COMPUTER-AIDED DESIGN & APPLICATIONS, 2017
VOL. 14, NO. 4, 408-421
http://dx.doi.org/10.1080/16864360.2016.1257184

{amputoi- F!:jcﬂe\jgn Taylor &Francis
pr—— — Taylor & Francis Group

Associative CAD references in the neutral parametric canonical form

Daniel R. Staves @, John L. Salmon

Brigham Young University, USA

ABSTRACT

Due to the multiplicity of computer-aided engineering applications used in industry, interoperabil-
ity between programs has become increasingly important. A 1999 study by the National Institute for
Standards and Technology (NIST) estimated that inadequate interoperability between the original

and Walter E. Red

KEYWORDS
Interoperability;
heterogeneous CAD; design
intent; collaboration

engineering manufacturers (OEM) and their suppliers cost the US automotive industry over $1 billion
per year, with the majority spent fixing data after translations. The Neutral Parametric Canonical Form
(NPCF) prototype standard developed by the BYU Site of the NSF Center for e-Design offers a solution
to this problem by enabling real-time collaboration between heterogeneous systems while preserv-
ing design intent. The NPCF is implemented within a SQL database and defines the schema both for
neutral features and for the parameters defining the inter-feature relationships and associations.

1. Introduction

Iterative engineering processes have long been integral to
engineering design. Before computer technology assisted
the design process, designers and engineers gathered
around the drafting table to coordinate their work on
products. Detailed drafting standards (ISO 128, DIN 6,
ASME Y14.5) were employed to ensure accurate inter-
pretation of drawings when transferred to other designers
and manufacturers. Even with these standards, however,
close personal contact between the designer and man-
ufacturer was usually necessary [11]. With advances in
CAD and communications via the Internet, computers
are now a recognized necessity in the design process.
While email has allowed designers and manufacturers
to be geographically separated, mutual and interactive
communication of design information is no less vital
now than in the past [24]. Part models and drawings
must be frequently exchanged, translated, and checked
between designers and manufacturers at each iteration of
the design. These designers and manufacturing person-
nel often use different applications that require transla-
tion or rework to make the models consistent between
systems.

While many methods of the design process have
remained the same during the transition from the draft-
ing tables of the past to the modern computer aided engi-
neering processes of today, the tools of engineering have
changed dramatically. A wide variety of computer-aided
tools are available that specialize in the many different

aspects of design, like finite element analysis (FEA), com-
putational fluid dynamics (CFD), and solid or surface
modeling (CAD). Companies, engineers, and designers
choose these tools based on their strengths, ease of use,
and familiarity.

Translation processes and standards have been devel-
oped for designers and engineers to work with the mul-
tiplicity of file types and mathematical definitions of
features in order to carry out their work. The transla-
tion process, however, often strips the original model
of its design intent, or intelligence embedded into the
model. In addition, the process can introduce tolerance
variations, which impedes proper manufacturing. Trans-
lating also slows the design process and hinders meaning-
ful collaboration between designers working in separate
systems.

1.1. The cost of poor interoperability

Due to a shift in production practices in the 1980s, US
automakers increased their market share and became
more competitive in the US automotive market [2]. A
large part of this increase in production is due to a
move toward concurrent engineering and design out-
sourcing. This shift resulted in the sharing of design
data between a greater number of people and organiza-
tions both within the company and between the company
and its suppliers. While overall productivity increased,
the move highlighted many difficulties related to the use

CONTACT Daniel R. Staves @ danstaves@byu.edu

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0003-3365-1160
http://orcid.org/0000-0002-8073-3655
http://orcid.org/0000-0002-9321-6913
mailto:danstaves@byu.edu
http://www.cadanda.com

of heterogeneous CAD packages. Estimates found that
imperfect interoperability, or model transfer between
CAD packages, during this time cost between $1.02 bil-
lion and $1.05 billion within the US automotive supply
chain alone [2]. The vast majority of this cost is due to
the time spent fixing data from poor CAD model trans-
lations between both the OEMs and their suppliers. Inter-
actions with Industry Advisory Board (IAB) members
of the National Science Foundation (NSF) Center for e-
Design have revealed a similar trend in the US aerospace
industry.

Difficulties in the translation process arise because
of differences in the way each CAD system represents
the part model. Because there is no standard, modern
CAD packages store feature and design data in propri-
etary formats, even though each system represents the
same type of data: three-dimensional geometric mod-
els. These systems often only support interoperability by
translating geometric Boundary REPresentation (BREP)
data through formats such as IGES and STEP. While these
translation methods have been extensively and success-
fully used in industry, the variances in the translation
process between applications can cause geometric errors
among transferred models [5]. In addition, by only trans-
lating BREP data, crucial design intent stored within
feature data is lost, which greatly hinders meaningful
collaboration. Any modifications or adjustments to the
model must either be made on the originating system and
re-translated or completely redesigned in the new system.
In addition to these limitations, this method inherently
follows a serial, single-user work-flow, only allowing one
user at a time to design or update the model. Before a
design can be shared, it must be exported in a neutral for-
mat and sent to the end-user. This significantly impedes
the advantages of concurrent engineering.

The interoperability challenge is illustrated by the sim-
plified product development process depicted in Figure 1.
Black arrows in the figure represent the flow of the design
and related data as it is passed between designers and
groups. Before the design data is passed to another group,

COMPUTER-AIDED DESIGN & APPLICATIONS 409

it is often converted to a neutral format, such as IGES
or STEP, as illustrated by the convert data stage. After
importing into the new system, the model must undergo
a fidelity check to ensure an accurate import. If the model
is to be used for CAE analysis, it may need to be updated
to fix geometric continuity problems associated with the
neutral format. The red arrows represent the feedback
loops through which the design must pass if any of these
tests are failed. As the number of designers using CAD
systems increases, the time spent resolving these conflicts
in the feedback loops increases, which can significantly
delay the product launch and increase costs.

Design intent captures the purpose of the modeling
order and geometry chosen by the designer. In modern
parametric-based CAD, this is often stored within CAD
features such as axis systems, planes, sketches, extrudes,
revolves, and sweeps. It is also stored in the associa-
tions relating the CAD features together. By selecting
features during the modeling process, an experienced
designer implicitly defines the important parameters of
the model, which is extremely important to manufactur-
ing and future updates to the design. Because these par-
allel design processes are often utilized to facilitate col-
laboration between geographically dispersed designers,
these implicit definitions set by the designer are especially
important to preserve. When a CAD model is translated
into neutral formats such as IGES and STEP, this design
intent is lost as all features are replaced by geometric
representations. Engineers, designers, and manufacturers
are unable to identify the important parameters set by the
original designer without post-processing.

