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ABSTRACT

In this study, we propose a method for generating triangular meshes of objects based on the shape-
from-silhouette (SFS) technique. The proposed algorithm uses the direct intersection of multiple
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sets of infinite polygons from the silhouettes of two-dimensional (2D) images to acquire the surface method;
. . " . : - . Shape-from-silhouette;
points of an object. The surface points are then triangulated according to the topological relation- Visual hull

ship of the obtained points and the polygons corresponding to each of the points. In addition, a
comprehensive study between the proposed method and the marching-cubes method was con-
ducted. The main advantages of the proposed method are that all 3D points are precisely located on
the silhouettes of 2D images, and that the number of vertices on the triangular model is very efficient
compared to that for the results from the marching-cubes method. In contrast, the marching-cubes
method faces noise and resolution problems, where the former is because the vertices are inter-
polated, and the latter is because the maximum level is restricted. Several realistic examples are

presented to demonstrate the feasibility of the proposed method.

1. Introduction

Most product presentations in e-commerce use two-
dimensional (2D) images of an object, mainly because
these images are easy to process. However, 2D images
provide only limited views of an object. Three- dimen-
sional (3D) visualization is another technique for product
presentation, in which multiple 2D images showing dif-
ferent views are integrated. The user can drag a point on
the screen to orient a 2D image at a given angle. However,
in such a representation, the information stored is highly
redundant and the user may not be able to view the object
from all desired angles. In addition, the actual 3D shape
and dimensions of the object cannot be obtained using
this representation. Three-dimensional modeling with
color texture is another method for product presentation
in e-commerce. Various techniques can be employed to
create a 3D model, composed of triangular meshes, of an
object.

The shape-from-silhouette (SFS) [2, 3, 8] method esti-
mates the shape of an object from images of its silhou-
ette. A typical SFS process includes the acquisition and
processing of digital 2D images. The acquisition of 2D
images depends on the devices used to capture images of
the object from different angles. The process necessitates

camera calibration because the object must be rotated to
obtain images from different angles. In addition, these
images must be captured sequentially. The associated
software processing typically involves extracting silhou-
ettes from 2D images, computing 3D points of the object,
generating a triangular model from said 3D points, and
texture mapping. The SFS method provides good esti-
mates of object shape because it uses the boundary profile
of the object from multiple 2D views. It relies on different
algorithms for fast and accurate evaluation of 3D points
from 2D silhouette points. However, surface cavities can-
not be represented using the SFS method because silhou-
ettes do not provide the required data [14]. Nevertheless,
the SFS method is an effective method for estimating the
3D shape of an object and is considered to be useful in
e-commerce applications.

Sablatnig et al. [11] proposed a volumetric method-
based approach to reduce the time required to build a
model and to reduce the number of views while ensuring
a certain level of model accuracy by using an octree of a
volume. They presented an algorithm for next-view plan-
ning with a minimal number of different views. Yemez
et al. [15] presented a complete procedure that covered
all aspects of the triangular model, from camera cali-
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bration to generation. They proposed a scheme combin-
ing octree construction and the marching-cubes (MC)
algorithm for generating a triangular model. Further-
more, they developed an interpolation algorithm for
accurately evaluating points on the marching cubes.
Miline [6] developed a modified marching-cubes method
that can quickly compute an object’s volume from its
visual hull by using multiple views of the object. In this
method, the first step is the voxelization of the volume
containing the target object. Then, the marching-cubes
algorithm is used to approximate the surface passing
through the exterior voxels. Finally, the positional accu-
racy of the surface is improved using a binary search.
Miline claimed that by applying the marching-cubes
algorithm to a low-resolution voxel-based model (as
opposed to a high-resolution model), better results could
be achieved in a shorter time. The binary search can fur-
ther improve the marching-cubes model with minimal
computational expense.

Furthermore, SFS-based 3D reconstruction can be
used to generate a model by employing exact polyhedral
methods. Matusik et al. [5] computed an exact polyhedral
representation of the visual hull directly from silhouettes.
This method is well suited for rendering with graphic
hardware, and it can be executed quickly because com-
putations are performed during the creation of the visual
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hull. Niem [8, 9] proposed a method for fast traversal
of the layers of projected cones and retrieved the view-
ing edges lying on the surface of the visual hull, which
amounts to a real-time full reconstruction model.

