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ABSTRACT
This paper proposes a novel framework for high resolutionprinting, detection, tracking, and registra-
tion of deformable grids. The undeformeddot feature grid is createdon the target surface using a flat
bed inkjet printer. After deformation, the surface is imaged using close-rangemonocular vision, and
the dots are detected and localized to sub-pixel accuracy. A novel, deformation invariant grid regis-
tration topological map and associated algorithms are used to track features between subsequent
video frames. By matching themap to the undeformed grid geometry, stretching or compression of
the distance between the dots can be used to compute the material strains. Accuracy, repeatability,
and computation time for several image based dot feature detectors are compared, and experi-
mental laboratory results demonstrate consistent robustness of themethod under practical imaging
conditions.
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1. Introduction

Deforming flat sheets into final product shapes is a
frequent manufacturing process. Examples range from
refrigerator inside liners to metal automobile bodies.
Simple vacuum forming is accomplished by warming
the thermoplastic sheet and then using suction to force
the material against a mold of the desired shape. Sheet
metal forming depends on high force presses. In either
case, there is a desire to save cost and mass by minimiz-
ing material thickness, so long as excessive thinning or
wrinkling are avoided. Prediction [5] can reduce design
and process iteration, but, particularly for new materials,
characteristic property determination and experimental
validation remain essential.

A standardized method is the Limiting Dome Height
test [7] that can be used to plot safe, marginal, and fail-
ure strain regions on a material Forming Limit Diagram
(Fig. 1). When both the major ε1 and minor ε2 princi-
pal surface strains are positive (tension), the material will
stretch until it cracks. When the minor strain is negative
(compression), deformation can continue until wrinkles
appear.

Strain is measured by determining, to a high reso-
lution, the change in distances between specific surface
locations before and after forming. To accomplish this,
we first print a regular grid onto the undeformed sheet.
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After forming, close-range computer vision is used to
detect the deformed grid elements, track them from
frame to frame, and maintain an invariant registration
with the original grid.

The remainder of this paper is organized as fol-
lows. Grid printing is described in Section 2. Section
3 evaluates several image-based feature detectors using
both real and synthetic datasets. Section 4 describes
a new technique for inter-frame grid tracking, and
Section 5 introduces a novel algorithm for deformation-
invariant grid registration. The paper concludes in
Section 6.

2. Grid printing

2.1. Strainmeasurement grids

Undeformed strain measurement grids are typically
modest resolution random speckle patterns [6][24], cir-
cles [2], squares, or dots. For squares, the corners can
be considered as vertices [13]. Dot centers can alterna-
tively be used. After forming, the surface strains can be
computed as described in [23]. Three vertices from a
single grid element establish a local (undeformed) tri-
angle AOB (Fig. 2). After forming, the distorted vertices
define the triangle A′OB′. The relative displacement of
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Figure 1. A typical forming limit diagram [10].

Figure 2. Homogenous deformation of a triangular grid element.

the initial grid vertex coordinates, (XA,YA) and (XB,YB),
to the deformed coordinates, (xA′ , yA′) and (xB′ , yB′), are
expressed by the linear system:

[
xA′
yA′

]
=

[
F11 F12
F21 F22

] [
XA
YA

]
,

[
xB′
yB′

]
=

[
F11 F12
F21 F22

] [
XB
YB

]
(2.1)

where F2×2 represents a constant second order defor-
mation gradient tensor. After rearranging and solving

for F:

⎡
⎢⎢⎣
F11
F12
F21
F22

⎤
⎥⎥⎦ = D

⎡
⎢⎢⎣

YB −YA 0 0
−XB XA 0 0
0 0 YB −YA
0 0 −XB XA

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xA′
xB′
yA′
yB′

⎤
⎥⎥⎦
(2.2)

where D = 1/(XAYB − XBYA). The eigenvalues, λ1,2, of
F can be computed using Singular Value Decomposition,
and the relationship: ε1,2 = ln(λ1,2) defines the surface
strains.