1.2. Background

Due to the multiplicity of commercial CAD applications,
companies often interface with a wide variety of CAD
file formats through interactions with their supply chain.
To open and use these formats, CAD applications must
translate part models and assembly files between hetero-
geneous CAD systems. Translation inconsistencies arise

SISICL

Cheﬁk Convert
Data)—(Desn;n)o(it

Check
)—(Desu;n Data

Figure 1. Simplified Serial Product Development Process.

410 D.R.STAVES ET AL.

because different CAD systems generate different features
or may represent similar features differently. With no
standard definition representing CAD features, each sys-
tem may define a feature differently. Due to these different
definitions, translating between programs is nontrivial.

The International Graphics Exchange Standard (IGES)
format was first developed in 1980 to facilitate the trans-
lation between heterogeneous CAD systems [1]. IGES
was the first attempt at resolving the data exchange chal-
lenge between CAD systems. It works by translating the
CAD model of each system to its basic geometric data
and is the most widely used neutral format today. While
IGES has been very successful in allowing models devel-
oped in different systems to be exchanged, it falls short
in that only BREP data is translated. All associative links
between features are broken, and design intent is lost.

Created in 1984, the Standard for the Exchange of
Product Model Data (STEP) is a redesign of IGES, aiming
at a more advanced, database-oriented, and integrated
solution based on product lifestyle data [19]. It fixes
some shortcomings of IGES, including standardizing the
processors, and uses a formal language to define the
data structure to avoid ambiguities during interpretation,
which could result in as much as 50% failure rates [6].
Work has continued on the STEP standard, most recently
by the Solid Model Construction History (SMCH) group,
which is seeking to preserve design intent through the
translation process by recording the history of the model
as it is created. SMCH adds an implicit, or history-based,
representation of the model to the explicit BREP data.
This effectively creates solids that maintain their original
relationships with other solids after the translation pro-
cess, preserving design intent and allowing them to be
edited and manipulated accordingly [23]. A drawback of
SMCH is that the file size is large due to both the B-rep
and construction history data being stored, making it dif-
ficult for collaborative, multi-user applications in which
data is transmitted frequently between clients.

A number of successful solutions have investigated
preserving design intent through model translation by
utilizing the command history used to create the CAD
model. The Macro-Parametric approach proposed by
Choi et al. [4] utilizes each CAD system’s built-in macro
functionality, which automatically records each action
performed by the user. The macro file is translated
into a format readable by the new CAD system and
executed, mirroring the original actions performed in
the new format. This approach was continued by Mun,
et al. by determining a common set of modeling com-
mands from six different CAD systems [21]. Continued
research into the Macro Parametric Approach [7,14,22]
has further expanded the capabilities of the format and
improved the state of CAD interoperable methods. The

Neutral Modeling Command method addresses the need
for a collaborative heterogeneous CAD solution through
the use of each CAD system’s application programming
interface (API) [12-15]. Each client runs an add-on pro-
gram that translates system modeling operations (SMO)
into neutral modeling commands (NMC) in real time
and is synchronized between clients through a server.
The modeling commands are then translated to the
SMO of the designation CAD system and applied to
the model, effectively recreating the model’s operation
history. The development of other collaborative CAD
solutions [3,10,17-18,25] have also improved upon the
processes of transferring geometric models between mul-
tiple clients using heterogeneous CAD systems. These
approaches have made strides in the effort to preserve
design intent through the translation process. However,
the design intent is transferred by mirroring the design
history of the part between all clients. While this mir-
rored history enables feature edits on remote clients, it
is not stored in a way that preserves referential integrity
to ensure validity of stored data.

1.3. The neutral parametric canonical form (NPCF)
approach

The BYU Site of the NSF Center for e-Design has sought
to reduce the design cycle time by developing syn-
chronous, multi-user collaborative design tools. Its most
recent work to develop the NPCF seeks to solve the inter-
operability problem by formulating neutral standards for
representing CAD features while maintaining associativ-
ity between features. It utilizes a client-server architecture
for communication, and a SQL database for persistent
storage to enable multiple users to access the same CAD
model. This format enables simultaneous design among
heterogeneous CAD systems. Currently, this interoper-
able design workflow supports real-time collaboration
between Dassault Systemes CATIA, Siemens NX, and
PTC Creo CAD systems.

Like previous approaches to solving the CAD interop-
erability problem, the NPCF method seeks to preserve
design intent through the translation process. Design
intent is preserved during the translation process by
translating data required to re-create features to a neutral
format as opposed to translating the geometric results of
the features themselves. This type of data enables design-
ers to not only edit the geometry that is imported from
different systems, but understand how the features relate
to the rest of the model. This, for example, enables the
entire part to update after a parameter change. Rather
than using the modeling history to preserve this design
intent, as in the case of the Macro-Parametric or Neutral
Modeling Command approach, the features themselves

are neutralized while retaining their original parameter-
ization and associativity. The neutral features are stored
in the database using design rules to ensure referential
integrity of all associative links and data integrity of the
feature parameters. The neutral features are automati-
cally forwarded to all clients subscribed to the part or
assembly model to be incorporated into their local mod-
els, enabling simultaneous collaboration between geo-
graphically separated users running heterogeneous CAD
systems.

This paper describes the process utilized to deter-
mine a normalized, neutral format for CAD features and
incorporate it into the NPCF SQL database.

2. NPCF methods

The goal of the Neutral Parametric Canonical Form
(NPCF) is to enable real-time, simultaneous translation
of both model and design intent between heterogeneous
CAD clients. This is made possible by a client-server
architecture in which CAD operations performed by
clients running a CAD system are neutralized and sent
to the server for distribution among other clients. In
addition to this architecture, other methods facilitate the
transfer of design intent and feature associativity during
the modeling process. They enable modern, commer-
cially available CAD packages to work simultaneously in
a heterogeneous environment.

The current state of the NPCF provides support for
a limited subset of CAD features as the focus is cen-
tered on transferring design intent while maintaining the
data integrity of the model. Continued development is
supporting new features in the NPCF database.