In this study, we developed an SFS method for generat-
ing triangular models of objects. The proposed algorithm
uses the direct intersection of multiple sets of infinite
polygons from the silhouettes of 2D images to acquire the
surface points of an object. The surface points are then
triangulated according to the topological relationship of
the obtained points and the polygons corresponding to
each of the points. The proposed 3D modeling scheme
is targeted at e-commerce applications, where the feasi-
bility of real-time operation on a website is the primary
concern. Therefore, we specified the following three qual-
ity indices to evaluate its performance: computational
efficiency, number of vertices on the model, and model
accuracy. The main contribution of the proposed method
is that it can be used to directly compute the intersection
points of infinite polygons and can, hence, yield the most
accurate triangular model based on the silhouette points
of the object. To verify the performance of the proposed
method, we compared it with another common method
based on marching cubes [6, 15]. We will also present sev-
eral realistic examples to demonstrate the feasibility of the
proposed method.

Polyhedron

(b)

| Triangular

polygons meshes

(e)

Figure 1. An example demonstrating the integrated procedure of the proposed camera calibration, points generation, and mesh gen-
eration algorithm. (a) Input object images and calibration mat images, (b) a polyhedron representing the outline shape of each image,
(c) 3D object surface points, (d) surface polygons, and (e) triangular mesh model.
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In order to generate 3D models from multiple images,
the images should be captured in a controlled environ-
ment. 3D models are generated by capturing the bound-
ing shape of the target objects from different angles
obtained by varying the camera rotation and orien-
tation. Three-dimensional models can be constructed
using many methods such as SFS and marching cubes.
These methods are all based on visual hull computation,
which involves creating a 3D model in accordance with
the boundary profiles of a series of 2D images of an object.
This study focused on the generation of 3D points and
triangular meshes from a series of silhouette points using
the octree reconstruction method.

Figure 1 shows an overall flowchart of the proposed
algorithm for generating 3D triangular meshes from 2D
silhouette points. The first step in the proposed algorithm
involves inputting silhouette points of all 2D images and
the camera calibration data. Then, the first volume that
encloses the target object is computed. Subsequently, 3D
polyhedra representing the outline shape of the object in
all images are generated based on the silhouette points,
camera point, and perspective projection property of the
camera. A 3D point can be obtained from the intersec-
tion of three polygons. An octree construction algorithm
was developed for subdividing the first volume repeat-
edly until all small volumes have only three polygons
intersecting with each other. The 3D points are then
re-computed under additional conditions to eliminate
redundant points. The relationships of all 3D points and
those of the polygons with respect to each of the 3D
points are recorded. This includes indices of polyhe-
dral surfaces for each 3D point and point indices for
each polygon. This information is used to connect 3D
points from a specific polygon to form a closed-loop
polygon and to subsequently tessellate the polygons to
form a polygon model. Finally, the polygon model is con-
verted into triangular meshes and output as an STL file.
The techniques used to achieve these tasks are described
below.

2. 3D point calculation

For each set of silhouette points on an image, a poly-
hedron must be generated. A polyhedron is a cone of
the projected area from the camera point through all sil-
houette points. As shown in Fig. 2(a), the connection
between the camera point and a silhouette point can form
an edge, and the area between two neighboring edges can
form an infinite polygon. If the edge length is restricted,
a finite polygon is formed. Therefore, the polyhedron
actually contains many polygons, and each polygon must
pass through three specific points, namely, the camera
point and two neighboring silhouette points, as shown

in Fig. 2(a). A point on a 2D image actually indicates
two neighboring polygons because each silhouette point
can generate two polygons (Fig. 2(b)). Similarly, a line
on a 2D image indicates one polygon because a line con-
nects two neighboring silhouette points (Fig. 2(b)). The
data to be recorded are (1) data related to each silhouette
point, including two neighboring polygon indices and a
view index, and (2) data related to each silhouette line,
including a polygon index and a view index.
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Figure 2. Terms used in this study: (a) a polygon is generated
from a camera point and two neighboring silhouette points, (b)
a point and line on the 2D image represent an edge and polygon,
respectively, on the 3D domain.

