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ABSTRACT
As anextension to theworkdonebyvarious authors, this paperproposes anewmethodology to con-
struct bifurcating surface by using only a single open B-spline surface equation, which is contrary to
conventional approach of stitching surface patches. The paper emphasizes on G1 continuity at the
junction of two branches as well as on overall G1 continuity of the generated surface, by exploit-
ing the concept of disjoint surface through knot value repetition. The proposed method allows the
flexibility to have irregular non-uniform cross-sections in the generated surface. The ends of the
dichotomous surface generated can also be so structured that when the algorithm if used in iter-
ation, will produce multi-level of bifurcation with the overall surface to be G1 continuous, at the
sub-division(s) of a branch into further branches.
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1. Introduction

Surface construction from cross sectional data, either
scanned or manually determined, is a designing process
used in various applications like automobile parts (mani-
fold of engine’s cylinder head), neuron tree construction
[2], human vascular system, human bronchial tree [4],
tree skeletal structure [7]; and many more. Most of the
constructions cited above involve branching at either sin-
gle level or multilevel. As in case of manifold design of
an engine, bifurcation suffices the design requirements
while bronchial tree construction involves bifurcation
and sub branching. This work put forwards an approach
to construct bifurcating shapes by use of only a single
openB-spline surface equationwhich offers the flexibility
to have irregular non-uniform cross-sections with asym-
metrical branching in the generated surface. In this work
dichotomous branching surface and bifurcating surface
are used interchangeably.

1.1. Previous relatedwork

In past many authors have addressed the problem of
modeling of branched surfaces with varying techniques.
The methods used by other authors for the generation of
bifurcating surface includes method of triangulation [6],
[8], stitching of right circular cylindrical surface patches
[3], [11], blending of half tubular Bezier patches [12],
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skinning and trimming of surface [5], and few others.
Each had its own limitations which has been countered
by the algorithm proposed in this work. With method of
triangulation, continuity requirements could not be met
easily while the stitching of surface patches require an
additional step of aligning tangential vectors of the cor-
responding stitched patches. The model proposed in this
work is neither limited to circular cross-section nor uni-
form cross section, and also B-spline surface offers better
control than the Bezier surface. This work subdues the
complexities confronted in themodeling of dichotomous
branching shapes by using disjoint open B-spline surface,
along with maintaining G1 continuity at the junction of
two branches. Bhatt et al. [1] used a similar technique of
disjoint surface, used in this work for generation of bifur-
cating surfaces using single B-spline surface equation but
was limited to order 3 in one of the two defining direc-
tions of B-spline surface. The algorithm used in this work
uses a different arrangement of control points and a dif-
ferent technique for disjoining the surface than used in
[1], which led to a model capable of handling any order
of B-spline in both of the defining directions; along with
an additional benefit of using the algorithm in iteration
to produce multiple bifurcating surface. Authors have
also used T-splines [10] to efficiently join two or more
B-spline surfaces together, having different knot vectors,
without any gap at the boundary by inserting control
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Figure 1. General Layout of Control Polyhedron.

points to form T-junctions. As we have not used surface
patches in this work, hence joining of B-spline surfaces is
not required (but methodology of T-splines may be used
to produce similar results using surface patches with G1
continuity).

1.2. Overview of the paper

The work presented here is related to surface genera-
tion of bifurcating duct by the use of a disjoint open
B-spline surface from the available data sets. The data
sets are presumed to be a set of coordinates which acts as
control points for the generated B-spline surface, along
with a set of coordinates which gives the information
about control points where a disjoint in the surface is
required.

The control point layout, forming control polyhedron,
used for surface generation is shown in Fig. 1. The geo-
metrical arrangement of control points in parallel hor-
izontal planes along the z axis, forming square shapes
(either one or in a pair of two) is referred to as a con-
trol polygon for that plane. Two special shaped control
polygons are also used- one shaped like an open book
structure and one shaped like an inverted T structure, as
shown in Fig. 1. The horizontal levels having two square
shaped polygons form the part of the surface termed as
branches, while the horizontal levels with single square
polygon form the part of the surface termed as stem.
Open book shaped control polygon along with inverted
T shaped control polygon marks the junction of two
branches as well as the top of the stem.

In the subsequent sections and sub-sections, method-
ology is explained in details with conceptual figures.

