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ABSTRACT
Principal curvature is one of the defining features of surfaces studied in differential geometry. While
well-defined and easy to evaluate for smooth surfaces, it cannot be evaluated exactly if the surface is
represented by a polygonmesh, unless some special conditions apply. Nevertheless, estimating the
curvature of a surface mesh is a crucial step in common mesh processing algorithms, such as mesh
segmentation,mesh smoothing, remeshing and others. While awealth of approaches for estimating
the curvature has been proposed in the literature, aiming at the best possible precision of the esti-
mation, an objective study identifying the strengths and weaknesses of the different methods was
usually lacking. We present results of a comprehensive study focused on different aspects of curva-
ture estimation. We extend some of the estimators in order to match properties of others and thus
provide comparable results. The results of the study indicate that currently there is nooneuniversally
optimal method of curvature estimation. Choosing an appropriate curvature estimation algorithm
is highly application specific, and we provide the guidance required for making such choice.
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1. Introduction

3D models in the form of polyhedral meshes are used
in a multitude of applications and shape understanding
for this approximation to a smooth model surface has
received great attention in research. Estimating continu-
ous properties, such as surface normals and curvatures,
from the discrete representation is an important step
for processing such models. Curvature in particular is
omnipresent in algorithms including visualization (e.g. in
non-photorealistic rendering),mesh smoothing, remesh-
ing, mesh segmentation, perceptual mesh comparison,
reverse engineering and many others.

Various methods have been presented to estimate cur-
vature on polyhedral meshes and themathematical back-
ground is well understood. Most publications on this
problem develop a new estimation algorithm and show
how it outperforms the existing ones.We suspect that this
is sometimes assisted by selecting data where the estima-
tor excels and not considering enough parameters which
might varywith differentmeshes. As a result, the compre-
hensive understanding of the problem and the selection
of the right curvature estimator is often hindered. This
also stems from the fact that many factors influence the
result, and thus a multivariate comparison exceeds the
scope of most papers.
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One example is the assumption on the local shape of
the smooth surface when fitting a specific analytical sur-
face for which the curvature properties are known. In this
setting, the estimator with the correct assumption will
most probably prevail in any evaluation. Furthermore, a
comparison using synthetic meshes might not be repre-
sentative for the selection of the right estimator for noisy
data. A third example is the effective area in which the
estimator uses the discrete mesh.While most researchers
are aware of the assets and drawbacks of the smoothing
effect which is produced when enlarging this area, we
often find that curvature estimators with different ranges
are compared to each other. For an example see Fig. 1,
where a curvature-based mesh segmentation is heavily
influenced by the assumption on the smoothness of the
underlying shape.

Our goal is to assess the performance of popular cur-
vature estimators based on a wide range of factors. We
want to aid the reader in selecting the proper curvature
estimator for a particular problem at hand. We modify
existing approaches in order to make them compara-
ble to others and applicable to other datasets. Despite
those extensions, our aim is not to present another novel
approach which performs best in all situations. The focus
of the evaluation is on the accuracy of the estimated
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Figure 1. A polyhedral mesh for a metal forming process exported from the CATIA V5 software. The color-coding shows the results of
two different curvature estimators. Choosing the better suited algorithm depends heavily on the assumptions of the approaches, for
example which region of themesh is assumed to be smooth. This also shows that none of the estimators assuming a smooth surface can
produce correct values for the vertices where the underlying surface is not continuous in curvature. A mesh segmentation for example
must be aware of this limitation.

curvatures which are compared against the exact values
of various analytic surfaces.

Section 2 introduces the mathematical context, espe-
cially including the fundamental forms. Building on this,
we aim to present popular approaches to curvature esti-
mation in a coherent language. Section 3 describes major
parameters of the accuracy evaluation and Section 4
presents the modifications required for comparing the
different estimators. The analysis in Section 5 constitutes
the main part of the paper where the popular approaches
and their extensions are examined for an impartial opin-
ion. The results are summarized in the last section.

2. Background

2.1. Mathematical background and notations

Let a smooth surface S be locally described at point p as
a function X(u, v) : R2 → R3 using a local parametriza-
tion of S. This provides a tangential coordinate system
with basisXu (short for partial derivative ofX(u, v) atp in
direction u), Xv , and a unit normal N (orthogonal to Xu
and Xv). The first fundamental form describes the inner
product of two parameter space vectors t1 and t2 as the
inner product of their corresponding tangential vectors
in R3, s1 = (Xu,Xv)t1 and s2 = (Xu,Xv)t2 (see Fig. 2).
This function I : R2 → R is often written as symmetric
2 × 2 tensor I with elements E, F and G. The second

Figure 2. Parametric surface and tangent plane.

fundamental form describes how the surface normal N
changes in the vicinity of p. It is either expressed using
the shape operator, which for a given tangential direction
produces a directional derivative of N, or through the
combination of the second order derivatives of X, which
are then projected onto the normal. The tensor II, with
elements e, f and g, is connected to I through the Wein-
garten matrix, a 2 × 2 tensorW = I−1 · II. The principal
curvatures and principal directions are now available as
eigenvalues and eigenvectors ofW. Note that these equa-
tions get much simpler when the vectors Xu and Xv are
orthonormal. In this case, the terms second fundamental
tensor, Weingarten matrix and shape operator are often
used interchangeably.