The flowchart for calculating 3D points from multiple
sets of silhouette points is shown in Fig. 3; it is com-
posed of the following four steps: (1) the first volume
that covers the entire object is defined, (2) octree con-
struction that generates an eight-child volume for each
parent volume is established, (3) the status of each test
volume is determined, and (4) 3D points are computed
from polygon intersections. A cube example is employed
to explain the intermediate results of the procedures in
Fig. 3. Four views of the cube are captured, as shown in
Fig. 4(a). The corresponding four sets of silhouette points
extracted from the above four images, respectively, are
shown in Fig. 4(b).

2.1. Defining the first volume

The first volume that covers the entire object is com-
puted as follows. A two-dimensional bounding box cor-
responding to the silhouette points on each image is
computed. Then, a polyhedron is obtained by connect-
ing the camera point and four boundary points of the
bounding box. All polyhedra from different images are
intersected to find a set of 3D intersection points. The
bounding box of all intersection points can cover the
object and is, hence, considered to be the first volume.
Fig. 5(a) shows the polyhedra from four different views
of images for the cube example. The bounding box of all
intersection points denotes the first volume, as shown in
Fig. 5(b).
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Figure 3. Flowchart for calculating 3D points from multiple sets of silhouette points.

2.2. Volume subdivision and state checking

An octree construction is established for determining
the volumes that have only three polygons intersecting
with each other. Since many polygons are generated from
multiple sets of silhouette points, octree construction is
effective for subdividing the volume repeatedly and pro-
viding an effective parent-child relationship for all vol-
umes created. As shown in Fig. 3, each parent volume
is divided into eight child volumes. Each child volume is
checked to determine whether it is formed by the inter-
section of more than three polygons. If it is, this volume

is again subdivided to eight child volumes. This process
is repeated until the volume is comprised of only three
polygons or the length d of the volume is less than the
allowable tolerance d.. Fig. 6 depicts that the first vol-
ume of the cube example is subdivided into eight child
volumes.

Owing to the use of octree construction, each vol-
ume is checked against every image, point, and line (see
Fig. 2 for the definition of a point and a line) on each 2D
image. Figure 7 shows the method for projecting a vol-
ume and checking its status. The volume is projected onto
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(a)

Bl

Figure 4. A cube example to illustrate the immediate results of the procedures in Fig. 3, (a) four images captured from different views,
(b) four sets of silhouette points extracted from the above four images, respectively.

(a)

(b)

Figure 5. Defining the first volume for the cube example, (a) a polyhedra generated from four different views of images, (b) the first

volume determined from the bounding box of all intersection points.

each image plane. Subsequently, the number of points
that intersect or lie inside the projected volume is deter-
mined. The conditions for setting the status of the volume
are as follows (Fig. 3). After checking against all images, if
the total number of polygons in a volume is greater than
three, the status of that volume is “Subdivide volume”;
if the number of polygons is equal to three, the status is
“Calculate point™; if the number of polygons is less than
three, the status is “Discard volume.”

2.3. Conditions for 3D point calculation

There are two conditions for computing 3D points from
polygons. The first condition is Case A, in which a 3D

point is intersected by three polygons originating from
0 points and 3 lines on 2D images. In this case, the
three polygons are from three different images (Fig. 8(a)).
The second condition is Case B, in which a 3D point
is intersected by three polygons originating from 1 line
of the first image and 1 point of the second image. In
this case, two of the connected polygons are from the
first image, while the third polygon is from the second
image (Fig. 8(b)). For a tiny volume, only Case A is
valid because the intersecting polygons come from three
different images.

To reduce the 3D point computation time, the images
checked for points and lines on child volumes are deleted
if no point or line lies inside an image and no line
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Figure 6. Eight child volumes obtained for the cube example using the octree construction.
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Figure 7. Volume subdivision in accordance with the octree
structure and the projection of each volume onto each image
plane to check the status of the volume.

intersects with a projected volume of the parent vol-
ume. For example, in Fig. 7, among the 16 experimental
images, only five have points or lines inside the projected
volume. As such, this volume is subdivided into eight
child volumes and all child volumes are projected onto
these five images for checking, while the other 11 images
are skipped.

