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ABSTRACT
This paper presents a novel scheme for constructing bivariate spline surfaces over triangularmeshes
which are topologically equivalent to adisk. The corepart of the scheme is a set of knot selection rules
that define local configurations of a triangulation called the directed-one-ring-cycle (D1RC) config-
urations and bivariate splines defined over a D1RC configuration that are new non-tensor-product
splines and possess many nice properties of a univariate B-spline. Using D1RC splines, we take an
input triangular mesh as a control mesh and define a bivariate spline surface from the control mesh,
which mimics the standard NURBS modeling. Moreover, we can introduce sharp features into the
overall smooth spline surface by simply setting special D1RC configurations. As a result, the pro-
posed scheme can define spline surfaces in a way similar to that of NURBS, but has less restriction on
the connectivity of the input control mesh.
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1. Introduction

Generalizing univariate B-splines to bivariate splines is
a basic strategy to construct spline surfaces in freeform
surface modeling. A popular approach is to use tensor-
product. A typical example is NURBS which has been
an industry standard in CAD/CAE [17]. NURBS has
many good properties such as clear geometric intu-
ition, compact representation, automatic maintenance
of smoothness, analytic formula, local control, and
many nice algorithms. However, due to inherent tensor-
product structure, NURBS has two serious limitations:
(1) NURBS does not support local refinement which is
often demanded in interactive modeling and engineer-
ing simulation; and (2)NURBS has difficulty inmodeling
shapes of arbitrary topology. To solve the first limita-
tion, T-splines were proposed [19,20], which allow the
existence of T-junctions in the control grid of the sur-
face definition and thus enable local refinement. To solve
the second limitation, subdivision surfaces were devel-
oped [4,10,21], which generalize B-spline surfaces to
arbitrary topology. Due to the nature of recursive sub-
division process, subdivision surfaces are not so widely
used in CAD/CAE as in animation and game industry.

Another approach to generalizing univariate B-splines
to bivariate splines is by non-tensor product meth-
ods, examples of which include surfaces over triangular
domains [1,11,14], Box-splines [8], and simplex splines
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[7]. In particular, Box-splines are defined over uniform
grids and are still constrained by the connectivity of the
grids. Simplex splines are more general than Box-splines.
A well-known simplex spline is the triangular B-spline
or DMS-spline [6,13,18], which has similar setup as B-
splines but needs to explicitly add auxiliary knots.

The recent generalization of univariate B-splines is
bivariate splines over the so-called “Delaunay configu-
rations” (DCB-splines) [15,16]. DCB-splines and uni-
variate B-splines share many useful properties such as
the smoothness and polynomial reproduction. They are
considered to be the very promisingmultivariate general-
ization of univariate B-splines and have been successfully
used in data reconstruction and visualization [3,2,9,5].
Despite their mathematical elegance, the DCB-splines do
not provide an ideal user-interface for interactive mod-
eling. In particular, the connectivity relation among the
control points of a DCB-spline is ambiguous. As a result,
it is not easy to determine which region of the surface
will be influenced when one or some control points are
manipulated. Moreover, the number of bases is unknown
before the actual computation ofDelaunay configuration.

In this paper, we present a novel scheme to con-
struct bivariate spline surfaces from triangular meshes
which are topologically equivalent to a disk. Triangular
meshes are nowadayswidely used in geometricmodeling.
Thus our work can be compatible with existing modeling
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systems. The key technique behind the scheme is a set of
new knot selection rules that define local configurations
of a triangulation, which we call the directed-one-ring-
cycle (D1RC) configurations. The D1RC configurations
of a triangulation are used to define bivariate splines.
Based on the concept of D1RC configurations, we define
a bivariate spline surface from the input triangular mesh,
which is piecewise rational. We call such surfaces D1RC-
spline surfaces. The advantages of the D1RC-spline sur-
faces are that they define the surfaces in a similar fashion
of standard NURBS, i.e., the input meshes serve as the
control meshes which give a rough approximation of the
surfaces; there is no need to add auxiliary knots; and the
resulting surfaces are Ck–1 continuous for degree k sur-
faces. Moreover, shape features can also be modeled by
simply setting special D1RC configurations. Overall, the
contributions of the paper are three-folds:

• We define D1RC configurations on an arbitrary tri-
angulation domain, which are used for knot selec-
tion. Based on the D1RC configurations, we further
define D1RC-spline functions that share many nice
properties as univariate B-splines.