I(t1, t2) = sT1 s2 = tT1

(
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F G

)
t2

= tT1
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fE − eF gE − fF

)
(2.3)

Those properties of S are now to be estimated from
its discretization as polygonal mesh. In the following, we
will use p to denote not only a point on the smooth sur-
face, but also a vertex of the mesh. Neighbors to p are
vertices adjacent in the mesh, written as q or qi for any
or a specific neighbor. N is in a similar fashion reused as
vertex-normal at p. Please note that the computation ofN
is also an estimation and Section 3 discusses how N can
be obtained.
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2.2. Estimation approaches

There are several general groups of approaches to cur-
vature estimation, based on different concepts. A first
group of estimators fits an analytic surface or a curve
into the vertices of a local region. Goldfeather and Inter-
rante [5] describe three approaches which are widely
used. For all of them, a local orthonormal coordinate sys-
tem L = {U,V ,N} is constructed at a vertex p using the
tangent plane orthogonal to the vertex normal N. This
local frame allows retrieving the coefficients of theWein-
garten Matrix W, from which the principal curvatures
and directions are available.

TheNormal Curvature Approximation estimatesW by
its property to yield the normal curvature for a given
direction: kt = tTWt. For any vertex q adjacent to p, this
curvature can at the same time be approximated as the
inverse radius of the osculating circle passing through
p (with normal N) and q. The corresponding tangential
direction t is then the edge between p and q, projected
to the tangent plane and normalized. For each of the n
(non-degenerate) neighbors we obtain Eqn. (2.4) and we
can solve this linear system for the unknown coefficients
ofW via least squares. Due to the orthonormal basis, only
e, f and g have to be found. Similar approaches using the
normal curvature have been used by [12] and others.

kn = tTWt = 2
(p − q)TN

(p − q)T(p − q)

t =
(
UT

VT

)
(p − q) (2.4)

The Quadratic Surface Approximation fits the surface
f (u, v) = (A/2)u2 + Buv + (C/2)v2 into p and its adja-
cent vertices. From Eqns. (2.1) to (2.3), one can see that
A, B andC are the three unknowns of the now symmetric
matrixW for this surface. By transforming all neighbors
q into L, a linear system of n equations can be solved
forW. Goldfeather and Interrante show that scaling each
equation by factor 2/l2 (where l is the respective length of
(p − q) in the tangent plane) makes this approximation
approach similar to the Normal Curvature Approxima-
tion (see also Fig. 3). The only difference is that parabolas
are used instead of circles.

This approach is further expanded to the Adjacent-
Normal Cubic Approximation by also using the ver-
tex normals of the neighbors q. The surface function
is expanded to f (u, v) = (A/2)u2 + Buv + (C/2)v2 +
Du3 + Eu2v + Fuv2 + Gv3, forwhichW is still the same.
The normal of this function at any point (u, v) can be
computed from the cross product of the partial deriva-
tives of f and thus be integrated into the linear system
for fitting the surface. Although there are now seven

Figure 3. Geometric interpretation from fitting circles and
parabolas (dotted) to an edge (red). a) The normal curvature can
be approximated using the radius of the osculating circle. For this
Eqn. (2.4) is established from the lengths of the edges of the two
indicated triangles. Note how the direction of the edge defines
the the sign of the curvature.) Quadratic Surface Approximation
uses the same idea by fitting a parabola to each edge [5].

unknown variables (A throughG), the curvature depends
only on the first three. A detailed insight in fitting trun-
cated Taylor expansions to a smooth surface is provided
by Cazals and Pouget[2]. They already show that the esti-
mation quality heavily depends on the type of surface
which is being used for the fit.

