conjec-
ture:

Conjecture 1: There is a duality between engineering
design and graph-rewriting in such that every engineer-
ing design problem can be represented in terms of a
graph-rewriting problem.

2.1. Product development as subsequent
optimizations

We conceptualize product development as an optimiza-
tion problem. More specifically, we consider it a “search
over a set of realizable technical artifacts for alternatives
that show the highest compliance with a set of objectives”
[4]. Even for seemingly simple products, the set of alter-
native designs can become large. A common approach to
reduce the complexity stemming from design methodol-
ogy is to solve the overall problem in series of subsequent
design phases. Each phase addresses a subset of the objec-
tives given by a requirements specification or a design
brief. We define an objective as follows:

Definition 1: A tuple o = (s1, s2) consisting of two states
s1 and s2 is termed objective. It denotes that a system’s
current state s1 should be changed to some desired state s2.

We consider different kinds of objectives:
Design-process-related objectives, or process objectives

for short, refer to different states in the description of the
artifact to be designed. What is desired is a change from
a simplified representation to a more detailed one. In this
sense, the overall design objective of product develop-
ment is, for instance, the change from a given design brief
(s1) to a product documentation (s2).

Requirements are product-related objectives, where s2
represents the desired properties of the artifact to be
designed, and s1 is either empty (in the case of an original

design) or s1 represents properties of an existing artifact
(in case of redesign, adaptive design, and variant design).
A design method imposes process objectives to guide a
designer in fulfilling requirements.

Definition 2: A set of objectives O = {o1, o2, . . .} is called
a problem if the transition from current states to desired
states is not trivial andmeans for performing this transition
are not readily available. If there are means available for
solving the problem, we speak of a task.

Definition 3: In this work we consider means for prob-
lem solving to be equal with plans that describe a feasible
sequence of actions, which can be performed in order to
reach the desired state.

Reasons for a plan being unavailable are:

• There are no plans known for solving the problem.
• The plan must be chosen from a vast set of possible

plans.
• The objectives are incomplete and/or conflicting, such

that adequate plans are not obvious.

Given this, we conceptualize product design as solving
several consecutive optimization problems. Each design
phase is concerned with finding a subset of realizable
artifacts, whose properties minimize the distance to the
desired states of the phase-specific objectives. [4] investi-
gated the formulation of such design optimization prob-
lems with respect to different product phases and in the
context of evolutionary design exploration. With each
consecutive phase, different objectives are optimized nar-
rowing down the set of design alternatives under consid-
eration. Possibilities for moving back to previous phases
are also given. In the end, the final subset constitutes the
set of feasible design alternatives.

2.2. Graph-rewriting

This section repeats some essential definitions for graph
rewriting-systems from [6]. For a complete introduction
see [8,9].

Definition 4: A label alphabet A = (AV ,AE) is a pair of
sets of node labels and edge labels. A labeled graph over A
is a system G = (VG,EG, sG, tG, lG,mG) consisting of:

• A finite set of nodes VG and a finite set of edges EG
• A source function sG : VG→ EG and a target func-

tion tG : VG→ EG (for defining adjacencies and edge
directions)

• A node labeling function lG : VG→ AV and an edge
labeling function mG : EG→ AE



COMPUTER-AIDED DESIGN & APPLICATIONS 537

Definition 5: A graph morphism G→ H or morphism
for short is a map from graph G to another graph H. It con-
sists of two functions gV : VG→ VH and gE : EG→ EH
that preserve sources, targets and labels. A bijective graph
morphism is termed graph isomorphism and denoted by∼=.

Definition 6: A production rule p = 〈L← K → R〉 or
rule for short is a pair of graph morphisms with a common
domain K, called the interface. L is termed left-hand side
and R right-hand side. Rules can be equipped with applica-
tion conditions (see [9] for details) that further restrict their
application beside their occurrence morphisms (see below).

Definition 7: The application of a rule p on graph G with
respect to a certain occurrence o : L→ G, which results in
graph H, is called a direct derivation and written G

p,o⇒H.
It exists if and only if the double-pushout diagram of Fig. 1
can be constructed, where D is termed context. The graph
morphism q : R→ H is termed co-occurrence.

Figure 1. Double-pushout diagram.

Definition 8: The symmetry of the double-pushout dia-
gram suggests the construction of an inverse rule p̄ =
R←K → L. Its corresponding direct derivation H

p̄,q⇒G is
also termed a direct parsing.

Definition 9: A derivation G
∗⇒H from graph G to graph

H is a sequence of direct derivations G⇒G1⇒G2⇒
· · ·H over a set of rules P = {p1, p2, . . .}. A derivation in
the inverse direction H

∗⇒G is also called a parsing.

Definition 10: A graph-rewriting system is a pair (P,G)

where P is a set of rules and G is an initial source graph
used as starting point for derivations. The set H com-
prises all possible target graphs that may be produced by
derivations over (P,G) and is called the language of the
graph-rewriting system.

2.3. Duality

Building on the above definitions, we suppose a duality
between both fields, which is shown in Table 1. From
this we are able to render product development tasks and
problems in terms of graph-rewriting.

Table 1. Analogies between product development and graph-
rewriting.

Product Development Graph-Rewriting

State Graph
Current State Source Graph
Desired State Target Graph
Realizable Technical Artifacts Language of Graph-Rewriting

System
Objective Ordering Relation on Language
Action Production Rule
Plan Derivation

If the goal is to accomplish a design task, i.e., there
are design objectives to be achieved and the designer
is in knowledge of a plan for doing so, then the same
plan can be encoded as a sequence of production rule
applications. Performing the task then corresponds to
computing derivations over this sequence.