2. Methodology

In this work it is assumed that the control polyhedron
is already available. In real world problems, where the
surface has to be interpolated on real data set, the con-
trol polyhedron set can be formed by using methods
described in [9].

The equation to generate B-Spline curve from the
given set of control points is-

C(u) =
n∑

i=0
Ni,k(u)Pi (2.1)

where,

C(u) = Point on B-spline curve
n+1 = No. of control points in u direction
Pi = ith control point

Ni,k(u) = Basis function in u direction

Ni,k(u) = (u − ui)
Ni,k−1(u)
ui+k−1 − ui

+ (ui+k − u)
Ni+1,k−1(u)
ui+k − ui+1

(2.2)

Where,

Ni,1 =
{
1, ui ≤ u ≤ ui+1

0, otherwise

And ui are called the parametric knots or knot values.
These values form a sequence of non-decreasing integers
called knot vectors. For an open B-spine curve, ui are
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given by:

uj =

⎧⎪⎨
⎪⎩
0, j < k
j − k + 1, k ≤ j ≤ n
n − k + 2, j > n

(2.3)

where,

0 ≤ j ≤ n + k
k = Order of the curve

k-1 = Degree of the curve

Open B-spline surface is generated by

S(u, v) =
n∑

i=0
Ni,k(u)

m∑
j=0

Nj, l(v)Pij (2.4)

where,

S(u,v) = Point on B-spline surface
m+1 = No. of control points in v direction

Nj,l(v) = Basis function in v direction

and other variables hold the same meaning as before. Pij
simply contains the control points in defined order.

2.1. Disjoint B-spline curve

The surface generated in this work by the use of a single
B-spline surface equation ismade to disjoin both in u and
v directions. Disjoint in B-spline can be obtained by knot
value repetition. Here, disjoint curve is being discussed,
the approach of it is then applied to the B-spline surface
both in u and v directions as per the requirements so as
to have branched surface.

For a curve of degree 3 and number of control points
= 12,

(a) (b)

(c) (d)

Figure 2. B-Spline Curve with: (a) Standard knot values, (b) Multiplicity 2 of knot value 5, (c) Multiplicity 3 of knot value 5, and (d)
Multiplicity 4 of knot value 5.
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n= 11
k= 4
u= [0 0 0 0 1 2 3 4 5 6 7 8 9 9 9 9] using Eqn. (2.3)

Of the four figures shown above, Fig. 2(a), Fig. 2(c),
and Fig. 2(d) are important for us. It can be seen in
Fig. 2(c) that when a knot value is repeated for “k-1”
times, i.e. 3 times in this example, the original single
curve of Fig. 2(a) ceases at an intermediate control point
and a new curve originates from the same control point,
with the two curves having C0 continuity. If the knot
value is repeated for “k” times, i.e. 4 times in this example
as in Fig. 2(d), the original single curve divides into two
curves by skipping an intermediate control point. In this
manner, we can make two or more disjoint curves with-
out having C0 continuity from single B-spline equation.
One of the noteworthy outcome of this disjoining of the
curve is that in Fig. 2(c) and Fig. 2(d) the second curves
are same but the first curves of both the figures are not
same. Also for the very first disjoint in the curve at nth

control point, we need to have at least “k-1” control points
before it, as the first k knot values of the knot vector have
to be zero.

2.2. Algorithm for disjoint B-spline surface
generation

The parameters u and v used, define the direction of
the surface in horizontal plane and vertical plane respec-
tively. The technique described in the sub-section [2.1] to
generate disjoint curve is applied to generate disjoint sur-
face. The information about the control points at which
the surface will be disjoined both in u and v directions
is made available as input data in matrices Mu and Mv
respectively. Along with knot value repetition, control
point repetition is also done at the point of disjoint.
Requirement for control point repetition is explained in
sub-section [3.4].

Input-

• Order of surface in u direction as ‘k’; and in v direc-
tion as ‘l’.

• x, y and z coordinates of control points as Px, Py and
Pz respectively.

• Disjoint curve information along u and v directions
in Mu and Mv respectively.

Algorithm-

• Introducing control pointsmultiplicity in Px, Py and
Pz using Mu and Mv.

• Calculating knot vectors U and V in u and v direc-
tions respectively using Eqn. (2.3).

• Knot value repetition in U using Mu.
• Knot value repetition in V using Mv.