For constant strains, a circle grid element will deform
into an ellipse, and measurement can be performed by
using computer vision to determine the ellipse major
and minor axes [4]. A strain gradient across the ellipse
cannot be measured, and it is impractical to print the
circles much smaller than the standard 2.54mm diam-
eter. Similarly, square grids cannot in practice be printed
smaller than this pitch. Ink cracking at higher strains is
also a concern. A regular grid of small diameter dots that,
over unlimited areas, can be printed and detected to a
higher resolution than the commercial GOM Argus [8]
or ViALUXAutoGrid [25] systems, was therefore chosen
for this work.

2.2. Large area high resolution printing

Although electrochemical etching methods can be used
on steel sheets to create the grid, resolution is not ade-
quate, and area is limited to the size of the stencil.
Screen printing is usually chosen for aluminum and plas-
tic, but again resolution and maximum area are lim-
ited. Therefore, a high resolution programmable solution
was employed. First, a regular grid pattern with 0.7mm
diameter solid dots, on a 1mm pitch, was designed in
AutoCAD R© [1]. Actual printing was performed using a
1440 × 1440 dots per inch resolution Roland LEJ-640
1625mmwide flatbed inkjet printer [22]. (Fig. 3) A valu-
able characteristic is that the ultraviolet light curable ink
can stretch up to 220 percent, and hence is unlikely to
crack under the expected strains. Omitted dots (as can
be observed in Fig. 3(b)) are used for inter-frame video
fiducial tracking, as described in Section 4.

3. Grid-feature detection

3.1. Blob detection

To robustly detect and accurately localize each dot-grid
feature, we adapted an existing solution from the litera-
ture, and thereby leveraged the extensive body of work
regarding feature detection. Several image-based feature
detection algorithms were investigated and four blob
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Figure 3. Example of inkjet dot grid printing. (a) Inkjet dot grid printed onto flat AA5754-O aluminum sheet; (b) Dot grid after forming.

detectors were identified for further investigation. The
four candidate detectors are described briefly below.

The Maximally Stable Extremal Regions (MSER) blob
detector was developed by Matas et al. [18]. MSERs are
an affine-invariant stable subset of the connected compo-
nents in a thresholded image. All possible threshold val-
ues are tested and the maximally stable extremal regions
are those that exhibit the smallest change over a range of
different thresholds.

The Scale Invariant Feature Transform (SIFT) is a
detector and descriptor developed by Lowe [16, 17], who
pioneered the Difference of Gaussians approach. To sim-
plify computation, the DoG operator, D(x, y, σ), approx-
imates the scale-normalized Laplacian of Gaussian [15]
by computing the difference of two adjacent scale-space
images:

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (3.1)

where L(x, y, σ) denotes the input image after convo-
lution with a variable-scale Gaussian kernel and k is a
constant multiplicative factor representing the difference
between two nearby scales.

Speeded-Up Robust Features (SURF) is a local invari-
ant feature detector and descriptor developed by Bay
et al. [3]. Fundamentally, the SURF algorithm uses an
approximation of the determinant of the Hessian matrix:

detHapprox = DxxDyy + (wDxy)
2 (3.2)

where Dxx, Dyy, and Dxy denote box convolution filters
that approximate the second order Gaussian derivatives
andw is an experimentally determined balancing weight.
To enable fast computation of the box convolution filters,
integral images [26] are used. False positives are elimi-
nated using non-maximum suppression [19] in a 3× 3×
3 neighborhood, and the feature is localized to sub-pixel
resolution.

The Center Surround Extrema (CenSurE) detector is
based on a bi-level Laplacian of Gaussian filter. Although
a circular filter provides rotational invariance, CenSurE
uses a hexagonal or octagonal filter to reduce runtime.

These filters can be computed very quickly using slanted
integral images so that the computation time required for
each filter is independent of its size. CenSurE computes
a filter response at every pixel and uses non-maximum
suppression to eliminate the false positive errors. A scale-
adapted Harris measure [9] is used to suppress the
response from edges. A popular implementation of the
CenSurE detector – named “STAR” – uses a filter with a
shape resembling the Star of Lakshmi.