Camera pos. 3

Camera pos. |

Camera pos. 2
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Figure 8. Calculated 3D point. (a) Case A, (b) Case B.
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3. Generation of triangular meshes

Once a set of 3D points generated from the intersection
of the polyhedra is obtained, we can record the polygons
that constitute each 3D point. In this step, each polygon
is assigned a unique index, and the polygon indices cor-
responding to each point are recorded. The data stored of
these records is shown in Fig. 9(a). Each polygon is essen-
tially a plane and its boundary is formed by a series of 3D
points. The data shown in Fig. 9(a) is employed to create
a series of point indices corresponding to each polygon
index, as shown in Fig. 9(b). The number of points con-
stituting each polygon can be varied, and the sequence of
points in each row is irregular.

Points located on the same polygon, as in Fig. 9(b),
are arranged sequentially so that they can be connected
to form a polygonal mesh. Let the data in Fig. 9(a) be
the polygon-index group and the data in Fig. 9(b) be
the point-index group. The first polygon S; is chosen as
the working polygon W, and all points correspond-
ing to it are input from the point-index group. The first
point Pt is selected as the working point Wy, and all
polygons corresponding to it are input from the polygon-
index group. Then, we choose one polygon Ny, with the
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calculated
‘,' point

(b)
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Pt; : Point index
S, : Surface polygon signature
Pt;: S, Sy, Sy

Ptz . Sz, Sg, Sg

Pt : S110s S50 S5

S; : Surface polygon signature
Pt; : Point index
S, : Pty, Pt,, Pty , Ptyg, Pty ...
S, : Pty, Pty, Ptyg ...

S, 1 Ptyy, Ptys, Ptyg , Ptoss , Plgy , Ptyg ...

(@)

(b)

Figure 9. Data stored for recording surface polygon and point indices: (a) surface polygon index, (b) points index.

exception of Wy, as the next polygon to test. Consider
Fig. 10 as an example. Let S; be Wy, and the corre-
sponding point indices be Pt;, Pt, Pt3, and Pt4. Given
that Pt; is the first point, it is set as Wpoin. The corre-
sponding polygons of Pt; are Si, S, and S3. Here S5 is
chosen as Njj, because it is next to S;.

Using W1y and Npopy, the next point for generating
the polygonal mesh can be determined. To this end, we
will check the polygon-index group and find points that
have W),y and Ny, simultaneously. The current Woint
is placed in a polygon set Poly..,, and the point neigh-
boring both W,y and Ny, is set as the new Wit
Additionally, the third neighboring polygon of the new
Woint is set as Npop,. In Fig. 10, only Pt; neighbors both
S1(Wpoiy) and S2(Npopy); hence, it satisfies the condition
and is included in Poly,,.,, and Pt; is set as the new
Woint. Furthermore, Ss is set as N, because it is the
third polygon of Pt (the other two polygons S; and S,
have been used already). With the new Winr and Ny,
the process is continued to find the next point in the
sequence. Eventually, if the number of points is zero, the
point-searching procedure ends. The point-index group
is checked to find points that have not been processed. If
all points have been processed, the procedure is shifted
to the next surface polygon to search for the sequence
of points. This process is stopped after all surface poly-
gons have been processed. Finally, a series of Poly,es
with connection order and representing the mesh model

Surface polygon

Figure 10. The connection between surface polygons and
points.

surface is obtained. Fig. 11 shows the result of the afore-
mentioned method implemented on the cube example,
where the points on each surface polygon have been
arranged in a counterclockwise direction.

The Poly,,.s, series generated is collected and set as
Polyesh—group- The last step is to convert the obtained
surface polygons into triangular meshes. Since all points
on a polygon set Poly,,., are co-planar, it is easy to gen-
erate a set of triangular meshes from Poly,,,.s;, When all
Polyesh on Polyyesh—group are triangulated, a triangular
model of the object can be obtained. Finally, the result
is saved as an STL file. Figure 12 shows the triangular
meshes obtained for the cube example.

Figure 11. Surfce polygons obtained for the cube example.

Figure 12. Triangular meshes obtained for the cube example.
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4. Examples and discussion

We employed several examples to evaluate the proposed
method. The inputs were silhouette points extracted
from multiple images and distributed uniformly around
(360°) the object, and the output was the surface trian-
gular model of an object. In addition, we compared the
results obtained using the proposed method with those
obtained using the marching-cubes method. Further-
more, we compared the required CPU time for generating
3D points from silhouette points using both methods.
The simulations were performed on a personal computer
with a 1.90 GHz CPU and 4 GB of RAM.