• Calculating basis functions Ni,k(u) and Nj,l(v).
• Calculating surface points using open B-spline sur-

face equation.

In this work all experiments are done using k=4 and
l=3 but the proposed model allows to have flexibility
in the degree of surface both in u and v directions. The
results for bi-cubic surface (i.e. k=4, l=4) and bi-quartic
surface (i.e. k=5, l=5) are also shown in Fig. 10(a) and
Fig. 10(b). Various approaches used to reach the final
model to generate the bifurcating surface are described
in the subsequent sections along with conceptual figures.

3. Discussion of experiments

The final surface generated in this work is the result of a
series of experiments and improvements in each one of
them. To understand the logic of the proposed method,
sequential experiments are discussed.

3.1. Control polyhedron representation

Fig. 3 shows how the control points of various layers of
control polygon (forming the control polyhedron) joins
with the control points of adjacent layer of control poly-
gon. Here control points are labeled as P(i,j) where “i”
refers to the control polygon and “j” refers to the con-
trol point in the ith polygon. A control point labeled
more than once indicates that it has been traversed more
than once. In the u direction, control points are traversed
in the numerical sequence (incorporating disjoints at
appropriate points) while in the v direction, control point
labeled “1” in a control polygon will join with control
point labeled “1” in all control polygons traversing from
top to bottom. The direction of traversing as well as
disjoints in the surface can also be understood by follow-
ing the arrows shown in Fig. 3. Arrow head defines the
direction of traversing and number of arrows define the
number of times a particular section is being traversed in
each control polygon.

3.2. First model

Total number of control points in each control polygon,
while defining a B-spline surface, have to be same. In this
model, the control polygons of the branch region have a
total of 18 control points with 9 control points on each
arm of the branch, used in a rectangular arrangement as
shown in Fig. 3. Control polygons in the stem region are
defined differently, as it needs to have same number of
defining points i.e. 18 points. G1 continuity at the junc-
tion of the branch is theorized by utilizing the property
of the open B-spline that it passes through the first and
the last control point, and is tangential to the first and the
last segment of the control polygon.
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Figure 3. Shows the control polyhedron and the traversing order of control points for the First Model.

In the first control polygon of the stem (open book
control polygon) control points labeled P(3,5), P(3,9),
P(3,10) and P(3,14) marks the sudden change in the u
direction of the B-spline while in the branch region a
disjoint is required between control points P(1,9) and
P(1,10). To have appropriate shape of the generated sur-
face, B-splines in the u direction are terminated at control
points P(i,5) and P(i,14) while a disjoint between control
point P(i,9) and P(i,10) is introduced.

Learnings from the generated surface of first model-

• There are many open spaces. These spaces are present
at the places where the spline (either in u direc-
tion or v direction) reaches the terminating control
point/polygon; and at the point of disjoint in the
spline. This can be seen in Fig. 4(b) where stem
fails to reach the lower most layer of the last control
polygon.

• If the above problem was not in existence, even then
the two arms of the branch are not overlapping at the
junction, as visible in Fig. 4(a) and Fig. 4(b).

• The disjoint curve became predominant in the entire
stem region, hence a disjoint of spline along the v
direction is required.

• Apartition line is present in the surfacewhere the con-
tour suddenly changes its direction after terminating
at the control points P(i,5) and P(i,14). This part of the
surface will only have C0 continuity in u direction if
the sets of control points {P(i,4), P(i,5) & P(i,6)} and
{P(i,13), P(i,14) & P(i,15)} are not individually aligned
in a straight line.

3.3. Secondmodel

In this model we have addressed the issue of dominance
of the disjoint in the entire stem region of the generated
surface of the first model. Hence, few new layers in the
control polyhedron are added in the stem region, below
the inverted T control polygon. Fig. 5(a) shows the new
control polyhedron. All the new layers of control poly-
gon added have similar geometrical arrangement with
those of a single arm of the branch (i.e. square shape) but
have different scheme of control point traversing since
the number of control points are twice in the stem com-
pared to number of control points in a single arm of the
branch. The arrangement of control points for all other
control polygons is same as that of the First Model.