• Wepresent a novel approach to define a rational spline
surface froman input triangularmesh. The surface has
nice geometric properties as NURBS, which include
affine invariance, local control, convex hull proper-
ties, Ck−1 continuity where k is the degree of the
surface, etc.

• We also provide a strategy to create sharp features in
an overall smooth surface intuitively.

The rest of the paper is organized as follows. Section 2
introduces some concepts and notations that will be used
in the paper. Section 3 presents a knot selection method
so that we can define a bivariate spline space over a 2D tri-
angulation. Section 4 describes how to define a bivariate
spline surface froman input 3D triangularmesh such that
the triangular mesh serves as a control grid and how to
introduce sharp features into the bivariate spline surface.
Section 5 gives a few examples to demonstrate the mod-
eling using the proposed bivariate spline surface scheme.
Section 6 concludes the paper.

2. Preliminaries

For a set of two dimensional points V = {vi|i =
1, · · · , n}, its triangulation is denoted by T = {V ,E, F}
where E = {ej|ej = (vj1 , vj2)} and F = {fk|fk = (vk1 , vk2 ,
vk3)} are a set of edges and faces. A vertex, an edge or a
face is called an element of triangulation T. In the context
of splines, 2D vertices used for defining splines are often
called “knots”. So in the paper we use the terms “vertex”

and “knot” without distinction when there is no ambi-
guity. For a triangulation T, if A is a set of vertices of an
element of T, �f (A) denotes the set of faces containing
the vertices in A.

Let W = (w0,w1,w2),wi = (wix,wiy), i = 0, 1, 2 be a
triple of 2D points.When (w0,w1,w2) do not lie on a line,
they form a triangle. The directed area of the triangle is
given by the determinant ofW, which is defined by

det(W) =
∣∣∣∣∣∣

1 1 1
w0x w1x w2x
w0y w1y w2y

∣∣∣∣∣∣
(2.1)

When (w0,w1,w2) are counter-clockwise oriented,
det(W) > 0; otherwise, det(W) < 0.

Let W = (w0,w1,w2) and x be a triangle and a point
in R2. Then the barycentric coordinates (λ0, λ1, λ2) of x
with respect toW are

(λ0(x|W), λ1(x|W), λ2(x|W)) = 1
det(W)

(det(x,w1,w2),

det(w0,x,w2), det(w0,w1, x)) (2.2)

The barycentric coordinates have properties: λ0 + λ1 +
λ2 = 1 and λ0w0 + λ1w1 + λ2w2 = x.

Given a knot set U = (t0, · · · , tk+2) of size k+3 in
R2, arbitrarily choose three knots (ti0 , ti1 , ti2) fromU that
are not collinear and form a triangle W. A degree k
bivariate simplex spline associated with U is a piecewise
polynomial defined recursively by

M(x|U) =
2∑

j=0
λj(x|W)M(x|U\{tij}), x ∈ R2 (2.3)

When k = 0, U = (t0, t1, t2) and the degree 0 simplex
spline is

M(x|{t0, t1, t2}) = χ[t0, t1, t2](x)
det(t0, t1, t2)

where χ[t0, t1, t2](x) is the characteristic function on the
triangle (t0, t1, t2) [22]. Simplex splines possessmanynice
properties that univariate B-splines have. For example,
simplex splines have a finite support that is the convex
hull of knots U. If all knots in U are in generic positions,
i.e., no three knots in U are linearly dependent, sim-
plex splines are Ck−1 continuous. If there are s collinear
knots in U, the continuity will reduce to Ck−s+1, which is
similar to the multiple knot case in univariate B-splines.