If, in turn, a plan must be chosen from a vast set of
possible plans, or if the objectives are incomplete and/or
conflicting, such that adequate plans are not obvious,
then this corresponds to determining a rule sequence for
reaching an optimal target graph. In graph-rewriting (or
computer science in general) this problem is known as
the reachability problem.

Definition 11: Given a finite set of production rules P,
a source graph G0 and a target graph H, the reachability
problem is defined as follows: does G0 ⇒P H hold?

Adapting this problem to the setting of design opti-
mization, we are in search for an appropriate rule
sequence that, when applied in derivation, produces (a set
of) graph(s) which minimize a design-specific objective
function.

Definition 12: Given a finite set of production rules P,
a source graph G0 and an objective function f (H ∈ H),
which provides an ordering relation on the language H
of graph-rewriting system (P,G0), the graph-rewriting
design optimization problem is defined as follows: What
is an appropriate rule sequence s∗ ∈ P+ such that s∗ =
argmin
s∈P+

f (H) with G0
s⇒H does hold?

In this paper, we suppose that the space of possible rule
sequences is finite (e.g., by defining limits for repeating
rules). Hence, the set of graphs that can be produced, i.e.,
the graph-rewriting system’s language, is finite as well.

In order to determine reachability, a search algorithm
is needed that searches the combinatorial space of pos-
sible rule sequences. The search succeeds if a sequence
is found that is able to reproduce the target graph H.
In order to implement the search, any discrete search



538 J. R. EICHHOFF ET AL.

algorithm is applicable. However, the search space fac-
torially increases with the rule sequence length, so a
complete search most often becomes infeasible. Hence,
some works in this field used meta-heuristics like sim-
ulated annealing [19]. Another important factor influ-
encing efficiency is the independence of rules. If the rule
set contains rules being independent from each other,
different rule sequences may lead to the same result —
an effect called confluence. Different techniques for han-
dling confluence leading to a more efficient exploration
of the search space are discussed in [6].

Now, in the last design problem mentioned, there are
no plans known for solving the problem. When trans-
lating this to graph-rewriting, we yield another kind of
reachability problem, where the production rules are
(partly) unknown. To tackle this problem, we aim at
inducing new rules from existing designs. Therefore, we
assume there is at least one pair of source graph and cor-
responding target graph available, which represents the
input and output design states of an existing (positive)
sample design.

Definition 13: Given the set of all possible production
rules P , a source graph G0 and target graph H, the pro-
duction rule induction problem is defined as follows: what
is a sufficient finite set of production rules P ⊆ P such that
G0 ⇒P H′ ∼= H does hold?

The main contribution of this paper is a method for
solving this problem under the restriction that there is a
set of existing production rules, which is insufficient for
reaching the target graphs, but should be reused when-
ever possible. Further, we restrict the problem herein to
the induction of a single rule. This is actually valid and
sufficient for solving the above problem, as the induced
rule can be seen as a composite formofmultiple (missing)
rules. In graph-rewriting theory this is called amalgama-
tion [9]. It refers to the idea that multiple rules can be
joined to form a single rule, and vice versa, that one rule
can be separated into a sequence of rules.

3. Solving the production rule induction
problem

The idea of this approach can be paraphrased visually
(cf. Fig. 2): Imagine graphs G0 and H as two cities
being separated by a river. To be able to go from G0 to
H (derivation) the river is supposed to be bridged by
a rule that must be learned. The parse/derive method
approaches the river from both sides and searches for
narrows along the river: I.e., it simultaneously searches
for derivation sequences from G0 and parsing sequences

fromH (reverse application of rules). The pair of deriva-
tion and parsing sequences achieving the highest similar-
ity of produced graphs defines the place for “constructing
the bridge”. To ease this search, we employ a simpli-
fied representation of graphs and production rules, which
is based on label frequencies. With this representation
we are able to simulate different combinations of deriva-
tions and parsings over existing rules in order to estimate
which rules need to be applied in what quantities. Later,
the actual rule sequences for parsing/derivation are deter-
mined by searching over possible orderings with the esti-
mated rule quantities. We are now going to introduce a
running example from the domain of conceptual space-
craft design [17]. For this section we will use an excerpt
of this case to demonstrate each of the method’s stages.
In section 4 we will elaborate on the complete case.

Example 1: Figure 3 shows the source graph of this case
(top), together with the first three production rules, and
the target graph (bottom) that results from applying these
rules on the source graph. The sequence of rule appli-
cation for reaching this target graph is (p1, p2, p3, p3).
Figure 4 gives an overview on the vocabulary used for
node and edge labels and shows the taxonomies defined
over these. The source graph represents an initial situa-
tion in the design of a spacecraft (SC) propulsion system
(PROPSYS). Here, a special kind of propulsion system,
a cold-gas system (CGS), is preselected for being imple-
mented. To determine how this system is implemented,
a graph-rewriting system is employed. Specifically, it is
used to determine feasible topologies for mechanical
components by means of systematic functional decom-
position [16].