2.1. Maintain referential data integrity

Traditional neutral formats like IGES and STEP store part
information in a file, either as text-based or binary files.
While convenient for sharing files via secure file trans-
fer or email, they are unable to maintain the integrity of
the data. Often, corrupt data is written by a CAD sys-
tem rendering the neutral file unreadable. To prevent this
type of corruption within the NPCFE a SQL database is
used in conjunction with unique identifiers to link feature
data together. Neutral features are represented by tables
arranged in a hierarchal format with common parame-
ters shared by many features being placed in tables at the
top of the hierarchy, and parameters specific to features
are placed in dedicated feature tables. This arrangement
enables feature references and inter-feature references to
be stored. In this instance, referential integrity is main-
tained because the references are only allowed between
certain features. For example, an extrude feature can

COMPUTER-AIDED DESIGN & APPLICATIONS 411

reference a sketch as the profile to extrude where is it
not able to reference a coordinate system. When defining
the neutral extrude feature table on the NPCF database,
associations are created linking the extrude table with the
sketch table, enabling the correct feature associations.

In addition to the hierarchical arrangement of distinct
features represented on the database, sub-hierarchies rep-
resenting feature variations are also incorporated into the
NPCE These feature variations include the multiple defi-
nitions CAD systems use to define a feature. For example,
a plane feature can be defined using a 3D point in space
and a normal vector, or by an offset from another surface.
Both of these parameter sets make up a different sub-
feature table located on the database hierarchy directly
below the plane feature table. General parameters used to
describe all planes are included in the generic plane table
while specific parameters used to define a plane variation
are stored in the sub-feature tables.

An important step in preserving referential integrity
is to utilize a sub-hierarchy within the NPCF database
to handle feature variations rather than including all fea-
ture parameters in a single table. Each parameter required
to define a particular feature variation is marked in the
database as non-nullable, signifying that all fields must
be filled with the proper data type if it is to be saved in
the database. By imposing this requirement, only data
structures that are completely filled out with all required
information are stored in the database and transmitted to
other clients.

Table 1 describes the process used to incorporate new
features into the neutral database. When a new feature is
to be added, feature creation methods are identified and
compared between CAD systems to identify commonal-
ities. For example, both a blind extrude in Creo and an
extrude-by-values in NX expect a sketch feature on which
the operation is to be performed and numerical limits to
identify the start and end points of the extrude. Though
these feature variations are given different names and
treat the limits differently, both can be neutralized into
the same format without loss of data or semantic mean-
ing. Contrasting this feature variation with an extrude-
to-plane operation, both methods utilize the same sketch
parameter, but accept different objects to define limits.

Table 1. Feature parameter distribution pro-
cess utilized when adding new features to
database.

NPCF Database Feature Addition Process

Identify feature variations on all systems

Identify commonalities between systems

Determine neutral format for all feature variations

Split parameters between common tables

Add associations representing inheritance relationships
Save database changes

412 D.R.STAVES ET AL.

When splitting parameters between common tables, as
described in Table 1, a generic extrude table will be cre-
ated that stores the referenced sketch parameter, and two
feature variation tables will be created to hold the param-
eters required by the blind extrude and planar extrude,
respectively.

2.2. Defining a neutral format

The principle of neutralization versus translation is an
important distinction between the way the NPCF enables
interoperability between heterogeneous CAD systems
and methods employed by previous CAD interoperabil-
ity formats. The neutralization method converts CAD
data from an originating system to a neutral format after
a CAD process is performed. The neutral format com-
pletely defines the feature by its parameters and is stored
within a database. It is then converted to the CAD for-
mat of the destination system and incorporated into the
local part model for interaction by the other user. The
collection of neutral features associated with a single part
remain on the database as the master copy of the model
from which all systems load data. This single neutral copy
ensures model consistency between clients and sessions.

A major advantage of this method is its support for
multi-user processes. All data is stored in an open for-
mat easily accessible and readable by any interested party
with the proper access credentials. When support for
new CAD systems is to be integrated into the neutral-
ization method, software is required only to convert the
CAD specific data to the neutral format (and from the
neutral format to the CAD specific format) without any
need for consideration of the other supported CAD sys-
tems. Access to only one CAD system’s API is required
to perform these conversions, eliminating the need for a
company to hold costly CAD licenses for every format
their suppliers may use.

To understand the data requirements for representing
a feature in a neutral format, creation and edit actions
were recorded using each CAD system’s built-in script-
ing or journaling functionality. This is the process used
by Li et al. to determine the neutral modeling com-
mands format [16]. Most major CAD systems support
this functionality, but a good understanding of the CAD
system’s API can allow a developer to program without
the recorded script.

The inputs to the scripted feature are compared
between systems to identify commonalities and shed light
on the data required to define a neutral format for the
feature. The format was chosen by identifying the mini-
mum ideal set of parameters that fully defines the feature.
During the translation process, these parameters may
be converted to equivalent representations based on the

requirements of the individual CAD system’s API. For
example, a 2D point used in sketching in CATIA and
Creo is defined by a sketching plane and an X and Y coor-
dinate. On NX, however, the point used in sketching is
defined using X, Y, and Z parameters to specify location.
Though both formats are mathematically equivalent, for
ease in conversion, the neutral format was defined using
the X and Y coordinates and a sketching plane. This same
process was used to determine the neutral parameters for
all supported CAD features within the NPCE

2.3. Object relational manager

To facilitate reading from and writing to the database,
an Object Relational Manager (ORM) is used to convert
data between programming objects and the database. It is
most often used as a familiar method in which software
developers can interact with a SQL database. The ORM
generates programming class code based on the database
schema. Because the database contains the parameters
used to define a neutralized CAD feature, the ORM effec-
tively defines the neutral data structure in which CAD
feature parameters are stored and passed between clients.
When the proper methods are called, the ORM saves the
parameters stored in the neutral data structure to their
corresponding tables and columns in the database. These
data structures defined by the ORM make up the founda-
tion of the messages sent between the clients and server.