Some notations are given below:

• [i]j means imodulo j.
• conv(S) denotes the convex hull of all points in S,

which is a convex polygon with vertices in S. A point
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in S is an extreme point if it is a vertex of the convex
hull of S.

• int(T) denotes the interior of the region tessellated by
a triangulation T.

• supp(f ) denotes the support of the function f.

3. Bivariate splines on 2D triangulation

In this section, we construct a bivariate spline space for a
given triangulation using simplex splines. A spline func-
tion is defined over knots. Compared to univariate B-
splines that are defined over a set of consecutive knots
(numbers), it is much more difficult to specify knots (2D
points) for bivariate splines over a triangulation domain.
Therefore in the following we first propose some rules for
knot selection in order to construct bivariate splines.

For a planar region D bounded by a polygon, if we
order the vertices of the polygon such that they are in the
counter-clockwise direction, they form a directed cycle of
region D. We denote this directed cycle by CR(D). Now
consider a triangulation T = {V ,E, F} in R2. We define
a degree k directed-one-ring cycle (D1RC) configuration as
X = (XC, XI) where XI is an interior vertex set consist-
ing of one vertex, two vertices of an edge, or three vertices
of a face of T for k = 1, 2 and 3, respectively; and XC is
the directed one-ring-cycle of XI . Specifically, when k =
1, XI contains only one interior vertex v of T, and then

Xc = CR(∪f∈�f (v) f ). When k = 2, XI consists of two
interior vertices v1 and v2 that form an edge in T, and
Xc = CR(∪f∈�f (v1,v2) f ).When k = 3,XI consists of three
interior vertices v1, v2 and v3 that forma triangle inT, and
Xc = CR(∪f∈�f (v1,v2,v3) f ). With reference to Fig. 1, three
D1RCs of degrees 1, 2 and 3 are shown from left to right.
The knots in the interior vertex sets are colored red. The
vertices of the directed-one-ring-cycles are displayed in
blue and connected with dashed lines, where the arrows
indicate the directions.

Let X = (XC, XI) be a degree k D1RC configura-
tion. AssumeXC = (v0, . . . ,vn). A degree kD1RC-spline
associated with X is defined as a combination of degree
k-1 simplex splines:

bkX(t) =
n∑

i=0
det(vi, vi+1, t)M(t|XI ∪ {vi, vi+1}), t ∈ R2

(3.1)

where det(vi, vi+1, t) is the directed area of triangle
(vi, vi+1, t), andM(t|XI ∪ {vi, vi+1}) is the simplex spline
defined over the knot set XI ∪ {vi, vi+1}. Fig. 2 shows a
degree 3D1RC configuration (left) and its corresponding
degree 3 D1RC-spline function (right).

Nowwe show that the constructed D1RC-splines have
many nice properties as univariate B-splines. In fact, we
have

Figure 1. From left to right: degree 1, 2 and 3 directed-one-ring cycle configurations. The interior vertex sets XI are colored red, and the
directed one-ring-cycles XC are colored blue.

Figure 2. A degree 3 D1RC configuration and its corresponding D1RC-spline.
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Proposition 1: A degree k D1RC-spline is non-negative
and Ck−1 continuous if knots are in generic position, and
has local support.

Proof: Let us first prove that the degree kD1RC-spline is
a linear combination of degree k simplex splines. Recall
that a degree k simplex spline can be represented as a
combination of degree (k-1) ones. Hence when XC con-
tains three vertices, the situation becomes trivial. This is
because bkX(t)defined in Eqn. (3.1) is the degree k simplex
spline defined over knot set XI ∪ XC.