The first rule starts this process by adding a node,
which represents the installation space used for the CGS
propulsion system (FUELA). With reference to Fig. 4
the label FUELA (fuel area) denotes a subclass of A
(area), whereas CGS is a subclass of PROPSYS. The used
graph-rewriting engine automatically resolves these tax-
onomical relations during rule application such that the
PROPSYS node of rule 1 can actually be matched with
the CGS node of the source graph. This inheritance con-
cept, which is derived from object-oriented program-
ming, allows specifying rules that are more generally
applicable. The same applies to rule 2 with respect to A
and FUELA. Rule 2 adds the tasks which should be ful-
filled by the components installed in the FUELA space
(STORE,MANAGE, THRUST) and imposes an order on
the sequence for executing these tasks. Rule 3 is then
used to further specify how THRUST is generated with
thruster clusters (THRSTRCL). An additional link to the
engine node (ENG) is drawn establishing traceability



COMPUTER-AIDED DESIGN & APPLICATIONS 539

Figure 2. Illustration of parse/derive method.

Figure 3. Simplified graph-rewriting example.

Figure 4. Node and edge label taxonomies.



540 J. R. EICHHOFF ET AL.

with associated delta-v requirements (DVREQ). If a rule
can be applied multiple times at the same position within
the current graph, it is called self-independent (or self-
dependent in the other case). Rule 3 is self-independent
and can be applied multiple times with respect to the
existing THRUST and ENG nodes. How many times
a rule is actually applied depends on the chosen rule
application sequence, which is in this case (p1, p2, p3,
p3). From a semantical perspective, applying rule 3 twice
denotes that two redundant thruster clusters are used to
generate the required thrust. As shown in section 4, the
derivation continues detailing the other tasks. For now,
we stop with rule 3 and the target graph resulting from
sequence (p1, p2, p3, p3).

3.1. Grounding rules

Table 2 demonstrates how variables are used for imple-
menting the behavior of rules 1, 2 and 3 by means of
small procedural programs, which are invoked by the
graph-rewriting engine during derivation. Applying a
rule means running through all operations within its
program from top to bottom. Each operation signalizes
whether it was applicable or not. If one operation is not
applicable, then the whole rule application fails. Variables
for nodes, edges and labels take account of the differ-
ent possibilities for applying a rule. The label inheritance
feature described above, for instance, is implemented
using label-variables in conjunction with an operation
relatedLabels testing for subclass relations. Each opera-
tion within the program makes use of already set vari-
ables (e.g., addEdge links two previously specified nodes)
and/or assigns new values to variables (e.g., getNode
selects a node from the host graph and assigns its unique
identifier to a node-variable and the node’s label to a
label-variable).

Obviously, there may be multiple options for and
hence combinations of variable assignments, for instance,
with respect to the getNode operation. The used graph-
rewriting engine is designed to test different variable
assignments with each invocation of a rule’s program.
This can be done until there are no more untested com-
binations for variable assignment left.

The parse/derive method makes use of these vari-
ables in an inverse manner: Initially, all existing rules
are grounded, i.e., any variable used for specifying node,
edges and labels are fixed to constants. The set of
grounded rules is obtained from the permutation of pos-
sible variable instantiations. Grounding rules serves two
purposes within the parse/derive method:

First, they are used to determine sequential depen-
dencies among rules (see section 3.1.2) by means of

Table 2. Rules 1, 2 and 3 implemented as procedural programs.
Variables are printed in italics.

Rule 1 Rule 2 Rule 3

getNode(node-1,
label-1)

getNode(node-1, label-1) getNode(node-1,
THRUST)

relatedLabels(label-1,
PROPSYS)

relatedLabels(label-1, A) getNode(node-2, ENG)

addNode(node-2,
FUELA)

addNode(node-2, STORE) addNode(node-3,
THRSTRCL)

addEdge(node-1,
node-2, HAS)

addNode(node-3,
MANAGE)

addEdge(node-1,
node-3, HAS)

addNode(node-4, THRUST) addEdge(node-3,
node-2, FOR)

addEdge(node-1, node-2,
HAS)

addEdge(node-1, node-3,
HAS)

addEdge(node-1, node-4,
HAS)

addEdge(node-2, node-3,
NEXT)

addEdge(node-3, node-4,
NEXT)

critical pair analysis [8]. This method looks for prototyp-
ical situations, where two rules stand in conflict (parallel
dependence), or one rule requires the prior application of
the other (sequential dependence). Candidates for such
situations are found by inspecting the possible overlaps
of grounded rules.

Second, given the grounded versions of a rule, fre-
quency tables over the node/edge labels being affected
by the rule can be computed (see section 3.1.3). Label
frequencies taken before and after the application of a
grounded rule are used to determine label changes caused
by that rule. These differences, denoted by �d, are a simpli-
fied, vectorized representation of the rule’s graph trans-
formations. In the sense of this simplification, a deriva-
tion corresponds to the summation of label frequency
differences over all applied rules. Adding this sum to the
label frequencies of the host graph results in the frequen-
cies of the final graph. The procedure is the same for
parsing, except that the differences of rules are negated.

To limit the combinatorial complexity associated with
grounding rules, we first determine which node and edge
labels are feasible for grounding. Feasible labels are those
appearing in source and target graphs, as well as those
appearing in left-hand sides of rules. All other labels are
irrelevant for deriving the target graph from the source
graph, as they cannot be removed by any rule within the
rule set.

Example 2: The relevant vocabulary identified with
respect to example 1 is: A, CGS, DVREQ, ENG, FOR,
FUELA, GAS, HAS, MANAGE, NEXT, PROPSYS, SC,
STORE, THRSTRCL, THRUST



COMPUTER-AIDED DESIGN & APPLICATIONS 541

Figure 5. Possible host graphs for testing dependencies among rules 1, 2 and 3.

