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ABSTRACT

A geometric constraint system which models 2-dimensional geometries in a form that often no mul-
tidimensional equation systems are necessary, when solving a given constraint system, is described.
This is achieved because not only constraints between points are used, but also circles and lines are

introduced as objects.

1. Introduction

There are many approaches to geometric constraint solv-
ing. For an overview of modeling geometric constraints,
see [2]. The technologies for the solution of these geomet-
ric constraint systems can be divided into three classes:

e Equation-based methods.

Here the constraints are represented through non-
linear equations involving the variables. A newer sys-
tem using this approach is solvespace (solvespace.com/
index.pl). A description of its internal working can be
found in [8]

e Rule-based methods.

In this approach a geometric reasoning mechanism
in which the dimensions and geometric relationships are
defined as either facts or rules is used [7]. Also a geomet-
ric constraint system can be solved by a decomposition
plan as in [4, 5]. Here the problem is fractionized and
then solved bottom up.

e Graph-based methods.

In the graph-based technologies the constraints are
modeled as hyper-edges between the points or other vari-
ables. An alternative to hyper-graphs are bipartite graphs,
in which variables and constraints are both initially con-
nected by non-oriented edges.

The nodes are divided into two disjoint sets V and C.
V represents the geometric objects (here scalars, points,
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circles and lines). C represents the constraints. The edges
in the graph link the V and the C nodes. In most
approaches including [1], the points are the only geomet-
ric objects. Here it is shown that by using circles and lines
also as geometric objects, a solution without cycles often
exists and therefore a sequential computation is possi-
ble. For an overview of modeling geometric constraints,
see [2].

Depending on the number of constraints, from a given
subset of the variables the remaining variables can be
calculated. The specific type of modeling makes it pos-
sible to use constructive operations when evaluating the
graph from any sufficient set of given variables. There-
fore, after the creation of the model it is possible to distin-
guish which variables are free and which are calculated.
A point can be calculated as the intersection of two lines.
In addition, if the intersection point is moved, the lines
move appropriately. To construct a calculation sequence
from the model and the fixed variables, an analysis of the
degrees of freedom (DOF) is used. The goal is to pro-
duce an oriented graph from the non-oriented constraint
graph. If a sequential calculation is possible, an acyclic
graph should result. In many cases where cyclic depen-
dencies exist, however, only a graph with one or more
cycles can be produced. If too many variables are fixed,
the system is over-constrained, and then no orientation
is possible.

This paper extends that approach by Berling [1]. By
using not only scalars and points but also circles and lines
as variables, many models can be solved sequentially.
Thus, systems of non-linear equations can be avoided.
Graph-based methods have an advantage when dealing
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with models that are not fully constrained. Here it is
shown that by using circles and lines also as geomet-
ric objects, a solution without cycles often exists and
therefore a sequential computation is possible.

2. Constraint system

When using only points and scalar values, we could have
the following constraints:

1. DP (P1, P2, d): Distance between points P1 and P2
isd

2. DPX(PI, P2, d): x-distance between points P1 and
P2isd

3. DPY(P1, P2, d): y-distance between points P1 and
P2isd

4. A3(P1, P2, P3, alpha): Angle between the lines
(P1,P2) and (P1,P3) is alpha

5. RW(P1, P2, P3):The lines (P1,P2) and (P1,P3) are
perpendicular

6. DI (P, Pa, Pe, d): the distance between the point P and
the line from Pa to Pe is d.

7. Vertical (P1, P2): P1 and P2 have the same x coordi-
nate.

8. Horizontal (P1, P2): P1 and P2 have the same y
coordinate.

9. Equ (< expression >): The value of the expression is
0. It must be possible to compute one variable if the
others are known.

All these constraints consume at least one degree of
freedom. The points have 2 degrees of freedom; the scalar
values have 1. But points and values can be fixed. If only
one dimension of a point is fixed, it still has 1 degree
of freedom. Otherwise, the point’s degree of freedom
is 0. The constraint system itself is represented by an
undirected graph. To find a solution of the system, the
graph must be directed and must fulfill the following
conditions.

1. Each node of V has no more incoming edges than
the node’s degree of freedom.

2. Each node of C has as many outgoing edges as the
constraint consumes degrees of freedom. All other
edges of each node of C are incoming.

Each incoming edge of a point determines one locus
for the position of the point. E.g., if a point must have a
certain distance to another point the locus is the circle
around the other point with the radius of that distance.
If the point is the origin of a right angle, the locus is
the Thales circle between the corner points. For a cor-
ner point, the locus is the line perpendicular to the line

between the origin and the other corner through the
origin.