Because the ORM data structure is based on the
database schema, it automatically captures all param-
eters and associations defined in the database tables.
Since many of the associations in the database are used
to define the hierarchical nature of CAD features and
objects, these associations are modified within the ORM
to represent inheritance relationships for the neutral data
structure. Inheritance is a principle often employed in
object-oriented programing to define instances where
one object derives methods and properties from another
object. In the API of a typical CAD system, CAD fea-
ture objects derive certain methods and properties from
a base feature class. In our dispersed representation of
CAD features in the database, where feature parame-
ters for a single feature may be distributed throughout
multiple tables, a feature variation inherits from a base
class of that feature. By modifying the associations of
the database tables imported by the ORM to represent
inheritance, single programming objects are created that
contain all the parameters of the features from which it is
derived.

The ORM, as shown in Figure 2, converts the fea-
tures and feature variations distributed through the var-
ious database tables into single CAD objects that con-
tain all the parameters required to define each feature

A

CAD Feature
Name
Owning Part
Timestamp

|

Sketch Feature
Sketch Plane

Fixed Plane
3D Paint

Offset Plane
Referenced Object
Offset Value

Angled Plane
Referenced Object
Angle Value

N ¥
L 4

Database

COMPUTER-AIDED DESIGN & APPLICATIONS 413

A
;- A

Sketch Feature : CAD Feature

Name
Owning Part
'I'!mestnmp
Sketch Plane

Fixed Plane: Plane Feature: CAD Feature

Name
Owning Part
Timestamp
Normal Vector
3D Paint

Offset Plane: Plane Feature: CAD Feature |

Angled Plane: Plane Feature: CAD Feature

Name
Owning Part

Timestamp
Normal Vector
Referenced Object
Angle Value

_ F)
Y

Object Oriented Code

Figure 2. The ORM converts database tables and schema into programming data structures.

or feature variation in a neutral format. The database
tables for sketch feature and plane feature variations are
combined into their own data structures. These struc-
tures retain their relationships with the corresponding
database parameters from which they are derived and are
used for accessing and writing data within the database.
The hierarchy established within the database between
tables is also retained in the data structures created by the
ORM as object inheritance.

Apart from combining feature parameters into a sin-
gle feature object, inheritance is used to define data types.
Since each feature variation is represented in the database
as a separate table and modified by the ORM to be repre-
sented as separate objects inheriting properties from the
base feature class, each feature variation object is of the
same type as the base feature object. This is an important
principle that enables feature references. A 2D sketch fea-
ture in CAD, for example, references a plane feature to
define location. A plane feature has multiple feature vari-
ations from which it can be defined. Using the method
describe above, the ORM will generate feature objects for

each feature variation. However, since each plane feature
variation inherits the base plane feature, the parameter
used to reference a plane feature in the sketch feature
object needs to be only of type plane object, and any
variation of the plane object can be stored. This method
both simplifies development and helps to preserve data
integrity because only one reference parameter is needed
to reference multiple feature definitions.

2.4. Interface inheritance

While the ORM alone enables multiple feature defini-
tions to be referenced, many CAD features can reference
completely different types of objects in a single param-
eter. This is best illustrated by the example in Figure 3.
A revolve feature revolves a 2D sketch around an axis to
generate 3D geometry. The axis of the revolve could be
an axis feature defined by a 3D point and vector, or it
could be a line object in a 2D sketch. These two objects
in no way share an inheritance structure but must be
able to be referenced in a single parameter to maintain

414 D.R. STAVES ET AL.

(a)

st [Fromm

e 1] =y

s
El
i [vai =
Cl
]

b)

Figure 3. A revolve feature can revolve a 2D sketch around (a) an axis of a coordinate system or (b) a line of a sketch.

data integrity. Further modifications to the ORM are
necessary to support this functionality.

To maintain data integrity, the code generated by the
ORM is modified to implement an interface system.
Interfaces are a commonly used paradigm in object-
oriented programming to declare functional similarities
between different object types. In essence, it allows unre-
lated objects in code to interact with other objects in
the same way. In the case of the revolve feature example,
both the axis feature and the 2D line object implement
an interface which denote that both objects can be used
as a reference for an axis. In this case, the revolve feature
axis parameter does not require a specific feature type,
but instead requires an object that implements an axis
interface. This is done by modifying the part of the ORM
that automatically generates the neutral data structure to
include the interface code.

Database tables and data structures that reference an
interface rather than a feature need to be modified as well.
Because each association in the database requires a single
table to represent the association, any feature table using a
parameter to reference an interface must create the asso-
ciation with the most basic database table from which all
feature tables associate. The parameter used for the ref-
erence is given a reserved name that represents the type
of interface used. For the case of an axis reference, the
reserved name is ReferencedAxis while other reserved
names can be seen in Table 2. The ORM is modified to
identify these reserved names and replace all associated
references to the basic CAD object data structure with the
interface type corresponding to the reserved name.

While creating a database association with the most
basic database table lowers the data integrity of the
database by allowing any feature (including invalid fea-
tures) to be referenced; invalid data is prevented from
being added to the database by the modified ORM data
structures themselves. The data structures allow only

Table 2. Reserved names for database columns used to define
parameters that reference interfaces.

Reserved Name Function

ReferencedAxis
ReferencedPlane
ReferencedDirection
ReferencedPoint
ReferencedProfile

Declare an object can be used as an Axis
Declare an object can be used as a Plane
Declare an object can be used as a Direction
Declare an object can be used as a Point
Declare an object can be used as a Profile

features that implement the correct interface to be ref-
erenced. All read/write operations to the database are
abstracted as far away from the user as possible to reduce
the risk of data corruption. The ORM is as close as pos-
sible to the database that it ensures future developers are
not able to make any errors and corrupt the data.

2.5. Client plug-in software

To simultaneously support multiple CAD packages
within the heterogeneous environment, a client program
is integrated as a plug-in application into each supported
system. This plug-in software is responsible for identi-
fying when new operations are performed, converting
information about the operation into the correspond-
ing neutral format. The plug-in software then pack-
ages the neutral operation data into the ORM-generated
data structures, which ultimately fill the correct database
tables. The client then sends the data to the server to be
distributed to the other clients and to the database.