3.2. Extended critical pair analysis

This analysis provides means to determine dependencies
among rules statically, i.e., upfront to actual derivation.
Therefore it produces prototypical situations for applying
a pair of rules and checks whether the direct derivations
over these rules stand in conflict. To produce these sit-
uations all possible overlaps of both rules’ occurrences
of minimal size are computed. For rules involving vari-
ables for node/edge labels these variables are grounded
using the previously determined feasible label set. For
further details on the theoretical foundations of critical
pair analysis see [8].

In order to compute all possible grounded rules we do
not limit the set of host graphs to those where left-hand
sides overlap. Rather all possible common host graphs of
minimal size are computed. Therefore we term this phase
extended critical pair analysis.

Example 3: Figure 5 shows all possible host graphs for
the rules of example 1.

A pair of rules {pi, pj} is then applied on the found
host graphs in sequence (pi, pj) and in reverse sequence
(pj, pi). With each host graph there may be several possi-
bilities for applying a rule (if there are multiple left-hand
side occurrences), where some of these possibilities can
result from changes introduced by the preceding applica-
tion of the other rule within the pair. Critical pair analysis
classifies each derivation over rules pi and pj into one of
the following kinds:

• Independent: Both rules can be applied no matter in
what sequence.

• Parallel dependent: When rule pi is applied first then
pj cannot be applied anymore and vice versa.

• Sequentially dependent: Rule pi introduces elements
that are required by pj. Hence, pi must be applied first,
before pj can be applied.

• Sequentially dependent because of negative applica-
tion conditions: Rule pi introduces a condition that
causes pj to become inapplicable.

Example 4: The derivations of rule pairs on host graphs
of Fig. 5 are classified as follows:

• Rules 1/2: For each of the four host graphs there is one
independent derivation and one sequentially depen-
dent derivation with applicable sequence (p1, p2).

• Rules 1/3: For both host graphs there is one indepen-
dent derivation.

• Rules 2/3: For both host graphs there is one inde-
pendent derivation and one sequentially dependent
derivation with applicable sequence (p2, p3).

In addition to analyzing the applicability of rules with
respect to each other, we also determine the applicability
of rules with respect to source and host graphs. In case of
the latter we actually test the applicability of the inverse
rule.

Example 5: For example 1 we determine the applicabil-
ity of rules on source and target graphs:

• Applicability on source graph: Rule 1 unlimited, rules
2 and 3 are not applicable.

• Applicability on target graph: Rule 3 is applicable two
times, rules 1 and 2 are not applicable.

3.3. Label frequency approximation

One central aspect of the proposed method is to simu-
late derivations from the source graph and parses from
the target graphs using an approximate representation of
graphs and production rules. This allows for fast explo-
ration of possible solutions to the rule induction problem.
The computationally more expensive verification of the
reduced set of approximate solutions is then carried out
afterwards using actual graph-rewriting.

As approximate representation we employ frequency
tables that capture the appearance of node and edge labels
within graphs. In order to represent production rules
we use the difference of label frequencies resulting from
the rules application. Though this ignores any topology
defined on the graphs it provides a strong indicator in
context of the given application scenario, where different
labels are used to denote engineering concepts or product
components. Further, to simulate the reverse application
of rules, signs of label frequency differences just need to
be negated.



542 J. R. EICHHOFF ET AL.

Example 6: The label frequencies of source and target
graphs of example 1 are:

• Source graph: 1×CGS, 1×DVREQ, 1×ENG, 1×
GAS, 4×HAS, 1× SC

• Target graph: 1×CGS, 1×DVREQ, 1×ENG, 2×
FOR, 1× FUELA, 1×GAS, 10×HAS, 1× MAN-
AGE, 2×NEXT, 1× SC, 1× STORE, 2×THRSTRCL,
1×THRUST

Example 7: The differences in label frequencies caused
by rule application are:

• Rule 1:+1×HAS,+1×FUELA
• Rule 2: +3×HAS, +1×MANAGE, +2×NEXT, +1×

STORE,+1×THRUST
• Rule 3:+1×HAS,+1×FOR,+1×THRSTRCL

3.4. Rule induction

From the label frequency vectorization of the parse and
derivation processes, a mixed-integer quadratic program
(MIQP) can be formulated (Eq. 1). The optimization
problem targets the question: What rules need to be
applied in what quantity, such that the difference of
derivation and parsing label frequencies is minimal? We
denote this using two vectors �x and �y, for derivation
and parsing respectively. The length of both vectors cor-
responds to the size of the set of grounded rules, and
each row represents the times a rule is being applied.
The goal is to find a pair {�x∗, �y∗} that minimizes the dis-
tance between the resulting parsing/derivation frequency
vectors.

The problem is constrained by the identified sequen-
tial dependencies among rules (Eq. 2). Every rule is either
applied on the elements of the initial graph, or on the
elements added by a previously applied rule. Hence, if a
rule is not sequentially dependent on others, it can only
be applied on the initial graph (see second condition of
Eq. 2). In this case the upper bound for applications of
a rule must be lower or equal to the number of pos-
sible applications on the initial graph numApp(G, k) or
numApp(H, v), where k and v are indices for deriva-
tion rules and parsing rules respectively. If sequentially
dependent rules exist, this upper bound is raised by the
number of sequentially dependent rule applications (see
first condition of Eq. 2).