Consider the situation where XC is a quadrilateral (v0,
v1, v2, v3). We triangulate it into two triangles (v0, v1, v3)
and (v1, v2, v3) by simply connecting diagonal v1v3. Now
two degree k simplex splines can be defined over knot
sets XI ∪ (v0, v1, v3) and XI ∪ (v1, v2, v3), respectively.
Let us consider the linear combination of the two simplex
splines:

M∗(t) = det(v0, v1, v3)M(t|XI ∪ {v0, v1, v3})
+ det(v1, v2, v3)M(t|XI ∪ {v1, v2, v3}). (3.2)

Using the recurrence relation in Eqn. (2.3), Eqn. (3.2)
can be rewritten as

M∗(t) =
3∑

i=0
det(vi, v[i+1]4 , t)M(t|XI ∪ {vi, v[i+1]4})

+ det(v1, v3, t)M(t|XI ∪ {v1, v3})
+ det(v3, v1, t)M(t|XI ∪ {v1, v3}) (3.3)

= bkX(t).

The second equality holds due to det(v1, v3, t) =
− det(v3, v1, t). Thus the degree k D1RC-spline can be
expressed as a linear combination of degree k simple sim-
plex splines with non-negative coefficients det(v0, v1, v3)
and det(v1, v2, v3). Moreover, it can be verified that
M∗(t) ≡ bkX(t) of Eqn. (3.3) is independent of the choice
of the diagonal of the quadrilateral. This is because each
diagonal corresponds to a pair of oppositely directed
edges whose contributions will cancel each other in the
basis conversion.

When XC forms a general simple polygon, we can
similarly prove that a degree k D1RC-spline is a linear
combination of degree k simplex splines. This is because
the polygon can be triangulated into a set of triangles
and adjacent triangles share a pair of oppositely directed
edges.

Since degree k simplex splines have the properties of
non-negativity, Ck−1 continuity and local support, we
can conclude that the degree kD1RC-spline has the same
properties based on Eqn. (3.2) and Eqn. (3.3). Moreover,

we have

supp(bkX(t)) = n−1∪
i=0

conv(XI ∪ {vi, v(i+1)n}) and

∪
f∈{�f (v)|v∈XI}

f ⊆ supp(bkX(t)) ⊆ conv(XI ∪ XC})

This completes the proof. �

For a triangulation T = {V ,E, F} in R2, let Xk
T be the

set of all possible degree kD1RCconfigurations. Then the
set of degree kD1RC-splines {bkX|X ∈ Xk

T} forms a degree
k spline space.

4. Bivariate spline surfacemodeling

In classic B-spline curves and surfaces, a set of 3D points
is used as the coefficients in the curve and surface formu-
lation. These points are connected to form a polygon or
mesh which gives the rough shape of the curves or sur-
faces. Meanwhile, they serve as control points providing
an intuitive interface for users to design and manipulate
the shape. In this section, we aim to develop a simi-
lar scheme for the proposed bivariate splines. Hence the
input to our problem is a 3D triangular mesh topolog-
ically equivalent to a disk, which can be represented as
T = {V , E, F}whereV is a set of 3D vertices, E is a set of
edges and F is a set of triangles. The goal is to construct a
spline surface from T such that the vertices of T serve as
the control vertices as in NURBS and the triangularmesh
mimics the shape of the spline surface.

Our basic idea is to properly define bivariate spline
functions proposed in previous section for the input tri-
angular mesh, which exhibit many nice properties of
univariate B-splines, and then use them to construct
the blending functions for spline surface definition. Our
method mainly consists of four steps outlined below:

• Parameterize the input triangular mesh
To define a parameter domain and knots for spline
surfaces, we parameterize the input triangular mesh,
which maps the triangular mesh to a triangulation
on a 2D domain. For convenience, we denote the tri-
angulation by T = {V, E, F}which are the images of
T = {V , E, F}. There have been many parameteri-
zation methods such as conformal parameterization
and equiareal parameterization. In this paper, we use
the mean value coordinates based parameterization
method [12], which is a conformal parameteriza-
tion and is often suggested because the one-to-one
mapping is guaranteed when the domain boundary
is convex. Fig. 3(e) shows an example of param-
eterization of the input triangular mesh given in
Fig. 3(a).
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Figure 3. Degree 3 D1RC-spline surfaces. (a) Input triangular mesh; (b) The D1RC-spline surface; (c) Specify sharp edges (in yellow) on
the control mesh; (d) The resulting D1RC-spline surface with sharp features; (e) The parameterization of the input mesh in (a); (f )-(i) The
close-up views of (a)-(d) in the areas of the mouth to compare the modeling of sharp features.