To facilitate the wide variety of APIs associated with
the CAD programs, the client-side architecture of the
plug-in software is divided into two parts, as seen in
Figure 4. The multi-user object (MUODbject) classes are
responsible for handling communications with the server
and for neutralizing CAD data. These MUODbject classes
are all written in the C# programming language and con-
tain the code that is generated by the ORM to read from

CAD Package

Client Plug-in

COMPUTER-AIDED DESIGN & APPLICATIONS 415

MUObject Class

Operations

Interacts with native APl
Identifies CAD

f

Client Software Package

Figure 4. Client plug-in between a CAD application and the MUObject class.

and write to the database. When a CAD operation is
performed, the MUODbject classes convert the operation
data to a neutral format and fill the ORM-generated data
structures. A message is then sent to the server containing
the neutral data along with information pertaining to the
originating user, the part model that the message is asso-
ciated with, and a time stamp to be used with ordering
operations. The MUODbject classes also receive and de-
serialize messages from the server. Since all clients per-
form these same basic functions, the MUODbject classes
can be identical for all CAD packages.

The second part of the client interacts directly with
the CAD system’s API and is written in the language
best supported by the system. For NX and CATIA, the
client plug-in is written in the C# programming lan-
guage for simplicity of interacting with the MUODbject
classes. This is possible for these systems because their
respective CAD APIs fully support the NET framework.
The client plug-in for Creo, however, is written in the
C++ programming language because its NET API lacks
important functionality required to support interoper-
able CAD. The C++ API, however, is complete, fully
functional, and able to support the CAD functionality
required for interoperability.

The plug-in section of the client utilizes event meth-
ods within each CAD system to determine when feature
data needs to be synchronized between clients, such as
in a feature creation, edit, or delete event. The plug-in
then collects information about the updated feature and
formats the parameters in a way readable by the MUOb-
ject class. When data is received from the server, whether
from remote clients or the database, the plug-in calls the
proper methods within the API of the CAD system to cre-
ate, edit, or delete a feature, or perform a part model or
assembly-level command.

By separating the client software package into two
parts, developers working on integrating new CAD pack-
ages into the interoperable software are, in essence, fur-
ther abstracted away from the communication aspects of
the multi-user program. Instead, developers are only con-
cerned about translating between the CAD specific data
and the neutral format defined in the MUODbject class.
This work flow has significantly accelerated development
time as new features are supported in an incremental
process between CAD systems.

3. Implementation and verification

The Neutral Parametric Canonical Form (NPCF) is a
set of prototype standards for representing CAD fea-
tures and other CAD data in a neutral format that sup-
ports multi-user, simultaneous CAD. The NPCF has been
implemented and tested using CAD Interop, a client-
server application utilizing plug-in software to interface
with commercial CAD systems. CAD Interop was devel-
oped by the BYU Site of the NSF Center for e-Design to
understand the requirements necessary to support multi-
user CAD processes between several heterogeneous CAD
systems. The objective of this research is to extend the
NPCF format and the CAD Interop prototype to sup-
port associativity and enforce referential integrity dur-
ing the modeling process in an effort to preserve design
intent.

To support this research, 22 database tables were cre-
ated, with associations between tables representing object
inheritance. These tables supported the initial 13 features
which were chosen by surveying a list of most used CAD
operations utilized by a BYU senior design project. These
features include coordinate system, datum plane, datum
axis, 3D point, 3D spline, 2D sketch, extrude, and revolve.

416 D.R.STAVES ET AL.

Supported 2D sketch features include 2D point, 2D line,
2D arc, 2D circle, and 2D spline. Additional tables used
to enable assembly operations were also created.

3.1. Unique identifiers

The NPCF defines a set of parameters and relationships
that express CAD features in a neutral format. To test
their viability, the NPCF was implemented in Microsoft
SQL Server with a database table for each feature vari-
ation, and a database column within the tables for each
feature parameter. In this implementation, each table
contains a Globally Unique Identifier (GUID) parameter
used to uniquely identify neutral CAD features stored in
the database. It is generated using the Microsoft Windows
API to guarantee uniqueness between all clients with a
high degree of certainty. Figure 5 describes the process of
creating and propagating GUIDs through the NPCF pro-
cess. After a new feature is created in the CAD system,
a GUID is generated by the plug-in software and stored
with both the neutral data in the MUODbject class and
with the CAD feature in the CAD system. The GUID is
used to identify features on all clients, update feature data
in the database when edits are performed in the CAD sys-
tem, and link feature data dispersed between tables in the
SQL database.

Because the GUID is unique between all clients, it
can be used to allow a single feature to be partially rep-
resented by multiple database tables in a hierarchical
format, similar to the way CAD features would be rep-
resented in a CAD system’s API. For example, data for
a coordinate system plane feature is stored in four sepa-
rate tables as seen in Figure 6. Figure 6(a) shows both the
database schema that describes how the database tables
relate to each other as well as a representation of the
data stored within each table. As seen in Figure 6(b), a
GUID and time-stamp for the feature are stored in the
InteropObject table. The same GUID, feature name, tree
order, and feature type are stored in a feature table. The
GUID and plane type are stored in the DatumPlane table
and the GUID, associated coordinate system, and plane

type are stored in the DBCsysPlane table. Each table is
linked together using a primary-key/foreign-key refer-
ence that automatically matches the correct data when
querying the database for a feature.

L/15/16 T:3TAM
V/16/16 8:03AM

_GUID__ | Mame |TreeOrder| FeaiureType
One39016-5a3 }'lanel 2 12

[
b | Concup [copa| | GUD | Rerencadbine | O
one:mmﬁm)mnna&sens 1] f0gbSe6a-110a | 06095009-797Te 135
— (b)

Figure 6. (a) Neutral data for a single feature is partially repre-
sented by multiple tables. (b) GUIDs are used to link the partial
datain each table together to completely define a neutral feature.

Generate
GUID

Neutralize

New Feature Data

Extract
Feature Data

Create

f ¢ to \
Neutral Object . onyertto

SQL Code /

. Save to .
Database

Figure 5. The order of operations after a new feature is created in the CAD Interop Multi-user prototype.

3.2. Software implementation

To support interoperable CAD on the local client, a soft-
ware plug-in package was written for each supported
CAD system. As the primary purposes of the plug-in
client software are to detect CAD operations performed
by the user and to perform remote CAD operations
locally, each software is written to utilize the native API
of the CAD system — NXOpen for NX, Pro\Toolkit for
Creo, and Automation for CATIA.

The APT’s of both NX and Creo expose events per-
formed by the user. Callback functions can be registered
so that when a feature is created, for example, parameters
relating to the new feature can be stored and converted
to the neutral format. CATIA’s automation API, however,
exposes no events. To identify when new features are cre-
ated, the plug-in iterates through each feature within the
part’s feature tree. In all cases, when a new feature is iden-
tified, either via an event or through iteration, a GUID is
created using the Windows API and stored as a param-
eter in the feature. The plug-in software then converts
the CAD-specific feature parameters to the CAD-neutral
parameters defined by the NPCE.