Further, we have to distinguish between self-
independent and self-dependent rules when formulating
these constraints (Eq. 3). Recall that rules which may be
applicablemultiple times to the same occurrence are con-
sidered self-independent. Otherwise, if one application
prevents any further applications of the rule on the same

occurrence, it is considered self-dependent. To reflect this
within the optimization constraints, auxiliary variables a
and b are introduced. These are either equal to the actual
number of rule applications in the case of self-dependent
rules, or turn into binary variables in the case of self-
independent variables indicating the presence of one or
more applications of that rule.

(�x∗, �y∗) = argmin
�x,�y

m∑
i=1

((hG,i + �dTi �x)− (hH,i − �dTi �y))
2

(1)

s.t. for each k :

⎧⎪⎪⎨
⎪⎪⎩
ak ≤ numApp(G, k)
+∑

j∈J
xj if J �= ∅

ak ≤ numApp(G, k) else.

× where J = {j|seqDep(j, k) = true}

and for each v :

⎧⎪⎪⎨
⎪⎪⎩
bv ≤ numApp(H, v)

+ ∑
u∈U

yu if U �= ∅
bv ≤ numApp(H, v) else.

(2)

× where U = {u|seqDep(u, v) = true}

ak =

⎧⎪⎨
⎪⎩
xk if rule indexed by k

is self - dependent
1↔ xk ≥ 1 else.

bv =

⎧⎪⎨
⎪⎩
yv if rule indexed by v

is self - dependent
1↔ yv ≥ 1 else.

(3)

Example 8: Eq. 4 exemplifies the composition of the
optimization function of Eq. 1 with respect to the edge
label HAS. The source and target graph frequencies are
taken from example 6 and the frequency differences for
rule 2 and 3 correspond to those of example 7.

(�x∗, �y∗) = argmin
�x,�y

[
. . .+

((
4+

(
3
1

)T
�x
)

−
(
10−

(
3
1

)T
�y
))2

+ · · ·
⎤
⎦ (4)

Example 9: The sequential dependency constraints for
the running example are shown in Eq. 5. The used indices



COMPUTER-AIDED DESIGN & APPLICATIONS 543

Figure 6. Induced rule corresponding to original rule 1. Nodes mapped by largest subgraph isomorphism are shaded.

Figure 7. The parse/derive method.

denote correspondence to rule 2 or rule 3.

a2 ≤ 0 a2 = 1↔ x2 ≥ 1

b2 ≤ y3 b2 = 1↔ y2 ≥ 1

a3 ≤ x2 a3 = 1↔ x3 ≥ 1

b3 ≤ 2 b3 = 1↔ y3 ≥ 1 (5)

Having identified promising quantities for the number
of rule applications, the next step targets the question: In
what sequences do the found rules have to be applied?

This is answered using a Genetic Algorithm (GA)
that searches over the now reduced space of possible
rule sequences for derivation and parsing. Using the
given rule application quantities, the GA tries to actually
apply the rules stepping aside from the label frequency
simplification used earlier. The longest pair of applica-
ble sequences is considered optimal. From this pair all
derived and parsed graphs are gathered.

Example 10: The optimal rule quantities identified by
the MIQP are:

• Derivation from source graph �x∗: 0×P2 and 0× P3
• Parsing from target graph �y∗: 1× P2 and 2×P3

It is easy for the GA to determine an appropriate
sequence for parsing, i.e., (p3, p3, p2).

Finally, the most similar pair of derivation/parse
graphs is chosen to obtain the resulting rule. Therefore,

the pair of graphs which share the largest subgraph iso-
morphism is determined in a series of tests for isomor-
phism. A mapping between both graphs is established
for every common node or edge. Elements that cannot
be mapped will then be subject to the new rule’s graph
transformations.

Example 11: Figure 6 shows the rediscovery of rule 1
under presence of existing rules 2 and 3.

All steps of the parse/derive method are summarized
in Fig. 7.

4. An illustrative example

The design graph grammar, which has been used as
a baseline for experimentation, was originally devel-
oped by [17] to automatically generate propulsion system
topologies for spacecrafts. The original grammar is capa-
ble of producing topologies for three different engine
types, i.e., cold-gas systems, mono-propellant systems
and bi-propellant systems. It has been deployed for “43”
[1], a graph-rewriting-based design automation software.
The integration with 43 allows designers to easily explore
different topologies, which result from varying require-
ments. It also facilitates the calculation of associated para-
metrics, e.g., to determine masses associated with fuel
and components.

In this work we focus solely on the topology gen-
eration for cold-gas systems. Figure 8 shows the flow
schematic of a cold-gas system with two thrusters (left)



544 J. R. EICHHOFF ET AL.

Figure 8. Left: typical flow schematics used for conceptual propulsion systemdesign. Right: correspondingdesigngraph representation,
which results fromgraph-rewriting. Common elementswithin both representations are shaded. Used abbreviations are explained in text.

Figure 9. Source graph and complete rule set used for experimentation. Used abbreviations are explained in text.

and its corresponding graph representation (right). This
sample design has been used as target graph for rule
induction. Figure 9 shows the source graph (top left),
which holds information about the basic requirements.
In the original grammar there are several requirements
associated with these nodes. They are part of equation
systems, which are processed by solvers in parallel to
derivation. We do not consider these parametrics for
now and focus on topology generation. Figure 9 also
shows the relevant subset of rules for deriving the tar-
get graph from the source graph using rule sequence

(p1, p2, p3, p3, p4, p5, p6, p7, p8, p8, p9, p9, p10, p11, p12, p13,
p14, p15, p16, p16, p16, p16, p16, p16, p16). The first three
rules of this set have already been explained in example
1.We now continue the derivation at rule 4 (for rules 1 to
3 see example 1).