In Fig. 5(a) the control polygon of stem in inverted T
shape i.e. P(4,j) is overlapped by a control polygon P(5,j),
though it’s not visible in the figure, which is identical
to control polygon 6, P(6,j). The inverted T polygon is
used to disjoint the spline in v direction and begin the
second part of the spline from the overlapped control
polygon P(5,j). The first four control polygons of stem
region (seen from top to bottom i.e. control polygons
P(3,j), P(4,j), P(5,j) and P(6,j)) should be aligned in a
straight line or projected straight line (in similar way as
shown in Fig. 14(b) and Fig. 14(c)) to have G1 continuity
in v direction. But with a disjoint introduced in v direc-
tion, open space appears at the disjoint (same as in First
Model).

As shown in Fig. 6, clockwise and counter-clockwise
traversing of the control polygon in the stem region
(as shown in Fig. 5(a)) did not produce the identically



100 V. ASTHANA AND A. D. BHATT

(a) (b)

Figure 4. Interpolated surface of First Model: (a) Without control polyhedron, and (b) With control polyhedron.

(a) (b)

Figure 5. SecondModel and interpolated surface results: (a) Shows arrangement of control polyhedron, and (b) Shows the interpolated
surface.

overlapping contours. Hence a new arrangement of con-
trol points is required which could maintain the same
directional traversing for segments of surface which are
traversed twice so as to have overlapping contours.

3.4. Final model

In this model, three problems of previous models have
been addressed. Firstly, to attain same directional travers-
ing for segments of surfacewhich are traversed twice so as
to have overlapping contours. Secondly, to close the open
spaces where the surface terminates and/or disjoins both
in u and v directions. Thirdly, to attain G1 continuity at
the junction of the branch by exact overlapping.

To maintain the same directional traversing of the
repeated segments of control polyhedron in stem region,
a new order of traversing of the control points in the

control polyhedron is used. The new arrangement is
shown in Fig. 7(a). The generated surface contours in
u direction may be interpreted as 4 contours- contour
1 from control point P(i,1) to P(i,5); contour 2 from
control point P(i,6) to P(i,10) by incorporating a dis-
joint at control point P(i,5); contour 3 from control point
P(i,11) to P(i,15) by incorporating a disjoint at control
point P(i,10); and contour 4 from control point P(i,16)
to P(i,20) by incorporating a disjoint at control point
P(i,15).

The reason for open spaces in the surface at various
disjoints (Fig. 5(b)) i.e. control point P(i,9) in u direction
and control polygon P(4,j) in v direction, and at bound-
ary conditions i.e. control point P(i,18) in u direction
and control polygon P(8,j) in v direction, is by virtue of
step wise increment of knot vector U in the code used
to generate the surface. For example, when u is changed
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Figure 6. Shows the non-overlapping contours with clockwise and anti-clockwise traversing of same control polygon.

(a) (b)

Figure 7. Final Model and interpolated surface results: (a) Shows arrangement of control polyhedron, and (b) Shows the interpolated
surface.

from 1 to 2 in 10 steps then the open space will be more
than when u is incremented in 20 steps. Thus even if
u is incremented in a very large number of steps then
also some open space will still be present, which may
not be visible to naked eyes. In order to close the sur-
face, contours are first terminated at the control points
in u direction and at the control polygons in v direc-
tions where a disjoint is required. After terminating the
spline at the control points/polygons the algorithm for
disjoining the surface is applied. Also the contours are
terminated at the boundary condition, both in u and v
directions.

In SecondModel (Fig. 5), the inner side of the left arm
was constructed by traversing the control points P(i,5) to
P(i,9) and the inner side of right arm was constructed

by traversing the control points P(i,14) to P(i,18). The
difference in shapes of inner left and inner right arm of
the branch at junction, though they have geometrically
identical control polygons, is because of the fact that the
surface contour in u direction is disjoined at the control
point P(i,9). As shown in Fig. 2(c) and Fig. 2(d), after
having a disjoint in the spline, the first part of the curve
changes its shape while the second part remains same.
Thus the shape of inner side of the left arm, which acts as
the first part of the surface contour disjoined at control
point P(i,9), is changed. In order to have same shape for
the inner side of left and right arm at the junction, both
of these should either behave as the 1st part of spline after
disjoint or both of these should behave as the 2nd part of
spline after disjoint. This has been achieved by the above



102 V. ASTHANA AND A. D. BHATT

mentioned new order of traversing of the control points
(Fig. 7(a)).