The 2"¢ part of the plug-in software is the same for
each client, and handles the transmission of neutral data
to and from the server. To accomplish this, Microsoft’s
entity framework is utilized as an ORM to read and write
the neutral data to the database. When an operation is
performed remotely, the neutral data is sent from the
server in the ORM object and converted by the CAD-
specific part of the plug-in to a CAD feature. The CAD
feature is then incorporated into the CAD model using
methods outlines in each system’s API

3.3. Feature capabilities and limitations

Each feature supported by the NPCF can be created,
edited, and deleted in NX, CATIA, and Creo during
the modeling process. During the implementation pro-
cess, each feature is tested individually and all features
are tested collectively during regular team-modeling
sessions. During these sessions, errors that arise are
recorded and investigated to determine the cause. Most
are due to bugs and architecture limitations and can be
categorized into three underlying causes:

(1) Some bugs are caused by programmer error. When
implementing a new feature into three different
CAD systems, crucial information is sometimes
omitted causing a feature to be created incorrectly or
not at all. The majority of these bugs are located in
the plug-in portion of the client code when extract-
ing or setting CAD feature information. These types

COMPUTER-AIDED DESIGN & APPLICATIONS 417

of bugs are given the highest priority during the
modeling sessions and are fixed immediately.

(2) Some bugs arise because of limitations or errors
within the CAD system’s API. An example of this
bug type occurred when implementing the revolve
feature into PTC Creo. In the plug-in implemen-
tation for Creo, the integrity of local feature oper-
ations is preserved by ensuring remote operations
do not conflict. This is done by subscribing to but-
ton events. During a team-modeling session, unex-
pected behavior was observed around the revolve
feature and was traced to an API bug dealing with
the revolve button event. The issue was reported to
PTC June 17, 2015 and is currently under investiga-
tion. Workarounds are developed for these bugs to
address the lost functionality. In the example above,
a new button was placed in Creo’s user interface
that must be pressed by the user after performing a
revolve operation, simulating the functionality that
was lost from the API bug.

(3) Sometimes a single feature can pass all tests, but
when used during a team-modeling session, it can
cause the program to crash. Often this is because
of the lack of an overall consistency manager to
ensure multiple operations are not performed on
the same feature. To limit the effect of this architec-
ture limitation, methods were implemented in each
client plug-in to queue remote operations when a
local operation is performed. This fix has greatly
reduced the amount of reported bugs during team-
modeling sessions. This solution, however, does not
prevent potential conflicts that may arise when mul-
tiple users are editing the same feature or feature tree.
In its current implementation, CAD Interop avoids
these conflicts because the only features supported
do not remove geometry. An edge blend feature, for
example, removes an edge during its operation. If
another user were to, at the same time, create a fea-
ture that uses that edge, a conflict would arise. A
server-level consistency manager should be imple-
mented to make the software more robust and han-
dle this type of conflict, though the existing solution
is effective. In addition, a feature-locking conflict
avoidance system as implemented in homogeneous
multi-user CAD applications [8,9,20] would solve
many of these problems.

This process for identifying, prioritizing, and fixing
errors that arise has been effective in rapidly improv-
ing the state of the software. As development continues
on the NPCE, this categorization process will continue
to classify these types of errors to maintain this level of
progress.

418 D.R.STAVES ET AL.

3.4. NPCF verification

As a result of this research, associations between fea-
tures and methods for preserving design intent have
been incorporated into the multi-user interoperability
program utilizing the NPCF prototype standard. Neu-
tral definitions for coordinate systems and datum planes,
as well as extended definitions for extrude and revolve
features, have been defined and included in the hetero-
geneous system. Additionally, support for PTC Creo has
been added to enable multi-user synchronous model-
ing between NX, CATIA, and Creo CAD systems. The
capabilities of the software and NPCF prototype standard
are demonstrated by modeling two separate assemblies.
The assembly models were selected to utilize the features
and test the methods developed and implemented as a
result of this research. Both assemblies were modeled by
multiple users simultaneously. All users were co-located
and allowed to collaborate prior to beginning modeling.
While users in these sessions were co-located, the same
process could occur between geographically separated
users by using a video-conferencing service.

The multi-user assembly modeled during this veri-
fication process was designed to showcase the associa-
tivity methods developed within the Neutral Parametric
Canonical Form. Three clients using NX, CATIA, and

Creo were given instructions prior to modeling, which
included the basic dimensions of each component of
the assembly and the order of operations employed by a
single user to model the part. During modeling, clients
simultaneously modeled within the same parts, collec-
tively working to complete the design before moving to
the next component. The absence of any conflict res-
olution implementations in this architecture, however,
necessitated that clients communicate to avoid interfer-
ing with other’s operations. This method was illustrated
early in the modeling session as displayed in Figure 7.
After the initial cylinder was extruded to define location
and size, each client simultaneously modeled geometry
based off the initial feature, although in relative isolation.

Figure 8 shows the finished pump bearing hous-
ing part model on all three CAD clients. Collaboration
between clients enabled each user to work on portions
of the model to collectively complete the model. A pro-
cess similar to the one employed in this session not only
enables users to work with the CAD system in which they
are most comfortable, but also enable users with differ-
ent specialties to access and contribute to the part model
during the design stage.

To test the software’s ability to exactly replicate mod-
els between CAD systems, the finished part model from

Figure 7. Early in the modeling session, the NX client (top left), Creo client (top right), and CATIA client (bottom middle) created new

features referencing other’s modeling operations.

avalfunaaaiit

o EEE—y

s

O B W
ML LTS S o T a0

COMPUTER-AIDED DESIGN & APPLICATIONS 419

.

EWB 2 G B
A ATHeSGS BISIINURMS [

AESE

She 5 ERY ® SCIBERED—

Figure 8. Completed assembly modeled simultaneously by an NX client (top left), a Creo client (top right), and a CATIA client (bottom

middle).

Table 3. Model parameter comparison of exported stere-
olithography files.