Rule 4 begins with specifying functions for manag-
ing the propulsion system (MANAGE), i.e., it adds the
function of isolating the thruster clusters from the fuel
storage (ISO). With rule 5 the task of storing fuel is asso-
ciated with a corresponding function, i.e., the provision
of a storage area (STOA). Building on this initial layer



COMPUTER-AIDED DESIGN & APPLICATIONS 545

Table 3. Sequential dependencies. Application of 2nd rule is dependent on 1st rule’s application.

2nd Rule

1st Rule p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

p1 •
p2 • • •
p3 • •
p4 • •
p5 • •
p6 • • • • •
p7 • •
p8
p9
p10 •
p11 •
p12 •
p13 •
p14 •
p15 •
p16

Table 4. Label frequency changes caused by application of rules.

Label p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

HAS +1 +3 +1 +1 +1 +3 +1 +1
NEXT +2 +5 +1 +1 +1
FOR +1
FUELA +1
STORE +1
MANAGE +1
THRUST +1
THRSTRCL +1
ISO +1
STOA +1
FILLDRN +1
PRSRMSR +1
FLTRTN +1
LIMPRSR +1
THRSTR +1
TK +1
FDVLV +1
FLTR +1
REG +1
PRSRXDCR +1
PYROVLV +1

of functions, rule 6 continues functional decomposition
by adding and connecting functions fill drain (FILL-
DRN), pressure measurement (PRSRMSR), and filtra-
tion (FLTRTN). It connects these functions with directed
edges representing the direction of fuel flow within the
system (NEXT). Rule 6 also adds anunlabeled node to the
(current) end of the fuel flow signalizing following rules
where to resume the extension of the flow. This actually
happens with rule 7. It searches for Some node (ANY)
that shows thementioned pattern and attaches a function
for limiting pressure (LIMPRSR). Rule 8 acts somewhat
similar; it also looks for the last function within the fuel
flow and connects the already added thruster clusters to
this function. At this point, the layer of functions is com-
plete. Now, derivation continues with detailing what flow
components (FLOW) can be used for physically realizing
the functions, i.e., in the terms of Systematic Design [16]
we are going to derive a working structure (or principal

solution) from the defined function structure. This hap-
pens with the remaining rules within the sequence. Rules
9 to 15 select a corresponding flow component for each
function. Specifically, components tank (TK), fill drain
valve (FDVLV), filter (FLTR), regulator (REG), pressure
transducer (PRSRXDCR), and pyro valve (PYROVLV)
are used for implementation. Rule 16 fulfills the special
role of transferring the topology that has been defined
on the function structure on to the flow components.
By referring to a whole category of labels (FLOW), rule
16 actually encodes 49 basic rules resulting from the
combination of the 7 labels in the category FLOW (see
taxonomy in Fig. 4). This special property of rule 16 is
considered in the following experiments.

The sequential dependencies among rules discovered
within the extended critical pair analysis are shown in
Table 3. Moreover, the direct applicability of rules on the
source graph and target graph are as follows:



546 J. R. EICHHOFF ET AL.

Table 5. Compilation of results for leave-one-rule-out experiments without rule 16. Additional rewiring operations, which do not
correspond to an existing rule, are denoted by X.

Rule ID
Number of

MIQP Optima
Matches with
Original Rules Time CP (ms)

Time MIQP
(ms) Time GA (ms)

1 1 1 1076 208 1934
2 1 2 1088 185 50186
3 29 3 1101 171 83999
4 4 4 1085 172 12122
5 4 5 1126 168 11709
6 1 6 1064 189 6740
7 5 7+ X 1061 194 13182
8 1 8 1033 164 3203
9 32 9 1093 232 55613
10 2 10 1091 206 1613
11 3 11 1103 232 5694
12 3 12 1107 147 5648
13 2 13+ 7 1102 130 7781
14 3 14 1122 190 5925
15 2 15 1084 233 2431

Table 6. Compilation of results for leave-one-rule-out experiments including rule 16. Additional rewiring operations, which do not
correspond to an existing rule, are denoted by X.

Rule ID
Number of

MIQP Optima
Matches with
Original Rules

Time CP
(ms)

Time MIQP
(ms)

Time
GA (ms)

1 12 1+ 2+3+ 8 18762 4081 548016
2 5 2+ 3+4+ 5+6+ 7+8+ 12+ 13 18165 4619 149215
3 21 3+ 8 17534 4646 1334476
4 1 4+ 6+ 7 18556 4109 106462
5 1 5 18990 4424 122475
6 10 6 13688 2591 764908
7 2 5+ 7+ X 17187 4250 166564
8 3 8 17589 308 131339
9 25 9 17834 2636 1348416
10 2 10 18619 5833 65652
11 1 11 19526 4705 67347
12 1 12 18567 4272 57568
13 1 13+ 7 18588 4810 79373
14 1 14 18845 3980 66459
15 6 15+ 4 19211 4313 178328
16 13 16+ 10+ 13+ X 1144 187 17608

• Applicability on host graph (derivation): p1 unlimited,
all other rules are not applicable

• Reverse-applicability on target graph (parsing): p8
applicable 2 times, p16 applicable 7 times, all other
rules are not applicable

From the grounding of rules, changes of label frequen-
cies for each rule were computed. These are shown in
Table 4.