Meyer et al. suggest in [10] using a least squares fit
only for estimating the principal directions and pro-
pose to compute the principal curvatures frommean and
Gaussian curvature (see Eqn. (2.5)). The discrete mean
curvature H and the discrete Gaussian curvature K are
approximated over local integrals using a specific area A
on the triangulated mesh. The angles αi and βi in Eqn.
(2.6) are the angles opposing the edge (p, qi) and there
are n adjacent edges for p. θj is the angle in each of the k
triangles adjacent to p in the corner corresponding to p.

k1,2 = H ±
√
H2 − K (2.5)

H = 1
2Amixed

n∑
i=1

(cotαi + cotβi)(p − qi)

K = 1
2Amixed

⎛
⎝2π −

k∑
j=1

θj

⎞
⎠ (2.6)

Cohen-Steiner andMorvan[3] propose to use a tensor
which essentially represents the shape operator defined
by the dihedral of two triangles, a region around the edge
(given by edge length) and the direction of the edge. This
tensor is averaged in a certain area (such as the geodesic
disc around a vertex) and scaled with area size. The prin-
cipal curvatures and directions are retrieved as the two
maximum eigenvalues of the three-dimensional tensor.

Rusinkiewicz[11] starts by estimating the second
fundamental tensors per triangle. An orthonormal
parametrization in the plane of the triangle is constructed
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from the triangle normal and one of its edges.Whenmul-
tiplying II with a parameter space vector t = (t(u), t(v)),
we directly obtain the directional derivative of normal
N with respect to t (see Eqn. (2.7)). II is computed
using the three equations provided by the three edges
in each triangle and the normal differences along those
edges. Subsequently, the per-vertex tensor is computed as
a weighted average of the per-face tensors, which must
be rotated from the coordinate system of each trian-
gle into the coordinate systems of the vertex. Due to
the chosen parametrization, the curvature is now avail-
able through the eigenvalues and eigenvectors of the
(per-vertex) tensor II. A similar method is discussed by
Theisel[13].

II
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)
=
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u Nvt(v)

XT
v Nut(u) + XT

v Nvt(v)

)
=
(
XT
u Nt

XT
v Nt

)

(2.7)
Othermethods and variations of the approaches above

exist[7][8][6], but to the best of our knowledge the six
above described approaches are used most widely. All of
thoseworks are aware of the discrete representation of the
smooth surface and many already discuss important fac-
tors, such as the size of the patch used for the estimation
or the local regularity of the mesh. At the same time, the
comparison to othermethods often disregards additional
factors. For example, both Rusinkiewicz and Goldfeather
compare their estimators, which effectively use the 2-ring
neighborhood, against methods which rely only on the
1-ring.

2.3. Contributions

In thiswork, we illustrate, explain and evaluate the factors
which should influence the choice of a proper curvature
estimation method. Our contribution is threefold:

• Factors influencing the choice of the estimator
are illustrated and practical use cases highlighted
(Section 3).

• Existing estimators are modified so that they can be
compared to others, specifically in terms of estimation
range (Section 4).

• An evaluation protocol is designed and results are pre-
sented to assess the accuracy of different estimators
when varying important factors (Section 5).

3. Factors

Curvature estimation on a polygonal mesh is obviously
limited by the quality of the data. Information which has

been lost due to smoothing, simplification or discretiza-
tion cannot be recovered without additional knowledge,
such as the parameters for the subdivision surface. Fur-
thermore, the performance of an estimator is influenced
by how well the assumptions of the estimation approach
apply to the data at hand. In the following, we discuss data
properties and algorithmic characteristics which should
be considered when comparing and choosing curvature
estimators. We distinguish between properties which are
inherent to the data and properties which are inherent to
the estimation approach.

3.1. Data connectivity

The first three factors which influence the choice of the
curvature estimator originate from the surface represen-
tation. While we discuss only polygonal meshes, those
can still have various forms and specifications. Non-
triangle meshes are one representation on which not all
of the presented estimators can operate. This includes
especially quadrilateral meshes and mixed quad/triangle
meshes which both are widely used in modeling. A sim-
ple triangulation of such polygons should not be used
because different triangulations generate different curva-
ture values, especially if the polygons are not planar.

Borders or features in a polygonal mesh may in some
cases hinder the curvature estimation. Such topological
edges exist in meshes with holes or regions which are
semantically separated (for example through a segmen-
tation process). The neighborhood of a vertex near to or
on such an edge might not support the assumptions of
some estimators.

Regularity is another factor that is considered in
most research on curvature estimation (see for example
[5]). For triangle meshes, a regular triangulation is often
defined by a vertex neighborhood which has a valence
of six (i.e. each vertex has six adjacent vertices) and an
equal spacing between most of the neighbors. Irregular-
ity is introduced by changing the vertex positions on the
surface and either keeping the mesh connectivity[5] or
changing it[11].

3.2. Data noise

Depending on the origin of the polygonal mesh, differ-
ent kinds of noise appear. While a mesh exported from
a CAD modeling tool will typically be noise free, 3D
scanning of a real-world surface will probably produce
a Gaussian noise, and mesh compression might intro-
duce a uniform quantization noise. This affects the sam-
pling of the surface and consequently also the curvature
estimation.
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3.3. Data discretization

One of the most important factors influencing the qual-
ity of the mesh is the sampling rate (sampling density).
Practical considerations, such as storage space, process-
ing times, scanning resolution or numerical issues, limit
the density of most meshes and simultaneously the accu-
racy of the representation of the original surface. This
accuracy can be reduced to a point where the curvature
cannot possibly be estimated correctly.