3.2. Detector evaluation

3.2.1. Synthetic dataset
To evaluate the four blob detectors selected from the
literature, a synthetic image sequence was generated
using ray-tracing software. With the exact location of
each feature derived from the projective geometry of
the synthetically-generated image, the ray-traced images
could provide ground truth data which was used to mea-
sure the accuracy and precision of the feature detection
process. In total, a sequence of 15 progressive frames
was rendered using the Persistence of Vision Ray-tracer
[21], with each image depicting a flat sheet of aluminum
marked with a dot-grid pattern. The virtual camera was
rotated throughout the sequence so that, with each suc-
cessive frame, the angle of incidence grew increasingly
oblique. This corresponded with greater depth-of-field
blur in each image as the sequence progressed. To ensure
photo-realism: lighting, aperture, focal length, and the
material properties of the aluminum sheet were all fine-
tuned to match real images captured using a camera.

3.2.2. Benchmarking criteria
To meet the requirements of our application, a feature
detector must satisfy the following four criteria:

1. Coverage: For optimal results, all grid features within
the field of view of the image should be detected.
In practice, some undetected grid features near the
image borders are acceptable. However spurious grid
features (i.e., false positive errors) and undetected
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grid features (i.e., false negative errors) must be min-
imized to enable subsequent processing stages.

2. Accuracy: Like any metrological application, strain
analysis demands a high degree of accuracy. For suf-
ficiently low strain uncertainty, sub-pixel accuracy is
required.

3. Repeatability: Individual grid features must be reli-
ably detected across multiple images in the sequence,
despite changes to scale, rotation, and illumination.

4. Computation Time: For practical use within an
industrial environment, computation time should
approach the camera data acquisition rate.

3.2.3. Test platform
For this experiment, existing implementations of the
MSER, SIFT, STAR, and SURF detectors were obtained
fromOpenCV 2.4.6. Each detector’s response was filtered
such that only dark blobs were recorded. The detection
and evaluation software were compiled with GCC 4.6.3
using -O2 optimization. The evaluation was performed
on a 2.8GHz Intel Core i7 running Ubuntu 12.04 LTS.
Eight-bit grayscale images with a resolution of 1024 ×
768 pixels were used.

3.2.4. Experimental results
3.2.4.1. Coverage and repeatability. The MSER detec-
tor demonstrated relatively poor coverage and repeata-
bility. On average, 7% of all available features went unde-
tected throughout the image sequence, and false positive
errors were prominent. These errors appeared scattered
throughout the image without a discernible pattern. The
rate of recurrence and location of these errors would
inhibit robust grid tracking.

The SIFT detector exhibited the worst coverage and
repeatability of any detector evaluated herein. As the
sequence progressed, the number of false positive errors
increased dramatically, often appearing in streaks that
stretched across the image. At its best, the SIFT algorithm
detected 87.4% of available features. By the end of the
sequence, only 62.2% of features were detected. On aver-
age, SIFT would re-detect only 79.6% of the features
previously discovered from the preceding frame.

Except for a few false negative errors appearing
throughout the image sequence, the STAR detector
demonstrated near perfect coverage and repeatability. For
every frame in the sequence, over 99% of all available fea-
tures were detected. Re-detectionwas accordingly strong,
with an average rate of 97.1%.

The SURF detector achieved near flawless coverage.
For a typical frame, 99.4% of all available features were
detected. Although a few false negative errors did occur,
these undetected grid features only appeared at the very
edge of the frame where their effect is negligible. No

false positive errors were reported. The detection and
re-detection statistics for Frame 7 are summarized in
Tab. 1.

Table 1. Number of features detected as a percentage
of total features present (taken from Frame 7 of the
image sequence). Re-detection measures the ability of
each detector to detect the same feature in both the
current frame and the preceding frame.

Detector Features Detected (%) Features Re-detected (%)

MSER 94.5 87.8
SIFT 83.7 81.2
STAR 99.7 97.2
SURF 99.4 96.8

Table 2. Localization Error as measured using a typical frame (7
of 15) from the image sequence.

Detector
Mean± Std. Dev.