The following subsections describe the results of
experiments, where one rule was left out from the men-
tioned rule set, and the rule induction method was given
the task to determine a proper replacement, such that
the derivation of the given target graph from the given
source graph is maintained. Each experiment was con-
ducted twice, with and without consideration of rule 16.
Hence, two different target graphs were used for exper-
imentation. The one including the changes of rule 16 is
shown in Fig. 8. The other target graph is identical to
the latter except for the NEXT-edges among the shaded

flow elements. Mixed integer quadratic programs were
produced for each experiment using the data shown in
Tables 3 and 4, where the data for the rule to be searched
is excluded.

Table 5 summarizes the findings for the set of experi-
ments associated with rule sequence (p1, p2, p3, p3, p4, p5,
p6, p7, p8, p8, p9, p9, p10, p11, p12, p13, p14, p15). In most
cases the rule definition that was originally used to derive
the target graph could be rediscovered by the induction
algorithm. The time needed for rule induction mainly
depends on the number of optima found by MIQP opti-
mization, and hence the number of GA invocations. The
latter amounts themost computation time in comparison
to the extended critical pair analysis (CP) and MIQP.

In case of rule 13 the induced rules also incorpo-
rate graph transformations that are actually part of rule
7, which is already present in the rule set. The induc-
tion of rule 7 represents another interesting situation,
where the induced graph transformations basically cor-
respond to those of the original definition, but a different



COMPUTER-AIDED DESIGN & APPLICATIONS 547

strategy for deriving the target graph is chosen. Rule
7 then has to perform some additional operations to
change existing adjacencies. The results for rule sequence
(p1, p2, p3, p3, p4, p5, p6, p7, p8, p8, p9, p9, p10, p11, p12, p13,
p14, p15, p16, p16, p16, p16, p16, p16, p16) are summarized in
Table 6. Due to the increased complexity, the effect of
“cannibalizing” existing rules is more prevalent.

We observed two recurring patterns where rules did
not correspond to the original ones:

First, since the MIQP is just an approximation of the
actual graph-rewriting behavior, the optimization prob-
lem may be under constrained in terms of sequential
dependency. This yields derivation and/or parsing targets
that do work in terms of label frequencies, but the actual
rule application in derivation/parse does fail.

Second, the rules may be applicable in a different
sequence compared to the original derivation while the
label frequencies remain the same. In result, the graph
differs in terms of topology. In this case a rule is learned
that performs the necessary changes in order to re-
establish the original derivation.

5. Conclusion

A method for inducing production rules in context of
an existing but incomplete rule set has been proposed.
This method is supposed to become an enabling tech-
nology to the use of graph-rewriting for implementing
computer-aided design software. Supporting this vision,
the methods applicability has been tested with respect
to an example from the field of conceptual spacecraft
design. The results gathered support the practical feasi-
bility of the approach.

Nonetheless, further extensions are required to yield a
comprehensive framework for automaticallymaintaining
graph-rewriting systems in context of engineering design
applications. Therefore, we suggest further research in to
the refinement of induced rules by means of amalgama-
tion (combination of rules) and generalization.

ORCID

Julian R. Eichhoff http://orcid.org/0000-0002-8748-8904
Jens Schmidt http://orcid.org/0000-0003-4049-1046
Dieter Roller http://orcid.org/0000-0002-2438-5676

References

[1] Alber, R.; Rudolph, S.: ‘43’—A Generic Approach for
Engineering Design Grammars, Computational Synthe-
sis: From Basic Building Blocks to High Level Function-
ality, Papers from the 2003 AAAI Spring Symposium, Vol.
SS-03-02, 2003, 11–17.

[2] Ates, K.; Zhang, K.: Constructing VEGGIE: Machine
Learning for Context-Sensitive Graph Grammars, 19th

IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2007), 2007, 456–463. http://dx.doi.
org/10.1109/ICTAI.2007.59

[3] Costa, F.; Sorescu, D.: The Constructive Learning Prob-
lem: an efficient approach for hypergraphs, Workshop on
Constructive Machine Learning (CML) at the 2013 Con-
ference on Neural Information Processing Systems (NIPS
2013), 2013, 1–5.

[4] Eichhoff, J.R.; Roller, D.: A survey on automating configu-
ration andparameterization in evolutionary design explo-
ration, Artif. Intell. Eng. Des. Anal. Manuf., 29(4), 2015,
333–350. http://dx.doi.org/10.1017/S0890060415000
372

[5] Eichhoff, J.R.; Roller, D.: Genetic Programming for
Design Grammar Rule Induction, RuleML 2015 Chal-
lenge, the Special Track on Rule-based Recommender
Systems for the Web of Data, the Special Industry Track
and the RuleML 2015Doctoral Consortium hosted by the
9th Intl. Web Rule Symposium, 2015, 1–8.

[6] Eichhoff, J.R.; Roller, D.: Designing the Same, but in
Different Ways: Determinism in Graph-Rewriting Sys-
tems for Function-Based Design Synthesis, J. Com-
put. Inf. Sci. Eng., 16(1), 2016, 011006-011006-10.
http://dx.doi.org/10.1115/1.4032576

[7] Eichhoff, J.R.; Baumann, F.; Roller, D.: Reconstruct-
ing Design Processes by Machine Learning of Graph-
Rewriting Production Rules, Proc. CAD’16, 2016,
157–161. http://dx.doi.org/cadconfP.2016.157-161.