To incorporate the termination of spline at the bound-
ary conditions as well as at the locations where a disjoint
is required, multiplicity of control points/polygons and
knot values is used. A contour can be terminated at a
control point/polygon by knot value repetition for “k-1”
times, and a disjoint in the spline can be achieved by
knot value repetition for “k” times (as explained in sub-
section [2.1]). At the control points/polygons of disjoint,
since the splines have to be terminated first before they
are made to disjoin, control points’/polygons’ multiplic-
ity is used so as to eliminate the ambiguity of knot values
responsible for terminating the spline with the knot val-
ues responsible for the disjoint. For example, let k=4 and
n=12 the knot vector will be-

k= 4
n= 12 (P1, P2, P3, P4, P5, P6, P7, P8, P9 . . . . . . )
U= [0 0 0 0 1 2 3 4 5 6 7 8 9 10 10 10 10] using Eqn.
(2.3)

To terminate and restart the spline at control point 5
(P5), the knot vector will become-

U= [0 0 0 0 1 4 4 4 5 6 7 8 9 10 10 10 10]

by repeating the knot value “4” for “k-1” times i.e. 3 times
in this example. Instead if we want to have a disjoint in
the spline at control point 5 (P5) and again begin the
spline from control point 6 (P6), then the knot vector will
become-

U= [0 0 0 0 1 5 5 5 5 6 7 8 9 10 10 10 10]

i.e. by repeating the knot value “5” for “k” times (4 times
in this example).

Now if we want to first terminate the spline at control
point 5 and also disjoin it between control points 5 and
6, it will lead to an ambiguous situation for deciding the
knot vector.

Thus the multiplicity of control point 5 is increased to
“k” times. Now,

k= 4
n= 15 (P1, P2, P3, P4, P5, P5, P5, P5, P6,
P7 . . . . . . )
U= [0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 13 13 13]
using Eqn. (2.3)
(X1, X2, X3, X4, X5, X6, X7, X8, X9, X10 . . . . . . )=
(P1, P2, P3, P4, P5, P5, P5, P5, P6, P7 . . . . . . )

Now to terminate the spline at P5 as well as to have a
disjoint between P5 and P6, we will terminate the spline
at X5 and disjoin the spline between X8 and X9. The knot
vector will now be-

U= [0 0 0 0 1 4 4 4 8 8 8 8 9 10 11 12 13 13 13 13]

This resolved the ambiguity encountered before and it
also does not affect the actual curve, as after termination,
the new spline fromX5 to X8 is just a point at P5, which is
eventually the terminating point of the previous segment
of the spline.

This technique is then implemented for surface gener-
ation both in u and v directions. The generated surfaces
for two similar layouts of control polyhedron are shown
in Fig. 7(b) and Fig. 8(b).

3.4.1. G1 continuity achieved
The above model gave us a successful result for gener-
ating a bifurcating surface using only a single B-spline
surface equation. The next step is to incorporate G1
continuity at all the critical points/polygons of the sur-
face and at the junction so as to have a better surface,
not just a surface with C0 continuity as can be seen in
Fig. 9(a) (last problem of the First Model). These crit-
ical points/polygons are those control points/polygons of
the control polyhedron where the spline is terminated; and
started again. Also, since in the above model we have ter-
minated the spline before it is made to disjoin, hence the
control points/polygons where a disjoint is present are
also included in the critical points/polygons.

This G1 continuity of B-spline is achieved by aligning
the control polygon segments on either side of a critical
point in a straight line. This is done by adding one control
point/polygon very close to the critical point/polygon on
either side of it, with all three points/polygons aligned in
a straight line. This resulted in a smoother G1 continuous
surface, as shown in Fig. 9(b).

4. Advantages of final model

The model presented above offers a wide range of advan-
tages in the designing or reconstruction of surface in
terms of shape and also in terms of parameters used. All
the experiments conducted above used the degree of 3 in
u direction and degree of 2 in v direction (k=4, l=3);
but it is not necessary. The model can handle any degree
both in u and v directions. The results for bi-cubic (k=4,
l=4) and bi-quartic (k=5, l=5) surfaces with similar
control polyhedron arrangements are shown in Fig. 10(a)
and Fig. 10(b) respectively.
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(a) (b)

Figure 8. Final Model and interpolated surface results: (a) Shows another arrangement of control polyhedron, and (b) Shows the
interpolated surface.