(pixels)
Error > 1 pixel

(%)
Error > 5 pixels

(%)

MSER 0.01± 0.26 1.50 0.33
SIFT 0.39± 0.08 0.20 0.01
STAR 0.03± 0.48 1.24 0.47
SURF 0.02± 0.09 0.00 0.00

3.2.4.2. Accuracy. The MSER features were detected
with relatively poor accuracy andprecision (see Fig. 4(a)).
The average localization error was 0.01 pixels, with a
standard deviation of 0.26 pixels. Most of the extreme
localization errors occurred at the image borders where
only a fraction of each feature is within the field of view.

The results from the SIFT detector were biased by a
systematic error introduced during the detection pro-
cess. The mean localization error was 0.39 pixels (X-
error: +0.27 pixels, Y-error: +0.28 pixels). However,
SIFT demonstrated the best precision of any detector
evaluated herein, with a standard deviation of 0.08 pixels.
The bias can be seen throughout the error distribution in
Fig. 4(b).

The STAR detector produced the worst precision of
any detector evaluated herein (see Fig. 4(c)). Due to the
fact that STAR does not use sub-pixel interpolation, the
standard deviation of the feature localization error was
0.48 pixels. 1.24% of the STAR features were detected
with an error greater than 1 pixel, and 0.47% of features
were detected with an error greater than 5 pixels. Despite
poor precision, the mean localization error was only 0.03
pixels.

SURF features were detected with the best accuracy
and precision (Fig. 4(d)). Themean localization errorwas
only 0.02 pixels, and the maximum error produced dur-
ing the detection process was limited to 0.36 pixels. The
standard deviation across all images in the sequence was
0.09 pixels.
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Figure 4. Error distribution of detected features relative to ground truth values.

3.2.4.3. Computational performance. The computational
performance of each detector was evaluated by mea-
suring the time required to detect all features within
a frame. For our sample sizes, for n features, all four
detectors performed in linear O(n) time, with varying
growth constants for each detector. The STAR detec-
tor demonstrated the best runtime, followed by the
MSER, SURF, and SIFT detectors, respectively. The
computational performance of each detector is detailed
in Tab. 3.

Table 3. Computation time for a typical frame with approxi-
mately 900 features detected.

Detector Runtime (ms) Frames Per Second

MSER 116.90 8.55
SIFT 482.36 2.07
STAR 38.50 25.98
SURF 199.79 5.01

3.3. Grid-feature localization on formed aluminum

3.3.1. Methodology
To validate the results of the synthetic dataset analysis,
and determine the applicability of this research to practi-
cal (industrial) imaging conditions, the feature detection
algorithms were also applied to real images of a formed
aluminum dome.

After applying the grid pattern, the aluminum sheets
were formed into a punched dome by a laboratory
stamping press. The stamped sheets were then imaged
using a Point-Grey Dragonfly camera. 8-bit grayscale
images were captured at 1.5 frames per second with
a resolution of 1024 × 768 pixels. A 12mm low-
distortion Cosmicar-Pentax fixed-focus lens was used
with a 1mmextension ring to facilitate close-range imag-
ing (∼5 cm object-to-sensor distance). The camera was
mounted as the end-effector of a portable articulated-arm
coordinate measuring machine. To avoid the need for
robotic path programming, the camera was hand-guided



COMPUTER-AIDED DESIGN & APPLICATIONS 53

by scanning the target surface in a sweeping motion
(Fig. 5).

Figure 5. A hand-guided cameramounted on an articulated arm
coordinatemeasuringmachine (from [13], used with permission).

3.3.2. Experimental results
Similar to the synthetic dataset results, the MSER
algorithm performed poorly when operating on real
video of formed aluminum. The number of false posi-
tive errors was unacceptably high, and many instances
of poor accuracy occurred near the image borders. The
MSER detector was relatively unaffected by the heavy
depth-of-field blur caused by the curvature of the formed
dome.

SIFT also exhibited similar results. As with the
synthetic dataset, large streaks of undetected dot fea-
tures appear throughout each image. SIFT had slightly
improved coverage using the real dataset, but false pos-
itive errors occurred at a similar frequency.

The STAR detector produced almost identical results
using the real and synthetic datasets. In both instances,
only a few grid features went undetected in each image.
False positive errors did not occur, except one or two
cases where surface defects had split a dot-feature into
two parts. STAR operated with poor accuracy near the
detection borders.