Parameter NX CATIA Creo
X-Dimension 100.000 mm 100.000 mm 99.990 mm
Y-Dimension 82.500 mm 82.478 mm 82.495 mm
Z-Dimension 60.000 mm 60.000 mm 60.000 mm
Volume 1146127 mm> 1147215 mm3 114666.0 mm>
Surface Area 35687.9 mm? 35663.1 mm? 23665.4 mm?

each system was converted to a stereolithography (.stl)
file used for rapid prototyping. When exporting to this
file type, each CAD system represents the part model by a
triangular tessellation covering all surfaces of the model.
The STL files from each respective CAD system were then
imported into a third-party analysis tool to extract the
important model parameters found in Table 3. Though
there are slight variations between the parameters, these
are extremely minimal, with the largest percent difference
coming from the volume calculation, which is less than
.095%. Even so, the differences in these parameters are
most likely due to variations in how each CAD system
creates the tessellations.

In addition to testing the accuracy of recreating
models in multiple CAD systems, load tests were per-
formed to determine the scalability of the NPCF archi-
tecture. A guided model-rocket assembly, consisting of

Table 4. Guided Model Rocket Components
List.

Component Quantity

Motor Subframe
Servo Motor
Guidance System
Nose Cone
Lower Fin
Upper Fin
Motor

Batter

Nozzle

Skin

IMU

N N VY - G N

the 11 unique components in Table 4, was designed
and modeled by six clients simultaneously within the
heterogeneous environment. Modeling responsibilities
were divided and strategy discussed between participants
prior to beginning modeling. Though some components
were multiple instances of the same part (i.e., Servo
Motors and Fins), they were all explicitly modeled in their
proper position and orientation due to the lack of support
for assembly constraints.

While each client modeled their respective compo-
nents, geometry created by remote users were automati-
cally integrated into the local assembly. As users alternate
between creating sketches and constructing geometry,

420 D.R. STAVES ET AL.

[

FR ¥

o= NS NN,

At an T

B s W rwe ear wEs s sleriee FETEE sk PeseE ATEer Sewge w8
B U ANE NN Wi (3§, T @R RR-TrO0, Ve
RIS LN T R N N B S0 A Rk Pl ri=Y=[% [B
[ey ey vy 3 Peer— L e O LR D B
Bl WEE e Bl S e -
: >
L e
¥ e s -y & -
=~
| T Jyl
e g
e o W
_ o -
[- -
o o
B o
i o
e o -
o e
v LR
o X"
L -
- s o
I] L o
-~ [F) o
"™ B ol
LR ol
» o
N "
ﬂ *a "
o Ty
q P =g
/
——etaibe -
>, "2] |

AT s BRARE B AR ® PR

S e BARES

P

Figure 9. Screenshot of rocket assembly as modeled by six clients simultaneously.

remote users’ work can be referenced and checked. This
kind of awareness, similar to the collaboration around
the drafting table, fosters interaction between design-
ers to help and check each other where needed. A
graphic of the six clients collaborating is included as
Figure 9.

4. Conclusion

Inadequate CAD interoperability solutions continue to
affect the design process employed by engineers and
designers. As concurrent engineering and design shar-
ing practices continue to be implemented into the typical
design process, the shortcomings of the current heteroge-
neous CAD environment will become increasingly evi-
dent. With billions of dollars spent on fixing data after
a CAD part or assembly model is transferred, there is
a great need to update the translation process to pre-
serve the design intent stored within the original model.
Design intent enables CAD parameters and geometry to
update according to the constraints set by the original
design team. It is especially important in a multi-user

setting where designers could be dispersed geographi-
cally thereby limiting face-to-face communication. The
Neutral Parametric Canonical Form seeks to address
these concerns by creating a heterogeneous CAD envi-
ronment supporting simultaneous modeling. By utilizing
a SQL database to store the neutral representations of
features, part and assembly models can be created and
simultaneously edited by multiple clients at once. In addi-
tion, rules implemented on the database enforce referen-
tial data integrity by declaring the parameters required
to represent a feature and by enabling only valid inter-
feature references. These architectural decisions improve
the translation of design intent between CAD systems
and preclude invalid data from corrupting neutral mod-
els stored within the database.

While only a limited number of features are currently
supported, they are sufficient to create interesting and
complex part and assembly models. An initial limited
feature set was specifically chosen to focus on the robust-
ness of the solution. Current work is focused on increas-
ing the number of supported features while maintaining
stability.

ORCID

Daniel R. Staves
John L. Salmon

http://orcid.org/0000-0003-3365-1160
http://orcid.org/0000-0002-8073-3655

Walter E. Red (© http://orcid.org/0000-0002-9321-6913

References

[1]

(7]

(10]

(11]

(12]

Basu, D.; Kumar, S. S.: Importing mesh entities through
IGES/PDES, Advances in Engineering Software, 23(3),
1995, 151-161. http://dx.doi.org/10.1016/0965-9978(95)
00075-5.

Brunnermeier, S. B.; Martin, S. A.: Interoperability costs
in the US automotive supply chain, Supply Chain Man-
agement: An International Journal, 7(2), 2002, 71-82.
http://dx.doi.org/10.1108/13598540210425821

Cheng, Y.; He E; Wu, Y.; Zhang, D.: Meta-operation Con-
flict Resolution for Human-Human Interaction in Collab-
orative Feature-Based CAD Systems. Cluster Computing.
19(1), 2016, 237-253

Choi, G.-H.; Mun, D.; Han, S.: Exchange of CAD Part
Models base on the Macro-Parametric Approach, Inter-
national Journal of CAD/CAM, 2(1), 2002, 13-21

Gu, H,; Chase, T. R;; Cheney, D. C.; Johnson, D.: Iden-
tifying, correcting, and avoiding errors in computer-
aided design models which affect interoperability, Jour-
nal of Computing and Information Science in Engi-
neering, 1(2), 2001, 156-166. http://dx.doi.org/10.1115/1.
1384887.

Haenish, J.: CAD-Exchange Towards a First Step Imple-
mentation, Industrial Electronics Society, 16th Annual
Conference of IEEE, 1990, 734-739. http://dx.doi.org/10.
1109/TECON.1990.149231.

Han, S.: Macro-parametric: an approach for the history-
based parametrics, in Soonhung Han (guest editor), Spe-
cial issue: The future of CAD interoperability: History-
based parametrics, Int. J. Product Lifecycle Management
(IJPLM), 4(4): 321-325 Dec. 2010.