[8] Ehrig, H.; Golas, U.; Habel, A.; Lambers, L.; Orejas, F.:
M-Adhesive Transformation Systems with Nested Appli-
cation Conditions. Part 2: Embedding, Critical Pairs and
Local Confluence, Fund. Inform., 118(1-2), 2012, 35–63.
http://dx.doi.org/10.3233/FI-2015-1282

[9] Ehrig, H.; Golas, U.; Habel, A.; Lambers, L.; Orejas, F.:
M-Adhesive Transformation Systems with Nested Appli-
cation Conditions. Part 1: Parallelism, Concurrency and
Amalgamation, Math. Struct. Comput. Sci., 24(04), 2014,
1–48. http://dx.doi.org/10.1017/S0960129512000357

[10] Fürst, L.;Mernik,M.;Mahnič, V.: GraphGrammar Induc-
tion as a Parser-Controlled Heuristic Search Process,
Applications of Graph Transformations with Industrial
Relevance (AGTIVE 2011), 4th International Sympo-
sium, 2011, 121–136. http://dx.doi.org/10.1007/978-3-
642-34176-2_12

[11] Helms, B.; Shea, K.: Computational Synthesis of Product
Architectures Based on Object-Oriented Graph Gram-
mars, J. Mech. Des., 134(2), 2012, 021008. http://dx.doi.
org/10.1115/1.4005592

[12] Jin, Y.; Li,W.: Design Concept Generation: AHierarchical
Coevolutionary Approach, J. Mech. Des., 129(10), 2007,
1012–1022. http://dx.doi.org/10.1115/1.2757190

[13] Kurtoglu, T.; Swantner, A.; Campbell, M. I.: Automating
the Conceptual Design Process: ‘FromBlack Box to Com-
ponent Selection’, Artif. Intell. Eng. Des. Anal. Manuf.,
24(01), 2010, 49–62. http://dx.doi.org/10.1017/S0890060
409990163

[14] Object Management Group: OMG Unified Modeling
Language (OMGUML), 2015, http://www.omg.org/spec/
UML/2.5/

[15] Object ManagementGroup: OMG Systems Modeling
Language (OMG SysML), 2015, http://www.omg.org/
spec/SysML/1.4/

http://orcid.org/0000-0002-8748-8904
http://orcid.org/0000-0003-4049-1046
http://orcid.org/0000-0002-2438-5676
http://dx.doi.org/10.1109/ICTAI.2007.59
http://dx.doi.org/10.1109/ICTAI.2007.59
http://dx.doi.org/10.1017/S0890060415000372
http://dx.doi.org/10.1017/S0890060415000372
http://dx.doi.org/10.1115/1.4032576
http://dx.doi.org/cadconfP.2016.157-161
http://dx.doi.org/10.3233/FI-2015-1282
http://dx.doi.org/10.1017/S0960129512000357
http://dx.doi.org/10.1007/978-3-642-34176-2_12
http://dx.doi.org/10.1007/978-3-642-34176-2_12
http://dx.doi.org/10.1115/1.4005592
http://dx.doi.org/10.1115/1.4005592
http://dx.doi.org/10.1115/1.2757190
http://dx.doi.org/10.1017/S0890060409990163
http://dx.doi.org/10.1017/S0890060409990163
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/SysML/1.4/


548 J. R. EICHHOFF ET AL.

[16] Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Engineer-
ing Design: A Systematic Approach, 3rd ed., Springer,
London, 2007.

[17] Schmidt, J.; Rudolph, S.: Gaining System Design Knowl-
edge by Systematic Design Space Exploration with Graph
Based Design Languages, International Conference of
Computational Methods in Sciences and Engineering
(ICCMSE 2014), AIP Conf. Proc. 1618, 2014, 390–393.
http://dx.doi.org/10.1063/1.4897755

[18] Schmidt, L. C.; Cagan, J.: Recursive Annealing: A Com-
putational Model for Machine Design, Res. Eng. Des.,
7(2), 1995, 102–125. http://dx.doi.org/10.1007/BF01606
905

[19] Schmidt, L.C.; Cagan, J.: GGREADA: AGraphGrammar-
Based Machine Design Algorithm, Res. Eng. Des., 9(4),
1997, 195–213. http://dx.doi.org/10.1007/BF01589682

[20] Schmidt, L. C.; Shetty, H.; Chase, S. C.: AGraphGrammar
Approach for Structure Synthesis ofMechanisms, J.Mech.
Des., 122(4), 2000, 371–376. http://dx.doi.org/10.1115/
1.1315299

[21] Siddique, Z.; Rosen, D. W.: Product Platform Design: A
Graph Grammar Approach, ASME Paper No. DETC99/
DTM-8762, 1999.

[22] Verein Deutscher Ingenieure: Methodik zum Entwick-
eln und Konstruieren technischer Systeme und Produkte
(VDI 2221), Beuth, Berlin, 1993.

http://dx.doi.org/10.1063/1.4897755
http://dx.doi.org/10.1007/BF01606905
http://dx.doi.org/10.1007/BF01606905
http://dx.doi.org/10.1007/BF01589682
http://dx.doi.org/10.1115/1.1315299
http://dx.doi.org/10.1115/1.1315299

	1. Introduction
	2. The duality between product development and graph-rewriting
	2.1. Product development as subsequent optimizations
	2.2. Graph-rewriting
	2.3. Duality

	3. Solving the production rule induction problem
	3.1. Grounding rules
	3.2. Extended critical pair analysis
	3.3. Label frequency approximation
	3.4. Rule induction

	4. An illustrative example
	5. Conclusion
	ORCID
	References