• Construct D1RC configurations and D1RC-splines
Once we obtain the 2D triangulation T = {V, E, F},
we construct the set of all possible degree k D1RC
configurations, which also define the set of degree k
D1RC-splines.

• Construct the rational spline surface
We relate the degree k D1RC-splines to the input
3D triangular mesh, which then defines a rational
spline surface. The input triangular mesh serves as
a control grid for the surface.

• Model sharp features
Local D1RC configurations can bemodified in order
to model sharp features in the surface.

The details of the last two steps are further elaborated
in the following subsections.

4.1. Construction of rational spline surfaces

Given an input 3D triangular mesh T = {V , E, F} and
its corresponding 2D triangulation T = {V, E, F} on
the parameter domain, we denote by Xk

T all the degree k

D1RC configurations. For each element X = (XC,XI) ∈
Xk
T , its D1RC-spline is b

k
X . Denote by PX the average of all

the 3Dvertices inXI of theD1RCconfigurationX = (XC,
XI), i.e., PX = 1

k
∑

vi∈XI
vi. Let � = conv(V ∩ int(T)).

Then the D1RC-spline surface is defined as

P(t) =
∑

X∈Xk
T
PXbkX(t)

∑
X∈Xk

T
bkX(t)

, t ∈ � (4.1)

Here the D1RC-splines are normalized to have the prop-
erty of partition of unity, which ensures the convex hull
property of the surface. We can also rewrite Eqn. (4.1) as

P(t) =
∑

vi∈V
viBki (t), t ∈ � (4.2)

where Bki (t) =
∑

X=(XC ,XI ),vi∈XI b
k
X(t)

k
∑

X∈XkT
bkX(t)

is a piecewise rational

function, serving as a blending function for vertex vi, and
it has the same continuity as bkX(t). Fig. 4 shows a triangu-
lar mesh that is placed on a plane. One vertex is pulled up
from the plane and its corresponding blending functions
of degrees 1, 2 and 3 are displayed from left to right.

Figure 4. Illustration of the blending function of degrees 1, 2 and 3 for one vertex that is pulled up from the plane.
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Figure 5. Construction of degree 3 D1RC configurations for a sharp edge. The specified sharp edge is highlighted in yellow. The interior
vertex set and the D1RCs are colored in red and blue, respectively.

It can been seen from Eqn. (4.2) that the D1RC-spline
surface is defined as the sum of control points multiplied
by blending functions, which is similar to NURBS. Obvi-
ously, theD1RC-spline surface has the properties of affine
invariance, local control, etc. Fig. 3(b) shows such a spline
surface.

4.2. Modeling of sharp features

The surface defined by Eqn. (4.2) is Ck−1 continuous
in general. In order to introduce sharp features, we
can use collinear knots which are an analog of multi-
ple knots in univariate B-splines. In fact, if there are s
collinear knots, the constructed spline is Ck−s+1 con-
tinuous along the line. Upon this, we propose a spe-
cial construction of D1RC configurations to achieve C0

continuity along a specified edge. Assume that an edge
with vertices v1 and v2 are labeled as a sharp edge and
their corresponding knots in R2 are v1 and v2. We con-
struct two degree kD1RC configurations (Xj

C,X
j
I) for j =

1, 2, with X1
I = {v1 + s

k (v2 − v1) : s = 0, · · · , k − 1} and
X2
I = {v2 + s

k (v1 − v2) : s = 0, · · · , k − 1}. Hence there

are k+1 knots lying on the edge v1v2, which result in C0

continuity. Refer to Fig. 5 for an example where a pair
of degree 3 D1RC configurations is constructed. Fig. 3(c)
shows that a few edges in the areas of the eyes and the
mouth are labeled as sharp edges. With the special D1RC
configurations, we can achieve the sharp features in the
surface as shown in Fig. 3(d). The close-up views are
given in Fig. 3(f-i).