(a) (b)

Figure 9. Shows the junction of two arms of a branch with: (a) G1 continuity only at upper part, and (b) G1 continuity at the upper part
and sides.
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(a) (b)

Figure 10. Shows the interpolated surface with G1 continuity: (a) Bi-Cubic Surface (order 4 by 4), and (b) Bi-Quartic Surface (order 5
by 5).

(a) (b) (c)

Figure 11. Asymmetric Branching: (a) Top view, (b) Control polyhedron, and (c) Generated surface.

All the above illustrated images of the generated sur-
face were taken to be regular and symmetric for ease of
understanding.With this model we can have asymmetric
branches as well as irregular non-uniform cross-sectional
shapes along the length as shown in Fig. 11 and Fig. 12
respectively. We have assumed that the control points
data set is available in horizontal slices, but this is not
mandatory. If the control points provided are arranged
in non-parallel slices but conforming to a valid shape,
a surface can still be generated incorporating twist and
turns along the length (as shown in Fig. 12). Thus the pro-
posedmodel provides a way to construct complex shapes
which can handle a gamut of patterns of input data, still
conforming to the continuity requirements.

If this algorithm is used in iteration, we can gener-
ate G1 continuous sub branches, as shown in Fig. 13, by

aligning the last two control polygons of a stem (of the
sub-branch, marked red and yellow in Fig. 14(a)) and the
first two control polygons of the branch (of parent sur-
face, marked yellow and green in Fig. 14(a)) in a straight
line, as shown in Fig. 14(b), or in a projected straight line,
as shown in 14(c)). Last polygon of stem (of sub-branch)
and first polygon of branch (of parent surface) have to be
geometrically identical and overlapping (marked yellow
in Fig. 14). This methodology of using the final model
in iteration may be useful for the 3-D construction of
bronchial tree structures, vascular systems, etc.

In [1], authors developed multiple bifurcations by
using single equation without the iteration of algorithm
for single bifurcation, but they had to redefine the con-
trol polyhedron (with each sub-division number of con-
trol points in each control polygon of surface increased).
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Figure 12. Shows irregular interpolated surface.

Figure 13. Shows multiple branched surface.

Thus pre-information about the number of sub-branches
would therefore be required in their model so as to define
the control polyhedron accordingly. If theirmodel is used
in iteration, certain modifications in defining the control
polyhedronmight be required to have atleast G1 continu-
ity at the junction of sub-branches with respective parent
surface, by virtue of difference in direction of traversing
of control polygons in branch region and in stem region,
which may lead to non-overlapping of contours, even if
control polygons are geometrically identical.

With the iteration of algorithm used in the work pre-
sented here, number of control points in each control
polygon remains constant i.e. same as used to define a sin-
gle bifurcation. The general control polyhedron arrange-
ment, as shown in Fig. 7(a), could be used for sub-
branches as well, along with various other advantages
offered in thismodel. Thus, no pre-information about the
number of sub-branching is required.

5. Conclusion

The method discussed in this work provides an easy and
effective way of generating dichotomous branched sur-
face using only a single open B-spline surface equation. It
allows the generated surface to have at least G1 continuity
both parametrically and geometrically. This method dif-
fers from the conventional approach of stitching various
surface patches together, which sometimes can be a com-
plex step both computationally and logically for achiev-
ing continuity, to generate the final surface.Moreover, the
flexibility to have irregular non-uniform cross sections in
the surface along with asymmetric branches allows the
generated surface to be more realistic. Thus it is a tool
which can handle varying topological and geometrical

(a) (b) (c)

Figure 14. Shows: (a) General layout of control polyhedron for multiple-branching, (b) Shows arrangement of control polygons at the
junction of parent surface and sub-branch in straight line, and (c) In projected straight line.
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complexities while constructing the surface. Some appli-
cations of this can be reconstruction of human bronchial
tree, engine’s manifold design, and Y & T frames for
automobiles.

6. Scope for future work

The work presented here gave a satisfactory result
conforming to various topological and geometrical
complexities. Final model is based on the assumption
that control polyhedron is already available. We have
to realize a method suitable for this model to construct
the control polyhedron slices, automatically estimate the
branching position and then insert the open book and
the inverted T slices accordingly.With these automations
clubbed with surface fitting, we may regenerate surfaces
that are geometrically very close to the real world scanned
objects.

ORCiD
Varun Asthana http://orcid.org/0000-0002-2012-5025
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