If the curvature estimator takes into account a large
neighborhood around a vertex (for example to fit an ana-
lytical surface), the discretization must provide sufficient
smoothness in this region. This problem is thus closely
related to the assumptions of the estimator. Triangula-
tion of an analytical surface is a typical example where
this is important. Most triangulation approaches allow
to specify a maximum distance between the original
and the triangulated surface, below which the sampling
rate is globally increased. It is thus necessary to analyze
how the precision of the curvature estimation varies with
changing sampling rates when data noise and sampling
irregularity are present.

3.4. Estimation range

All estimators obtain the curvature properties of the
mesh by examining a local neighborhood. We define
the range of an estimator as the distance in which a
change in the mesh has an affect on the estimation result.
This support area for an estimation can be the 1-ring

neighborhood (R1) of directly adjacent neighbors to a
vertex. If the per-vertex normals of the 1-ring neighbors
are required, the estimator effectively utilizes the 2-ring
neighborhood (R2). We will discuss which approaches
allow to specify this range as a parameter and how a larger
range influences accuracy.

While a larger estimation range will increase robust-
ness against noise, it smooths shape information at the
same time (see Fig. 4). As a result, subsequent processing
steps will be heavily influenced by the range of the esti-
mator. For example, a segmentation process on the mesh
in Fig. 1 profits from a smaller range of the estimator
R1 when the mesh does not contain noise. With a high
range R3, highly curved areas cannot be captured. This
example also shows that none of the estimators presented
can produce a correct curvature value if the surface is
not smooth, i.e. the curvature is not continuous. The yel-
low colored vertices in the middle picture have a value
in between the high curvature of the bend (red) and the
zero curvature or the planar region (white). Smoothing
a mesh or its curvature values also has an effect similar
to increasing estimation range. See Fig. 5 for an example
with a noisy data set.

Estimation range is one major motivation for this
research, since we feel that few publications consider this
factor adequately. In most comparisons, we find estima-
tors of different range compared to one another. It has not
yet been analyzed how the popular approaches to curva-
ture estimation perform on a similar, more comparable
range.

Figure 4. The selection of the curvature estimator and its properties influences the interpretation of thepolygonalmesh. In such a coarse
mesh, the 2-ring estimator RU (R2) cannot separate high curvature and planar regions as well as the 1-ring QS (R1). However, this alone
is not significant if the sampling density is increased or noise is present. Please note also that the mesh has a border and that not all
estimators will produce a good value for border vertices in curved regions. The color coding shows the mean curvature as indicated.

Figure 5. Example of a scannedmodel with about 200k triangles. Curvature is estimated using (left to right)QS (R1),MRU (R2) and CSM
(R3). Note the impact of the estimation range on the interpretation of noise and features.
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Figure 6. Planar versions of meshes used for the evaluation. Top
row: increasing irregularity (0◦, 14◦ and 25◦ RMS error) Bottom
row: increasing sampling rate (817, 3169 and 12481 vertices).

3.5. Estimator assumptions

Besides the size of the region in which the original sur-
face is expected to be smooth, some curvature estimation
approaches assume a certain type of surface, for example
when fitting an analytical surface to the discrete values.
This does not imply that they fail with different surfaces,
but the accuracy has been shown to be optimal for the
correct surface type[2]. It has to be shown how estimators
for a specific surface perform against other estimators
and we want to point out that it is not predicative to use a
single class of surface for the comparison (as done in [8]
on spheres).

The per-vertex normals which are used in some
estimators can be seen as another assumption of the
approach. One must consider that the computation of
those is also an estimation which is limited by similar
factors. Goldfeather and Interrante[5] elaborate on how
different normal estimations influence the accuracy of
their method.

3.6. Other estimator properties

Three more factors should be discussed for the different
estimators from a practical point of view. Implementa-
tion complexity describes how easily a method can be
implemented, Run time complexity allows comparing the
approaches in terms of computational requirements and
Locality assesses how well an estimator can be used to
compute curvature only locally, allowing parallelization.

4. Estimator modification

In order to compare the accuracy of the methods, we
need to ensure that they operate on the same data and
that the results can be interpreted in a comparable man-
ner. As discussed earlier, different ranges imply differ-
ent interpretations of the data. This section shows how

most estimation approaches can be modified so that they
become comparable.