5. Experiments

This section presents some examples to demonstrate
the capability of the proposed D1RC-spline surfaces.
The models used in the experiments are initially dense
meshes. We simplify them into coarse meshes which are
then used as the input controlmeshes. The closedmeshes
are further converted to open meshes by removing some
faces such that they are homeomorphic to a planar disk.
To set up knots, we map the input control meshes onto a
planar domain. For a given input control mesh, different
choices of the parameter domain and parameterization
may lead to different results. For the sake of simplicity,

Figure 6. D1RC-spline surfaces defined over the same input triangular mesh. From left to right: input triangular mesh, degree 1 surface,
degree 2 surface, and degree 3 surface.
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Figure 7. The influence region of a control point in a degree 3 D1RC-spline surface. (a) The D1RC-spline surface and the control mesh,
where the selected control point and his influence region are visualized in red and white, respectively; (b) The D1RC-spline surface; (c)
The selected control point is moved and the shape of the surface is locally adjusted; (d) the adjusted surface.

Figure 8. Left: inputmeshwith 631 vertices and the resultingD1RC-spline surface; Right: inputmeshwith 1290vertices and the resulting
D1RC-spline surface.

in our experiments we just choose the unit square as
the parameter domain and the parameterization is per-
formed by using CGAL package. After these steps, the
bivariate spline surfaces are constructed.

Fig. 6 shows a triangular mesh with arbitrary connec-
tivity, based on which three D1RC-spline surfaces are
defined, corresponding to degrees 1, 2, and 3, respec-
tively. It can be seen that the smoothness of the surfaces is
improvedwhen the degree of the surfaces increases. Fig. 7
shows an example where moving one vertex of the input
triangular mesh locally adjusts the shape of the surface.
This is because the blending function corresponding to
the vertex has local support.

Fig. 8 gives two degree 3D1RC-spline surfaces for rep-
resenting a screwdriver and a mask of Nicolo da Uzzano.
Both models have uneven distribution of shape varia-
tions, whichmakes fitting using tensor-product B-splines
inefficient. Relatively, the proposed bivariate spline sur-
face modeling does not suffer from the tensor-product

constraint and is thus more flexible. Fig. 9 demonstrates
how to introduce sharp features to enhance the quality
of the surface. With the special D1RC configurations, the
sharp features can be better modeled.

6. Conclusions

We have described a novel approach to generalizing
univarite B-splines to bivariate splines defined on a
2D triangulation and then a scheme to define rational
spline surfaces from 3D triangular meshes. The pro-
posed scheme defines spline surfaces in a way similar
to that of NURBS, but has less restriction on the con-
nectivity of the input mesh, just as subdivision surfaces.
Compared to existing non-tensor product spline schemes
based on simplex splines, our approach has advantages.
In particular, compared to DMS-splines, our method is
free from specifying auxiliary knots. Compared to DCB-
splines which are constructed based on the Delaunay



COMPUTER-AIDED DESIGN & APPLICATIONS 505

Figure 9. (a) Input triangular mesh with 820 vertices; (b) Degree 3 D1RC-spline surface; (c) Some edges are labeled as a sharp edges (in
yellow); (d) The resulting surface with C0 continuity along the feature lines corresponding to the labeled edges.

configurations and have difficulty to construct blending
functions for the vertices of an input mesh, our method
is more intuitive and does not require special triangula-
tion. Our work provides a new way to construct bivariate
splines on general triangular meshes and inspires further
exploration.

Our current work has several limitations. First, this
paper focuses on the construction of surfaces of degrees
1, 2 and 3.While it is possible to extend the idea to define
surfaces of any degree, the extension with an intuitive
construction is nontrivial. Second, though the proposed
scheme produces Ck−1 continuous surfaces, the fairness
of the surfaces depends on the distribution of the ver-
tices of the input mesh. How to place the control vertices
properly to produce visually pleasing shapes is an inter-
esting problem. Third, some fundamental issues, such as
the influence of parameterization on the shape of the sur-
face, degree elevation, refinement, and boundary control,
are worth future investigation.
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