Figure 13 shows the original images and the corre-
sponding reconstructed triangular models for six exam-
ples, where the left and right images in each figure panel
denote the original image and the triangular model,
respectively. Since the proposed method is based on
visual hull computation, we focused on the accuracy of
outline appearance. It is normal that any concavity on a
partial surface may not truly be reproduced using this
method alone. Nevertheless, this model can be com-
bined with texture mapping to produce a visually pleasing
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model for use in e-commerce applications. Remarkably,
the proposed method truly represents spikes on an object,
as shown in cases (d) - (f) in Fig. 13. Table 1 lists the
image parameters, number of vertices and faces on tri-
angular models, and the CPU time required for two dif-
ferent stages for the six examples in Fig. 13. According to
Table 1, the number of faces in all models was less than
15,000, which will not induce any sluggishness during
data download and website operation. The time required
for triangulation was almost negligible compared to the
time required for 3D point generation. The required
CPU time for all cases was between 42-207 s, indicat-
ing that the proposed method is acceptable in terms of
computational efficiency.

For performance verification, the results obtained
using the proposed method were compared to those
obtained using the marching-cubes method [11, 15]. In
the marching-cubes method, a level R is assigned to
determine the number of layers into which the first vol-
ume is subdivided. An octree structure is established
to subdivide the volume into pieces of the same size.
Each subdivided volume is projected onto the 2D images

Figure 13. Original images and triangular meshes reconstructed for six examples: (a) cup, (b) owl, (c) cat doll, (d) teapot, () robot toy,

(f) horse figurine.

Table 1. Parameters of images, obtained triangular meshes, and required CPU times for six examples.

Images Triangular meshes CPU time (s)
Silhouette 3D points
Case No. views points/view Vertices Faces generation Triangulation
Cup 16 100 3802 7600 132 0.618
Oowl 16 100 3640 7276 77 0.509
Cat doll 16 100 3416 6828 87 0.464
Teapot 16 100 4672 9332 120 0.935
Robot toy 16 100 4482 8948 42 0.572
Horse 16 100 6796 13592 207 1.279
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sequentially to determine whether it intersects the sil-
houette of the images. The volumes that intersect the
silhouettes are retained, indicating that they are located
on the object surface. The marching-cubes method,
which incorporates an interpolation algorithm, is then
employed to generate a triangular mesh for each vol-
ume lying on the object surface. The connection of all
meshes represents the triangular model of the object. R
affects the resolution of the volumes that can be sub-
divided. We conducted a series of studies to investi-
gate the effect of R and compared the results obtained
using the proposed method and the marching-cubes
method.

Figure 14 shows the case “horse,” which was employed
to evaluate the performance of both methods. The first
two plots (14(a) and (b)) are the triangular models gener-
ated for R = 5and 6, respectively. These two models were
unsatisfactory because they appear to deviate from the
original object shape. The third and fourth plots (14(c)
and (d)) are models obtained using the marching-cubes
method with R = 7 and that obtained using the pro-
posed method, respectively. The model obtained using
the marching-cubes method with R = 7 is quite simi-
lar to that obtained using the proposed method. How-
ever, considerable noise can be observed on the model
obtained using the marching-cubes method because the
vertices were interpolated. Every vertex in the model
obtained using the proposed method represents the inter-
section of three polygon faces. Table 2 lists the vertices

(a) (b)

and faces of the triangular models, as well as the required
CPU times for the aforementioned four cases. A draw-
back of the marching-cubes method is that the number
of vertices and faces, and required CPU time are very
high for R = 7, which makes it unacceptable for real-time
operation on a website.

An error analysis algorithm was employed to evalu-
ate the errors between two triangular models. The model
obtained using the proposed method served as a refer-
ence and the distance between each of the vertices on a
model obtained using the marching-cubes method and
the reference model was evaluated. The maximum (Max)
and root-mean-square (RMS) distances for all vertices
were evaluated, representing the Max and RMS errors,
respectively, between two models. The errors for R =
5, 6, and 7 are also listed in Tab. 2. The results indicate
that the marching-cubes method with R = 7 yields the
minimum RMS error (0.631 mm here), indicating that
the model with R = 7 is the most similar to that of the
proposed method. However, the Max error is still up to
9.471 mm, which indicates that some of the points in the
model with R = 7 deviated from the model obtained
using the proposed method. Fig. 15 depicts the distribu-
tion of the errors for R = 5, 6, and 7, respectively. These
plots clearly indicate that the model with R = 7 is the best
because the error vectors are much smaller than those of
the models with R = 5 and 6. Furthermore, considerable
errors appear near the horse’s mane because its shape is
more irregular.