4.1. Range extension

Among the estimators presented in Section 2, themethod
from Cohen-Steiner and Morvan already has an explicit
notion of the range in which the polygonal mesh is exam-
ined. We relate the approximated radius of the geodesic
disc to the maximum distance found in the 1-ring.

The methods by Goldfeather and Interrante can be
extended to a different region in a straightforward man-
ner. We use a simple breadth-first search to collect all
vertices in a given range and add them to the system of
equations. The range R to which neighbors qj of a ver-
tex p are collected is given as a multiple of the maximum
distance to p in its 1-ring neighborhood. We chose the
maximum distance because any smaller distance would
downgrade the performance of the original estimator (for
a factor of 1). This can easily be seen if one imagines a
vertex in 2D and two outgoing edges to two other 2D
neighbors. If curvature is approximated by an osculat-
ing circle, we (incorrectly) increase the curvature when
regarding only a smaller region around the vertex (and
hence shorter edges). Note also that we do not use dis-
crete rings, but all neighboring vertices in the given range.
This allows comparing those estimators to the method of
Cohen-Steiner and Morvan. The price for this approx-
imation is that the accuracy increases when the trian-
gulation is irregular and longer edges are present in the
1-ring.

The estimators of Meyer[10] and Rusinkiewicz[11]
cannot be extended in such a manner. While the former
will hence be compared using the original 1-ring formu-
lation, we present an adaption to the idea of Rusinkiewicz
which allows a larger range than the original approach.

4.2. Modified Rusinkiewiczmethod

Rusinkiewicz[11] shows how the second fundamental
tensor can be computed for each triangle and carefully
averaged to a per-vertex tensor (see Section 2). For com-
puting this tensor, the property of the shape operator is
used that it gives the directional derivative of the nor-
mal.We now utilize the same observation to compute the
per-vertex curvature.

For each vertex p, we first construct an orthonor-
mal coordinate system with the vertex normal N as
normal of a tangent plane. As Rusinkiewicz, we use
the normals estimated by the method of Max[9]. The
approach also works with normals computed differently
and improves when better (or exact) normals are avail-
able. Vectors Xu and Xv in this plane are obtained using
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the (non-degenerate) edge to any adjacent vertex q. For
each edge of the 1-ring, we assume that, according to
Eqn. (2.7), the vector t = ((Xu,Xv)

T(p − q)) multiplied
with the fundamental tensor II equals the directional
derivative of N in direction t in parameter space. As in
the original Rusinkiewicz approach, we approximate this
derivative using finite differences between the per-vertex
normalsN andNq of p and q. This gives for each edge the
equations (4.1) and (4.2) from which the second funda-
mental tensor and the principal curvatures and directions
can be computed using least-squares.

(
e f
f g

)(XT
u (p − q)
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v (p − q)

)
=
(
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u (Nq − N
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v (Nq − N)

)
(4.1)

(
XT
u (p − q) XT

v (p − q) 0
)⎛⎝e

f
g

⎞
⎠ = XT
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(
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u (p − q) XT
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)⎛⎝e
f
g

⎞
⎠ = XT

v (Nq − N)

(4.2)

Our modification has several advantages over the
original approach for our study. First, we can now use
the estimation range as a parameter as proposed for
the approaches of Goldfeather and Interrante by sim-
ply adding more distant vertices to the system of equa-
tions. This allows to extend the range of the estimator to
more than the 2-ring on which the original Rusinkiewicz
method effectively operates. While the original method
requires a triangle mesh, our modification can also be
applied to different connectivities, such as quad-meshes
or even point clouds. The estimator has a better locality
since the per-triangle step is no longer required, making
parallelization trivial. Since the per-vertex averagingwith
the careful rotation of the tensor is omitted, the algorithm
is easy to implement and faster than the originalmethod.

5. Comparison

We present a study which compares the accuracy of the
estimators from Section 2 (including extensions from
Section 4), while changing the parameters presented in
Section 3. The estimation ranges Rk are the variants of
the methods using k-times the maximum 1-ring distance
as local support. In the rest of the paper, we refer to the
methods using following abbreviations:

• My: Meyer [10] (R1)
• CSM: Cohen-Steiner Morvan [3] (R1 to R4)
• NC: Normal Curvature Approximation [5] (R1 to R4)
• QS: Quadratic Surface Approximation [5] (R1 to R4)

• AN: Adjacent-Normal Cubic Appr. [5] (R2 to R4)
• RU: Original Rusinkiewicz [11] (R2)
• MRU: Modified Rusinkiewicz: Section 4(R2 to R4)

5.1. Approach

We evaluate the estimation accuracy using analytic func-
tions for which the curvatures are known. Such function
can be represented by a triangle mesh on which the cur-
vature is estimated and compared against the ground
truth. Since some estimators are expected to performbet-
ter only on surfaces of certain type, we use three different
functions (see Eqn. (5.1)). The functions were chosen
so that they include similar types of surfaces as in the
evaluations in [11] and [5].