Hepworth, A. L; Tew, K; Nysetvold, T.; Bennett, M.;
Jensen, G.: Automated Conflict Avoidance in Multi-user
CAD, Computer-Aided Design and Applications, 11(2),
2014, 141-152. http://dx.doi.org/10.1080/16864360.2014.
846070.

Hepworth, A.; Tew, K. Trent, M, Ricks, D.; Jensen,
C.; Red, W. E.: Model consistency and conflict resolu-
tion with data preservation in multi-user computer aided
design, Journal of Computing and Information Science
in Engineering, 14(2), 2014. http://dx.doi.org/10.1115/1.
4026553.

Jing S, He E Han §, et al. A method for topological entity
correspondence in a replicated collaborative CAD system.
Computers in Industry, 60(7), 2009, 467-475.

Leach, L. M.: Language interface for data exchange
between heterogeneous CAD/CAM databases, Disserta-
tion Abstracts International Part B: Science and Engineer-
ing, 44(5), 1983

Li, M.; Yang Y; Li, J.; Gao, S.: A preliminary study on syn-
chronized collaborative design based on heterogeneous

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[21]

[22]

(23]

(24]

[25]

COMPUTER-AIDED DESIGN & APPLICATIONS 421

CAD systems, PhD thesis, Zhejiang University, 2003.
http://dx.doi.org/10.1109/CACWD.2004.1349025.

Li, M; Gau, S; Li, J; Yang, Y. An approach to
supporting Synchronized Collaborative Design within
Heterogeneous CAD Systems, ASME 2004 Interna-
tional Design Engineering Technical Conferences, 2004,
511-519. http://dx.doi.org/10.1115/DETC2004-57703.
Li, J; Han, S; Shin, S; Lee, S; Kang, Y; Cho, H;
Kim, H.; Song, I; Kim, I; Rathore, P. S.: CAD Data
Exchange Using the Macro-Parametrics Approach: An
Error Report, International Journal of CAD/CAM, 10(2),
2010.

Li, M,; Gao, S.; Wang, C. C. L.: Real-Time Collabora-
tive Design With Heterogeneous CAD Systems Based on
Neutral Modeling Commands, Journal of Computing and
Information Science in Engineering, 7(2), 2007, 12-15.
http://dx.doi.org/10.1115/1.2720880.

Li, W;; Ong, S.; Fuh, J.; Wong, Y.; Lu, Y.; Nee, A.: Feature-
based Design in a distributed and colaborative environ-
ment, Computer-Aided Design, 36(9), 2004, 775-797.
http://dx.doi.org/10.1016/j.cad.2003.09.005.

Li, X;; He, F; Cai, X,; et al: A method for topological
entity matching in the integration of heterogeneous CAD
systems. Integrated Computer-Aided Engineering, 20(1),
2013, 15-30.

Li, X;; He, F; Cai, X,; et al: CAD data exchange based
on the recovery of feature modelling procedure. Inter-
national Journal of Computer Integrated Manufacturing,
25(10), 2012, 874-887.

Marjudi, S.; Amran M.; Abdullah, K. A.; Widyarto, S.;
Majid, N.; Sulaiman, R.: A Review and Comparison
of IGES and STEP, Proceedings of World Academy of
Science, Engineering And Technology. 62, 2010, 1013-
1017.

Moncur, R; Jensen, C.; Teng, C.; Red, E.: Data consistency
and conflict avoidance in a multi-user CAx environment,
Computer-Aided Design and Applications, 10(5), 2013,
727-744. http://dx.doi.org/10.3722/cadaps.2013.727-744.
Mun, D.; Han, S.; Kim, J; Oh, Y. A set of stan-
dard modeling commands for the history-based para-
metric approach, Computer-Aided Design, 35(13), 2003,
1171-1179. http://dx.doi.org/10.1016/S0010-4485(03)
00022-8.

Mun, D; Han, S.: Identification of Topological Enti-
ties and Naming Mapping for Parametric CAD Model
Exchanges, International Journal of CAD/CAM, 5(1),
69-82, Dec. 2005.

Pratt, M.].: Extension of the Standard ISO10303 (STEP)
for the exchange of parametric and variational CAD Mod-
els, Proceedings of the Tenth International IFIP WG, 5(3),
1998

Wisnosky, D. E.: ICAM Program Prospectus, DTIC Doc-
ument, 1977

Zhang, D. J; He, E Z; Han, S. H; et al: Quantita-
tive optimization of interoperability during feature-based
data exchange. Integrated Computer-Aided Engineering,
23(1), 2016, 31-50.

http://orcid.org/0000-0003-3365-1160
http://orcid.org/0000-0002-8073-3655
http://orcid.org/0000-0002-9321-6913
http://dx.doi.org/10.1016/0965-9978(95)00075-5
http://dx.doi.org/10.1016/0965-9978(95)00075-5
http://dx.doi.org/10.1108/13598540210425821
http://dx.doi.org/10.1115/1.1384887
http://dx.doi.org/10.1115/1.1384887
http://dx.doi.org/10.1109/IECON.1990.149231
http://dx.doi.org/10.1109/IECON.1990.149231
http://dx.doi.org/10.1080/16864360.2014.846070
http://dx.doi.org/10.1080/16864360.2014.846070
http://dx.doi.org/10.1115/1.4026553
http://dx.doi.org/10.1115/1.4026553
http://dx.doi.org/10.1109/CACWD.2004.1349025
http://dx.doi.org/10.1115/DETC2004-57703
http://dx.doi.org/10.1115/1.2720880
http://dx.doi.org/10.1016/j.cad.2003.09.005
http://dx.doi.org/10.3722/cadaps.2013.727-744
http://dx.doi.org/10.1016/S0010-4485(03)00022-8
http://dx.doi.org/10.1016/S0010-4485(03)00022-8

	1. Introduction
	1.1. The cost of poor interoperability
	1.2. Background
	1.3. The neutral parametric canonical form (NPCF) approach

	2. NPCF methods
	2.1. Maintain referential data integrity
	2.2. Defining a neutral format
	2.3. Object relational manager
	2.4. Interface inheritance
	2.5. Client plug-in software

	3. Implementation and verification
	3.1. Unique identifiers
	3.2. Software implementation
	3.3. Feature capabilities and limitations
	3.4. NPCF verification

	4. Conclusion
	ORCID
	References