For a point, we have the following loci: x coordinate,
y coordinate, on line, on circle. For each combination of
up to 2 loci, a procedure is defined to compute the point.
As an example we consider in Figure 1 the line tangent to
two circles.

Figure 1. Connection from point 1 to point 2 forms a line tangent
to two fixed circles.

The tangent line in Figure 1 must fulfill the following
conditions.

e The distance between the center and the tangent point
must be equal to the radius of the circle.

e The angle with the origin at one tangent point and the
corners at the other tangent point and the center of the
circle must be a right angle.

The corresponding constraint graph and the possible
orientation (when the center and the radii of the circles
are fixed) are shown in Figure 2 below.

Note: Oval or rounded nodes represent variables
(scalars, points, circles and lines). If points are rounded,
they are fixed in the coordinates annotated (here X and
Y). The rectangular nodes represent the constraints. The
first number in the notation is the number of the node
in the underlying implementation. The second symbol
in the notation is either the type of the constraint node
or the value or notation of the variable node. For totally
or partially fixed points, the third symbol in the notation
identifies what is fixed.

To compute one tangent point, the other tangent point
must be known. Therefore, it is not possible to compute
the solution sequentially. But if the two circles are known,
it is possible to compute the tangent line. If we introduce
both circles and lines as geometric objects with corre-
sponding constraints, a sequential solution is possible.



Figure 2. Oriented constraint graph of the model in Fig. 1.

The class circle is derived from the class point (its cen-
ter) and has 3 degrees of freedom (the X, Y coordinates
of the center and the radius). A line has 2 degrees of free-
dom. As parameters for the line, we take the length and
the direction of the perpendicular line from the origin to
the line.

As new constraints we introduce:

2 circles are tangential

Line and circle are tangential
Point on line or circle (incidence)
2 lines parallel or perpendicular
Distance from a point to a line
Direction of a line

Radius of a circle

Am intersection point is defined by the incidence with
2 lines or circles

The tangent line in Figure 3 is defined by the following
constraints:

Line tangential to circle 1
Point 3 on Circle 1

Point 4 in circle 2

Point 3 on line

Point 4 on line

Line tangential to circle 2

For the line and the 2 tangent points, we have 6 degrees
of freedom. These degrees are consumed by the 6 con-
straints. So if the two circles are fixed, the model is fully
defined. Starting with the fixed circles, the constraint
graph in Figure 4 can be propagated.
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Figure 3. Model with a line tangential to 2 given circles. Points 3
and 4 on line and circle.

For each type of node, variable and constraint, a com-
putation method is defined. For constraints, the method
sets the loci to the geometric objects which are reached
by the outgoing edges. For geometric objects, the method
computes the parameters of the object with respect to
the given loci. If the constraint graph has no cycles,
the computation can be done sequentially in topological
order.

A geometric object can have at most as many incoming
edges as its degree of freedom. But not all combinations
are possible. E.g., a line cannot be determined twice by
a constraint which fixes the line’s direction. For a circle
only 1 constraint can fix the radius, and mostly 2 con-
straints can fix the center point. Points may have only
one constraint which can be satisfied only by either the
X coordinate or the Y coordinate. Each constraint has as
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Figure 4. Oriented constraint graph of model from Figure 3.
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Figure 5. Oriented constraint graph in which the tangential point 4 and the centers of the circles are fixed.

its property the coordinates, which are influenced by the
constraint.

Given two circles, we can construct not only a com-
mon tangent line. For instance, we can also construct the
second tangent point if the centers of the circles and the
first tangent point are given. The variation is done over
the radii of the circles. The directed graph is shown in
Figure 5 below.

With this modeling all other variations can be solved
sequentially, too.

For a circle we have, beside the loci for the center
as with points the following loci: tangential to line or
circle, point incident with circle, and radius given. For
up to three combinations of these loci, a procedure is
defined to compute the circle. In many cases two or more
solutions are possible. Then the solution nearest to the



actual situation is chosen. For lines we have up to two
of the following loci: direction, tangential to circle, point
co-incident with the line.

3. Orientation of the constraint graph

The idea of orienting the edges in a constraint graph
to determine the sequence of the computations is well
known. When an orientation without cycles is possible,
this orientation can be achieved by propagating the con-
straints and the degree of freedom. With cycles, the max-
imal constraint matching is adapted from the Edmonds
method for bipartite graphs [3, 6].

With the constraints used here, we have to consider
some special semantics. When orienting the constraint
graph, each variable node may have at most as many
incoming edges as the variable’s degree of freedom. That
is 2 for points and lines, and 3 for circles. However,
this condition is necessary but not sufficient. Some con-
straints as horizontal or vertical alignment of point can
only be satisfied by the x or y coordinate, respectively.
For lines, constraints like horizontal or vertical can only
be satisfied by the direction. A circle can have only 1
incoming constraint involving only the radius. To orient
the undirected constraint graph of the model, we need
therefore a special function for each variable class. This
function determines whether for an adjacent constraint
the variable still has a degree of freedom to orient an edge
as incoming to the variable.