fquadratic(x, y) = Ax2 + Bx + Cxy + Dy + Ey2

fellipsoid(x, y) = C
√
1 − A2x2 − B2y2

ftrigonometric(x, y) = sin xA + cosBy (5.1)

The meshes that represent those functions are based
on a hexagonal shape formed by six equilateral triangles
of edge length 1. We randomly selected the parameters
A to E in such a range that comparable curvature values
are obtained (randomly in range for the quadratic and
trigonometric case [−2,+2], except the exponential A,
which is selected from [+1,+2]. The ellipsoid parame-
ters are in interval [−10,+10], where A and B are scaled
so that A2 + B2 ≤ 1).

The polygonal mesh must be created with the remain-
ing data influencing factors, i.e. the discretization, topol-
ogy and noise, in mind. We select four subdivisions of
the hexagon shaped mesh with 217, 817, 3169 and 12481
vertices. In the plane, thosemeshes are regular, each non-
border vertex has a valence of six and all angles and edge
lengths are constant.We can now increase the irregularity
by randomly shifting non-border vertices (in the plane)
and changing connectivity to restore a Delaunay trian-
gulation when necessary, since most meshing algorithms
produce such a triangulation. Wemeasure the amount of
irregularity as root mean square difference of all angles
from the expected 60◦ (see Fig. 6). Subsequently the z
coordinates are computed using Eqn. (5.1).

Since not all estimators can handle mesh borders cor-
rectly, we exclude all vertices which have a border vertex
in their R4-range from further computations. Finally,
data noise is introduced by perturbing all vertices (in 3D)
randomly. The noise magnitude has a Gaussian distribu-
tion with standard deviation derived from themean edge
length of the whole mesh, so that the noise is comparable
for differentmesh resolutions. Fig. 7 shows some example
meshes.
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Figure 7. A visualization of 24 meshes (all with 3169 vertices)
used for the evaluation, including noisy and exact surfaces.

Our evaluation thus considers the factors sampling
density, noise, mesh irregularity, estimator assumption on
the type of function and the estimation range. We evalu-
ate the error eabs between the exact principal curvature
values k1 and k2 and the approximated values k̂1 and
k̂2 as eabs = |k1 − k̂1| + |k2 − k̂2|. Our tests have shown
that this error depends almost linearly on |k1| + |k2|.
This allows us to present the relative error measure erel
from Eqn. (5.2) which is, in contrast to eabs, comparable
between different vertices. From this, we can compute the
quadratic mean (or RMS) over all vertices for each per-
mutation of the parameters (density, noise, (ir)regularity,
function, estimator range). For each setting we use an
average over 1000 random surfaces. With four different
densities, four standard deviations of noise, three lev-
els of irregularity, three functions and 20 estimators, this
requires 2,880,000 curvature estimations.

erel = |k1 − k̂1| + |k2 − k̂2|
|k1| + |k2| (5.2)

There are three further considerations that are of inter-
est. First, we do not use the exact normals, but compute
them by the method of Max[9]. While we would like
to separate the problems of normal and curvature esti-
mation, we observed that the tangent space induced by
the exact normals on noisy meshes causes a higher aver-
age error than the approximated normals for the meth-
ods which fit surfaces. While Goldfeather and Interrante
do not observe a significant change in similar tests, we
explain our observation by the disadvantageous tangent
plane for quadratic and cubic surface fitting. Second, we
were also interested in how the accuracy behaves if we
smooth the mesh or the curvature values instead of using
a larger estimation range. Finally, relative error erel is
sometimes unstable, especially when both principal cur-
vatures are close to zero. To the quadratic mean we only
include points with less than than 100% error, since out-
liers would significantly change the result without much
practical meaning.

5.2. Independent factors

The presented version of the approaches My and CSM
are restricted to the topology of a closed triangular mesh
without features. All other estimators can easily be mod-
ified in such a way, that also border and feature edges
exist which disrupt the (topological) circle on the mesh.
TheMy, CSM and RU approaches are limited to triangle
meshes while all other approaches can also be used with
general polygonmeshes and sometimes even other repre-
sentations, such as point clouds. Note that this statement
does not indicate how accurately they perform on such
meshes.

The locality of the estimators and the possibility to
parallelize them for huge datasets or to use them locally
is also implicit in the approaches. Assuming that we can
estimate a vertex normal from its local neighborhood, the
QS, NC, andMy approach depend only on the 1-ring. If
normals are available for all vertices, then theAN and our
MRUmethod are local, too. The originalRUmethod, the
CSM approach, as well as all extended range versions pre-
sented in this paper depend on information beyond the
1-ring or necessitate separate per-triangle or per-vertex
steps.