Figure 14. Generated triangular meshes: (a) MC with R = 5, (2) MC with R = 6, (c) MCwith R = 7, (d) the proposed method.

Table 2. Parameters of images, obtained triangular meshes, and required CPU time for the proposed method and cases using marching-

cubes method.

Triangular meshes Error (mm)
No. points/
Case image No. views Vertices Faces Max RMS. CPU time(s)
Proposed method 200 16 6796 13592 Reference 207
R=5 200 16 3654 7296 14.152 1.930 14
R=6 200 16 15057 30048 9.335 1.070 60
R=7 200 16 62184 123958 9.471 0.631 257
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Figure 15. Error comparison between models obtained using the marching-cubes method and that obtained using the proposed

method, (@) R =52 R=6,(cR = 7.

(a)

(d)

Figure 16. Comparison between triangular meshes of the proposed method (left portions) and the MC method (right portions): (a) owl,

(b) cat doll, (c) teapot, (d) robot toy.

A detailed comparison between the model obtained
using the marching-cubes method with R = 7 and that
obtained using the proposed method is described below.
Figure 16 shows the models for four examples, where the
left and right models in each figure panel denote the pro-
posed method and the marching-cubes method, respec-
tively. The overall appearance of each pair of models is

quite similar, but the number of vertices and triangular
faces on each pair of models are different. Table 3 lists
the number of vertices and faces of the triangular models,
and the CPU time required for both methods. All exam-
ples show that the number of vertices and faces for the
marching-cubes method are quite large because it calcu-
lates the vertices of every cube lying on the object surface.
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Table 3. Parameters of the proposed method and marching cube intersections for five examples.

Proposed method

Marching cube method

Case Vertices Faces CPU time(s) Vertices Faces CPU time(s)
Cup 3802 7600 132 60174 120352 132
Oowl 3640 7276 77 56334 112516 122
Cat doll 3416 6828 87 65190 130364 94
Teapot 4672 9332 120 68489 136966 134
Robot toy 4482 8948 42 54133 108244 131

However, for the proposed method, a vertex is computed
only if three polygons from the polyhedrons intersect
each other.

Another disadvantage of the marching-cubes method
is that noise appears because the vertices are obtained
from interpolation. As shown in Fig. 17, for the proposed
method, all 3D points are located on the boundaries of
polygonal meshes, and all points on a polygonal mesh
are essentially co-planar. The triangulation of each polyg-
onal mesh can yield a set of triangles all lying on the
same plane. However, for the marching-cubes method,
many small cubes of equal size are inserted uniformly
on a polygonal mesh, which yields many triangular faces
on the polygonal mesh. As all vertices are interpolated,
some of the triangular faces may be across two differ-
ent polygonal meshes, which results in noise, as shown
on the middle plot in Fig. 17. For a model obtained
using the visual hull technique, a large number of vertices

Marching cubes

and faces are unnecessary because no information inside
each polygonal mesh is provided on the original images.
Therefore, a model obtained using the proposed method
is actually more accurate as a representation of the object
shape.

For sharp surfaces, such as spikes on an object, the
result obtained using the marching-cubes method tends
to yield considerable noise, or even inaccurate shapes.
Figure 18 shows that the spikes on the model obtained
using the marching-cubes method are not only rough,
but are also shorter than those obtained using the pro-
posed method. This is because the cubes used in the
marching-cubes method are not fine enough. Finer cubes
can be obtained by increasing the level R. However, when
R is increased, the required memory and computation
time increase tremendously. This resolution problem is
the primary limitation of the marching-cubes method. In
fact, we tried to increase the level R to 8, but the number

Proposed method

Marching cubes

Proposed method

Figure 18. Resolution problem of the marching-cubes method due to the limitation of the level R.