For all classes of variables, a function sdf (afi x:
tfix):integer isimplemented. af i X can have the
following values.

e Isx: The constraint can be satisfied only by the x
coordinate of a point respectively the direction of
a line.

e Isy: The constraint can be satisfied only by the y coor-
dinate of a point

e Isxy: The constraint can be satisfied by the x or the y
coordinates of a point.

e Isr: The constraint can be satisfied only by the radius
of a circle respectively the distance of a line from the
origin.

o Isxr: The constraint can be satisfied by the x coordinate
of the center of a circle or the radius of a circle respec-
tively the direction or the distance from the origin of
aline.

e Isyr: The constraint can be satisfied by the y coor-
dinate of the center of a circle or the radius of a
circle.

e Isxyr: The constraint can be satisfied by the x or the y
coordinates of the center of a circle or the radius of a
circle.
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So the parameter af i X identifies the parameters of
the variable with which the constraint can be satisfied.
The function sdf examines all already incoming edges,
and determines what is already fixed.

For scalars this is simple. When an edge is already
incoming, sdf is 0.

For points, the following transition matrix in Figure 6
must be used.

( I1Isx )
/'?'\ T
isx” i8y,isxy
'/../ \'\.‘.\h
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iy o ISXISXY
( isnot ) Y ={ isy ) ISXY (" jsall )
g, ::: L = -
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\‘\._\. ’././"
(isxy )

o

Figure 6. Transition matrix for points.

A point has initially 2 degrees of freedom, which cor-
responds to the state i snot . If the x-coordinate is fixed
by a constraint, the state changes into i SX. Now it can
only fulfill yet another constraint, which changes the
y-coordinate too. This can be either a constraint only
affecting the y-coordinate (i Sy), or a constraint which
specifies a locus (i SXY).

If no further transition with af i X is possible, sdf is
0. Using the transition matrix when both constraints can
only be satisfied by the x coordinate, 2 edges can not be
incoming oriented. For a circle, we have the same require-
ments for the center point. But an additional requirement
is that there can be at most one incoming edge, which can
be satisfied only by the radius. For a line, we can have at
most one incoming constraint which can be satisfied only
by the direction of the line. That is the case with the two
constraints parallel and perpendicular, and generally for
a constraint which determines the direction of a line.

The orientation can be demonstrated with the exam-
ple of Figure 5. The point [7|4] and the centers of the
circles [1|1] and [4]2] are fixed. Because [7|4] has no
degree of freedom, all edges are outgoing. This deter-
mines the orientation of the constraints [10|1] and [14|I].
Now circle [4]2] is totally fixed, which determines the ori-
entation of the constraints [5|R] and [12|TKL]. This fixes
line [8|G], which determines the orientation of the con-
straints [11|TKL] and [9|I]. This, on the other hand, fixes
the circle [1]1] totally. Therefore the other edges of [1]1]
must be outgoing. That orients the constraints [13|I] and
[1|R], which in turn fixes radius [0|32] and point [6|3].
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4. Handling under-constraint systems

With this graph-oriented approach we can also handle
under-constrained systems in an adequate manner.

Figure 7. Snake.

If we move in the snake in Figure 7 the point 0, the
resulting constraint graph is shown below in Figure 8.

The move of point 0 is propagated through all points.
So the other points will follow the moving of point 0. To
achieve this, a breadth-first search starting with point 0
is done. Then the edges are oriented in the order of the
sorting (when possible). If we move point 0 further we
get the result in Figure 9.

If point 4 is fixed and point 0 is veered away from point
4, the snake in Figure 7 is stretched as far as possible. If
the point is moved further away no move is done, because
we no longer have a solution. The point 3 is determined
by the distance to point 4 and by the propagated move of
point 1 and 2 due to the move of point 0. The constraint
graph of this model is shown in Figure 10 below.

5. Models with inherent cycles

Even with circles and lines, not all models can be solved
sequentially. Some models have inherited cycles. E.g., we
put a box into a given contour. Figure 11a shows the
complete model. The fixed contour is given by the points
1-4-3-2. The distance between A and B (50) is the width
of the Box. The right angle at B is the edge of the box.
The box is placed on the connection between 4 and 1, the
connection between 4 and 3 and on point 2. So position
of the box is fully determined. But it should be possible to
change the width of the box or the position of the points
of the contour.