Runtime complexity is another factor which we can
assess based on the experiences from the test runs. How-
ever, one must be careful with those results since not all
our implementations are optimized. We still share our
observations since the measurements match our estima-
tions of the methods algorithmic complexities.

TheQS (R1), the NC (R1) and ourMRU (R2) are fin-
ished fastest (this does include the time for estimating the
normals). If those need 100% time, then theMy approach
(R1) and RU (R2) need 200% (they pass twice over the
mesh) and theAN (R2) 300% (7 × 7-matrix inversion for
each vertex). Our implementation of the CSM approach
for range R2 needs about ten times longer than the fastest
estimators (due to the edge-collection and intersection
with the geodesic disk). All estimators with an extended
range also require a nearly constant time (1000%) for
each additional range step (i.e. linear increase from R1
to R4) due to the collection of neighboring vertices.

5.3. Interdependent factors

To comprehend and discuss the data collected in our
study, we have to reduce the dimensions of our results.
We first show which approximations are feasible in the
data, decoupling some of the factors from others. Later
we analyze and interpret the remaining information.

The irregularity of the mesh was tested in the three
steps of 0◦, 14◦ and 25◦ angle RMS difference from the
regular 60◦ in each angle of the triangulation. Tab. 1
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Table 1. Increase in error with increasing irregularity. The rows
show the R1 to R3-estimators. The percentages are relative
to the respective 0◦ error: this 0◦ error differs for the vari-
ous approaches. All values are for meshes without noise and
averaged over the remaining parameters.

Irreg. CSM QS NC My

14◦ 86% 479% 466% 343%
25◦ 111% 828% 810% 550%

Irreg. CSM QS NC AN MRU RU
14◦ 110% 207% 212% 374% 352% 313%
25◦ 129% 486% 516% 820% 526% 476%

Irreg. CSM QS NC AN MRU
14◦ 107% 134% 135% 279% 127%
25◦ 124% 214% 221% 691% 176%

shows the average increase in estimation error, where the
0◦ difference is used as 100%. The average is built over
all sampling densities and functions, but without noise.
It can be seen that the error of most estimators increases
proportionally to our irregularity measure. The tensor
average of CSM is significantlymore robust against irreg-
ular triangulation than other estimators. When the esti-
mator range increases, this degradation is reduced, which
is easily explained by the better representation of the orig-
inal surface. This also leads to the consideration that the
increase in error is not only caused by the estimator,
but also by the worse representation of the surface when
irregularity increases. We explain the peculiar decrease
in error for the CSM approach (in R1, first row) for an
increased irregularity by the higher maximum distance
in the 1-Ring (which in turn controls the size of the
geodesic disc used in the estimation). Therefore, slightly
more geometric information is collected in the case of
a slightly skewed mesh. One must also be careful not to
compare the estimators based on those values alone since

they are relative to the estimator’s accuracy at 0◦ irreg-
ularity. In the following analysis, we reduce the dimen-
sionality by averaging the results over all three levels of
irregularity.

Of the three functions used, we found that the elliptic
function, followed by the trigonometric function, often
give the best results if averaged over all estimators. After
analyzing a subset of our data, we conclude that this is not
caused by differences in the estimators, but by the func-
tion choice.While we ensured a comparablemaximum in
curvature values, the distribution of the values may vary.
We use the average of the results over all functions since
it reduces the benefit some estimators have on particular
surfaces.

Next, we separate the noise factor from our combined
analysis. It is clearly visible in the data that the estima-
tion error increases (as was to be expected) with a more
noisy representation. The behavior of each estimator in
the presence of noise is similar for different levels of noise
introduced. It can be described as linear in our samples in
the range between 33% and 100% noise (of 10% median
edge length). This supports Rusinkiewicz’s observations
in [11]. Because of this, we limit the analysis here to the
two settings: no noise and 100% noise. Through prelimi-
nary tests with uniform noise (with equivalent variance),
we assume that the observations remain valid under such
conditions.

The remaining data is shown in Fig. 8 and contains
the three dimensions: mesh density, estimator and the
resulting relative error. The density is specified by the
number of vertices used in each test mesh and the height
of each bar denotes the RMS of the relative error erel.
While we investigate the significance of the total height of
all bars (densities) for an estimator, only the height of the

Figure 8. Error of the curvature estimators for four sampling densities (from 217 to 12481 vertices), with different ranges and without
noise. The bars indicating the error are stacked for visualization purpose only and the error for each density is only the height of the
respective (single-colored) bar.
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single bars gives the correct error.When investigating the
behavior of the lowest density mesh (217 vertices), it can
be seen that the accuracy is highest for the ranges R1 and
R2.Higher estimation ranges take into account a too large
part of the mesh to register large curvature values. As
the density increases, the higher estimation ranges start
to perform better. This can be seen clearly with the most
densemesh (12481 vertices), for which the error is greatly
reduced in the R4 estimators.