of vertices on the triangular model and the computation
time were increased to unreasonable values. In contrast,
the result obtained using the proposed method does not
have this problem, as shown on the right plot in Fig. 18.
For objects composed of fine and composite shapes,
the proposed method tends to yield better results than
the marching-cubes method. Figure 19 compares a
local composite shape on the teapot modeled using
the marching-cubes method and the proposed method.
The results indicate that some of the shapes were com-
puted erroneously in the marching-cubes method. The
meshes were also more irregular for the marching-cubes
method due to the combined effect of the aforementioned
noise and resolution problems. For all the above mod-
els obtained using the proposed method, the quality of
the models is still unsatisfactory. The primary problems
are that many narrow and sharp triangular faces exist on
the models, and many faces are not connected smoothly.
Therefore, a re-meshing and smoothing process should
be implemented to improve the quality of the final model.
The 3D model generation using SFES is only the first
step of the techniques developed for product presenta-
tion in e-commerce applications. As the mesh surface still
contains lots of sharp edges, it needs a re-meshing process
to improve the surface quality, which mainly includes the
improvement of mesh regularity and surface smoothness.
In addition, the 3D model should be textured using high

(a) (b)
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quality object images to describe the outline appearance
of an object in a more vivid manner. Two examples are
presented below to demonstrate how the original trian-
gular model is processed. Figure 20 shows several inter-
mediate results of the proposed re-meshing algorithm for
the case “cat doll”. The proposed algorithm is based on a
local re-meshing approach by Botsch et al. [1], in which
the re-meshing process is divided into four steps: edge
split, edge collapse, edge flip and vertex shift. In addition,
the Laplacian mesh optimization [7] is also employed to
improve the surface smoothness. Fig. 20(a) shows the
original mesh; Fig. 20(b) shows the result after edge split
is implemented; Fig. 20(c) shows the result after edge col-
lapse is added; and Fig. 20(d) shows the result after edge
flip is added. The final result in Fig. 20(d) clearly indi-
cates that the mesh regularity and smoothness have been
improved considerably. Alllong-and-narrow and tiny tri-
angles in the original model have been erased. In texture
mapping, an integrated algorithm based on the confor-
mal mesh parametrization and a technique for direct tex-
ture mapping is developed. The conformal mesh param-
eterization [10, 12, 13] is employed to convert 3D meshes
onto a 2D (UV) domain and keep the shape of the meshes
on the UV domain. The direct texture mapping algorithm
[4, 8] is primarily composed of three phases: grouping
of 3D triangles, extraction of object image pixels, and
placement of texture map pixels. Figure 21 shows the

(o) (d)

Figure 20. The proposed re-meshing algorithm for the case cat doll: (a) original mesh, (b) edge split, (c) edge split 4+ edge collapse, (d)

edge split 4+ edge collapse + edge flip.
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Figure 21. Texture mapping result in four different views for the
cat doll model in Fig. 20(d).

result of texture mapping for the model in Fig. 20(d), in
which four different views of the model with color texture
are displayed. The current result shows the complete-
ness of the entire process from multiple 2D images of the
object to a complete 3D model with color texture. Several
kinds of texture mapping algorithms are currently stud-
ied. A detailed discussion of the proposed re-meshing
method and texture mapping method will be provided
elsewhere.

5. Conclusions

In this study, we proposed a method for calculating
3D points and triangular meshes based on the shape-
from-silhouette (SFS) technique and visual hull inter-
section from multiple object images captured in a con-
trolled imaging environment. The proposed algorithm
employs an octree structure for efficient intersection and,
hence, for obtaining 3D points. In addition, we developed
an improved algorithm to reduce the overall computa-
tion time. A comprehensive study between the proposed
method and the marching-cubes method was conducted.
The proposed method performed very well and gen-
erated 3D points accurately and quickly compared to
the marching-cubes method. However, because the 3D
model was created using SFS, it cannot generate the shape
of any concavities on an object because SFS considers

only the bounding of a silhouette, which does not provide
details about any concave areas on the object. Moreover,
the surface quality of the triangular model is still not good
enough for the purpose of rendering. A re-meshing strat-
egy should be proposed to improve the mesh regularity
as well the surface smoothness, without the deformation
of the model as much as possible. In addition, a texture
mapping technique could be developed to add texture to
the model to make it visually pleasing, as is desired in
e-commerce applications.
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