In excellent agreement with the synthetic results,
the SURF detector performed extremely well using the
real dataset. Despite heavy depth-of-field blur, few fea-
tures remained undetected, and those omissions only
occurred, harmlessly, near the image borders. Except
for those caused by rare (one or two) unnatural surface
imperfections (such as deep scratches), there were no
false positive errors.

3.4. Discussion

Overall, the results from the synthetic and real datasets
were in excellent agreement. These experiments demon-
strate decisively that the SURF algorithm is the most
accurate and robust of all detectors evaluated herein.
Even under adverse imaging conditions including spec-
ular reflection and heavy depth-of-field blur, the SURF
detector exceeded our requirements. SURF features
were localized with a mean error less than 1/40 pix-
els and a standard deviation less than 1/10 pixels.
Except for a few (negligible) undetected features near
the image border, SURF demonstrated flawless cover-
age and repeatability. Furthermore, the computational
performance of the SURF algorithm was deemed suf-
ficient; for a typical frame with about 900 features
detected, SURF processed just over 5 frames per sec-
ond. This rate could easily be increased by using
inexpensive parallel computing hardware such as the
Intel Xeon Phi [11] or any CUDA-enabled NVIDIA
GPU [20].

Converting to actual length units and strain percent-
age, on average there are approximately 40 pixels permm.
Themaximum error for SURF is 0.36 pixels or 0.009mm.
For a printed grid with a 1mm pitch, this is below one
percent.

4. Inter-frame grid tracking

Matching the features from one image with the corre-
sponding features in a second image has traditionally
been accomplished using feature description. Feature
descriptors encode details about the local neighborhood
of a feature, especially information that is invariant to
photometric and geometric fluctuations. However, the
difference between the appearances of each dot feature
is too subtle to be distinguished using a feature vector.
Consequently, new approaches to feature tracking and
matching were required.

In [14], we proposed a novel technique for motion
tracking of gridded surfaces using topological struc-
ture. Therein, hand-drawn fiducials were placed between
the lines of a square grid, and tracked by comparing
active pixel ratios within thresholded connected compo-
nents. The topological approach was chosen to reduce
the dimensionality of the inter-frame transformation
from a generic homography (eight continuous degrees
of freedom) to discrete shifts in the directions of the
grid axes. This reduction permitted the optimization to
use an exhaustive search to test all likely grid shifts.
Herein, we describe a similar technique that has been
adapted to use a dot-grid pattern with negative fiducial
tracking.



54 T. S. KENYON ET AL.

Figure 6. Objective function output for typical inter-frame
motion [14]. A large downward spike indicating the minimum
objective value represents the best estimate for inter-frame grid
registration.

4.1. Extracting topological structure

To extract the topological structure of the grid, dot-
features are first localized with sub-pixel accuracy
using the SURF detector (Fig. 7(a)). The centroid of
each feature is then used to compute a Delaunay
triangulation (Fig. 7(b)). Since the nearest neighbor
graph is a sub-graph of the Delaunay triangulation,
this approach allows neighboring features to be eas-
ily discovered using a breadth first search. The result-
ing structure is filtered geometrically and topologically
so that only a regularly-ordered, 4–neighbor topology
remains.

4.2. Inter-frame registration

As described in section 3.1, some dot-features were irreg-
ularly omitted from the grid pattern in order to facilitate

Figure 7. (a) Sub-pixel dot-feature detection using the SURF algorithm. (b) Delaunay triangulation of the detected dot-features. (c) An
optimization objective functionmeasures aggregate grid similarity between adjacent frames: (red) previous frame; (cyan) current frame.
(d) Grid-feature tracking between frames. Color indicates the magnitude of each vector. Note the parallax effect from the curvature of
the dome.
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negative fiducial tracking. This approach eliminates the
need to explicitly detect and describe fiducial features.
After extracting the topological structure of the dot-grid
pattern, the approximate locations of eachmissing dot are
inferred, and then incorporated as salient nodes in the
topology. Regular nodes are assigned a common metric
value (σ = 1), while salient nodes are given an extreme
metric value (σ = 100). The metric values are collected
for each frame and used to measure aggregate grid simi-
larity between adjacent frames (Fig. 7(c)). To this end, the
topological representations of each frame are aligned so
that rotation is eliminated as a possible degree of freedom
in the optimization. The current and previous frames
are then logically overlaid and an optimization objective
function (Eq. 4.1) tests all possible grid shifts:

F(i, j) =
∑

(x,y)|(x,y)∈Gk
(x+i,y+j)∈Gk−1

(σ k
x,y − σ k−1

x+i,y+j)
2 + P(i, j) (4.1)

where i, j define the inter-frame shift, and variables x,y
denote the location of the node in the kth topological rep-
resentation of the grid, Gk. The penalty term, P(i, j) =√
i2 + j2, represents the Euclidean distance of the grid

shift.
At every overlaid node where both frames have a met-

ric defined, the sum of square differences is computed.
This sum is generated across all topological nodes, and
then normalized. The output from the grid registration
is used to establish features correspondences between
successive frames (Fig. 7(d)). Typical output from the
optimization objective function produces a solution with
an unambiguous minimum (Fig. 6).

5. Deformable grid registration

5.1. Topological mapping

Since the topology of the sheet metal surface is invariant
under typical forming processes, planar topologicalmaps
were used to efficiently model the sheet metal surface
features before and after deformation of the workpiece.
This topological map representation is primarily used to
reduce computational complexity. Although the work-
piece has a three-dimensional shape, the location of each
node in the (planar) map is specified using only two
discrete degrees of freedom. The reduced dimensional-
ity of this approach simplifies the computational effort
required to construct, store, and match the topological
maps.

Using the inter-frame grid tracking technique dis-
cussed in the previous section, new nodes are recorded
with each new frame, and a global topological map of the
entire sheetmetal surface is built incrementally. A sample

global topological map (Fig. 8) was created from a video
sequence containing 217 frames of a formed aluminum
dome. The video was captured at 1.5 frames per second
and is 2 minutes and 25 seconds in duration.

Figure 8. A global topological map of the sheet metal surface
features. The color of each node is used to indicate the frame
fromwhich the dot-feature was first detected. Note the sweeping
motion of the camera is easily discerned.

5.2. Map-model registration

To determine the correspondence between the imaged
grid features (after deformation) and a model of the
(unformed) grid geometry, the corresponding topolog-
ical map representations are discretely shifted across
one another. Then, an optimization objective func-
tion generates a scalar output for each tested grid
shift. Once every feasible grid shift has been evalu-
ated, the minimum value generated using the objec-
tive function determines the best estimate for true
registration. The optimization objective function is
defined as:

F(i, j) =
∑

(u,v)|(u,v)∈M
(u+i,v+j)∈G

(σM
u,v − σG

u+i,v+j)
2 + P(i, j) (5.1)

where i, j define the grid shift and variables and u, v

denote the location of the node in each topological map.
G designates the interior (subset) of the global map and
M signifies the map of the (unformed) model geome-
try. σ denotes the fiducial metric associated with each
node, and the penalty term P(i, j) = √

i2 + j2 represents
the Euclidean distance of the grid shift.
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Once the topological map of the deformed surface
features has been matched with the model geometry,
nodes are correlated between the corresponding topo-
logical map representations. The disparity between the
formed geometry and the model coordinates can then be
used tomeasure the expansion or compression of the grid
pattern, and by extension, the principal surface strain val-
ues.Herein, we report novel algorithms and techniques to
enable detection, tracking and registration of deformable
gridded surfaces; an accuracy analysis of the final 3D
reconstruction is beyond the scope of this paper.

6. Conclusion

An evaluation of several prominent image-based feature
detectors demonstrated that the SURF algorithm was the
most accurate and robust. SURF features were detected
from an inkjet-printed dot-grid pattern with excellent
detection coverage and fractional pixel error. A novel
algorithm for close-range inter-frame motion tracking
used negative fiducials and an optimization objective
function to achieve robust grid registration. Planar topo-
logical maps of the sheet metal surface features were
used to reduce dimensionality and simplify computa-
tion. Applications include visual measurement of surface
strain for plastic vacuum or sheet metal press forming.
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