These results are still connected to the irregularity in
the meshes, which has been averaged in this example. If
we reduce the irregularity, most of the R1-estimators per-
formmuchbetter (seeTab. 1) and the the increase in error
from R1 to R4 seems linear.

As expected, the interdependence of the range and the
density is recognizable in the data. When it is known in
which range the original surface was smooth, a proper
curvature estimation range can be chosen for the best
result. As an example in our data, the mesh with 817

vertices is best processed with the R2-estimators and the
more dense meshes get better results with larger estima-
tion ranges. If such information is not available, the error
will be similar to what the average of the different den-
sities represents (represented in the graph as the total
height of columns).

Several observations presented by other researchers
are confirmed in this data. Consider the AN (R2), the
QS (R1) and NC (R1): the data show that the former
outperforms the other two for all densities. However,
if the version of the three estimators with equal ranges
(and thus equal interpretation of the data) are compared,
especially the NC often performs better. Note that these
estimators have to collect a different number of vertices
even with the same range. Furthermore, the improved
performance of RU is reproduced for dense irregular
meshes[11]. However, if the irregularity is reduced (as
discussed above), the lower density meshes profit more
from an R1-estimator.

Figure 9. Error of the curvature estimators for four sampling densities (from 217 to 12481 vertices), with different ranges andwith noise.
The bars indicating the error are stacked only as visualization.

Figure 10. Error of the curvature estimators, highest sampling density.
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The graph in Fig. 9 shows the same analysis on noisy
surfaces (10% of themedian edge length, Gaussian distri-
bution). Note that the scale of this graph is substantially
different from the graph without noise. As expected, this
is caused by drop in performance of many estimators
when noise is present. Notably, the CSM method han-
dles noise comparably well (see CSM (R2) to CSM (R4)).
Second comes the proposedMRU version, when a larger
range is allowed (seeMRU (R3) andMRU (R4)).

In Fig. 10, the increase of estimation range is com-
pared to mesh smoothing using the Cotan-Laplacian[4].
A density was selected for which a large estimation range
can still capture significant curvature values (3169 ver-
tices). Popular R2-estimators and their R3-extensions are
compared to smoothing either the mesh before (R2SM)
or the curvature values after (R2SV) the R2 curvature
estimation.

The R3-estimators are useful mainly without noise.
Please note that while smoothing looks like the bet-
ter option for noisy meshes, the average error cannot
capture whether more features are lost than with the
R3-estimators.

6. Results and conclusions

We identified three major mechanisms to be considered
when choosing a curvature estimator for a particular data
set.

Estimation range has a major influence on accuracy,
data interpretation and runtime properties. While this
rangemust be small enough to capture all relevant details
in an object, a larger range improves accuracy (if the sur-
face is smooth) and robustness against noise (see also
Fig. 8). Comparing estimators with different ranges is not
sufficient and we presented an evaluation which com-
pares multiple estimators on equal (and different) ranges.
We presented how popular estimators can be extended
for this purpose. Increasing the estimation range pro-
duces different results than a smoothing operation. Any
operation using curvature values should be aware of the
profound influence of the estimation range.

Noise and irregularity of the data are highly relevant
factors for choosing an estimator. Without noise, the
method of Rusinkiewicz[11] and its modification pro-
posed here perform best also for irregular meshes, while
on more regular meshes the approaches from Gold-
feather and Interrante[5] perform very well too. With
noisy data, themethod byCohen-Steiner andMorvan [3]
is less prone to estimation errors. We have demonstrated
that smoothing the noisy meshes gives better results than
smoothing curvature values afterwards.

Practical properties of the approaches were also com-
pared and can be used to select the estimator. The

Quadratic Surface and Normal Curvature Approxima-
tion as well as our modified Rusinkiewicz method are
easiest to implement and have the fastest runtime.

We conclude that among the reviewed curvature
estimators, there is none outperforming the others
in all aspects. Our modification to the estimator by
Rusinkiewicz[11] demonstrated how complex such a
comparison is. The modified method is faster than all
other estimators with comparable estimation range. It
is easier to implement and has a higher locality than
the original method, and it has a higher accuracy on
larger estimation ranges. At the same time, the increased
range might prevent it from finding some details. It also
gives better results than themethod ofCohen-Steiner and
Morvan[3], but only for meshes without noise.

We suggest that future curvature estimation research
evaluates any new estimation approach on comparable
settings, especially for the estimation range. It is further
strongly advised to evaluate the particular estimator with
meshes of varying irregularity, density and levels of noise.
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