To simplify the constraint graph for the demonstra-
tion, we use a simplified model of Figure 11b. The task
here is to compute the points A and B. No orientation
without a cycle is possible and therefore A and B can

Figure 9. Result after moving point 0 further.

Figure 10. Constraint graph of moving point 0 with point 4 fixed.



Figure 12. Constraint graph of the model of Figure 11b.

not be solved sequentially. The orientation of model in
Figure 11b is shown in Figure 12.

The oriented graph in Figure 12 contains a cycle,
which includes the points A and B and the constraints
11 and 21. Therefore the points A and B must be solved
simultaneously. Four values (namely, the X and Y coordi-
nates of the two points) are computed using the following
four constraints: 2 times point on line (15, 19), the dis-
tance (11), and the right angle (21). To compute the cycle
not only the constraints in the cycle must be included but
also the constraints, which have an outgoing edge to a
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value in the cycle, in this case the constraints 19 and 15.
Each constraint defines an equation between the values.
This non-linear equation system is solved by iteration.
Note also that in this case a compass and straight-edge
construction is not possible.

6. Application

The approach was used in building a diagram editor. The
nodes (for instance, a square) adapt their sizes according
to the contents of the node. Then there are constraints
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which adjust the width or the height of two nodes with
respect to the larger one. Furthermore there are four
special constraints:

Horizontal chain
Vertical chain
Horizontal alignment
Vertical alignment

If two nodes build a chain, the distance in the x resp.
y direction is half of the sum of the width resp. height of
the two nodes. So the nodes are positioned back-to-back.
With alignment, the sizes of the nodes are aligned to the
maximum width resp. height.

With these constraints it is possible to build tables.
When the content of the nodes is changed, these tables
adjust automatically.

An example for a table consisting of 4 nodes is shown
in Figure 13. The constraint graph of the model in
Figure 13 is shown in Figure 14. If the upper left box of
the table in Figure 13 is changed to hold more rows and
columns than the other boxes in that table, those other
boxes are aligned automatically as shown in Figure 15.

156
88 :

80

b rr

456

Figure 13. Tables with chain and alignment.

These boxes can be used in diagrams.

There are two special connections between the boxes.
On the left in Figure 16 is a Manhattan-edge, which is
parted in a vertical part and a horizontal part. On the
right in Figure 16 are Z-edges. These Z-edges consist
of either vertical-horizontal-vertical parts (if the verti-
cal distance is greater than the horizontal distance) or
of horizontal-vertical-horizontal parts (if the horizontal
distance is greater than the vertical distance).

By simply moving the boxes, a new layout can be
obtained automatically. The edges are assigned according

0156
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Figure 14. Constraint graph of the table.
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Figure 15. Table with new alignments.
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Figure 16. Diagram, original layout.

to the new position to the appropriate edge of the box
and the order of the connection is sorted so, that no
overlapping arises. In this manner, one can start from
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Figure 17. Diagram with new layout.

the diagram in Figure 16 above and reach the diagram in
Figure 17 below, automatically by just moving the boxes.

Application with segments

To model more complex parts it is often not necessary
to model each line. Instead a segment is defined, which
can be included according to 1 to 3 reference points.

A segment can have:

e 1 reference point: position

e 2 reference points: position and direction and size

e 3 reference points: position, orientation and size in 2
dimensions

An example with segments is shown in Figure 18
below. The pistons are segments with 3 reference points.
One for the position and the other two define the high

Figure 18. Motor with segments.
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and the radius of the piston and the orientation of the pis-
ton. The crank and the rods are similar defined. For the
constraint model only the reference points are relevant.

If the angle of the crank is changed, the motor will
rotate. Changing the angle of the crank W =45 from 45
to 60 makes it a 60° degree V-motor instead of a 90°.

7. Conclusion

It was shown that, by using circles and lines as geomet-
ric objects in a model, cycles which are necessary when
using points as the exclusive geometric objects can often
be avoided. This allows the building of systems in which
any point can be moved in real time by dragging the point
with a mouse device. The orienting of the constraint
graph is done once before dragging the points. During
the drag, only the computing is necessary. When there are
no cycles, this can be done in sequential order. When the
model must be oriented with cycles, the algorithm finds
a solution in which a minimum number of variables are
involved.

The constraint-based techniques, which have been
introduced here, can also improve the editing of diagrams
significantly.

The implemented constraint system is based on the
self implemented CAD system VarioCAD and is free for
private or educational use and can be downloaded from
the following websites:

http://userpages.uni-koblenz.de/ ~ ros/variocad.html
or: http://www.heise.de/software/download/variocad/50
375


http://userpages.uni-koblenz.de/~ros/variocad.html
http://www.heise.de/software/download/variocad/50375
http://www.heise.de/software/download/variocad/50375
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