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Reformulation of Generalized Log-aesthetic Curves with Bernoulli equations
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ABSTRACT
A recent research has found out the relationship between the Log-aesthetic Curve and Riccati dif-
ferential equations. The obtained differential equations are Riccati, but also Bernoulli type. Based on
Sato and Shimizu’s derivation of the formula of ρ-shift generalized log-aesthetic curve (GLAC), we
derive the formula of the κ-shift GLAC as a solution of a Bernoulli differential equation.

KEYWORDS
Log-aesthetic curve;
Generalized Log-aesthetic
Curve; Bernoulli differential
equations; Riccati differential
equations

1. Introduction

A Generalized Log-aesthetic Curve (GLAC) is the gen-
eral formulation of emerging the Log-aesthetic (LA)
curves for aesthetic industrial design. GLAC has an extra
degree of freedom compared to LA curve which makes it
versatile for design. There are two approaches employed
to develop GLACs namely ρ-shift and κ-shift [2]. To
note, κ-shift GLAC is a better formulation of GLAC since
its direction angle can be obtained analytically as com-
pared to ρ-shift GLAC. Figure 1 shows two examples
of κ-shift GLAC with a LAC, their radius of curvature
(RoC) and logarithmic curvature graph (LCG) [2].

Recently, Sato and Shimizu [5] reported the relation-
ship between the fundamental equation of Log-aesthetic
curve and Riccati differential equations. They considered
the case of ρ-shift GLAC and reported its representa-
tion in the form of Riccati equation. It is well known
that solving Riccati equation involves reduction of order
which is a painstaking trial and error approach to find
for a solution. This paper completes the investigation by
analyzing κ-shift GLAC. We derived the formula of the
κ-shift GLAC as a solution of a Bernoulli equation which
can be solved with various approaches.

2. Generalized cornu spiral

In this section the formulation of the generalized Cornu
spiral is explained and its relationships with the log-
aesthetic curve and the generalized log-aesthetic curves
are discussed.
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2.1. Formalization and its properties

The generalized Cornu spiral (GCS) [3] is defined as a
curve whose curvature profile is given by a linear rational
function and when the arc length of the curve is assumed
to be s, the curvature κ of the curve is given by

κ(s) = p + qs
S + rs

(2.1)

where p, q, r > –1 and S > 0 are constants. In case of
q = 0 or r = 0, the curve is a logarithmic spiral or a
clothoid curve, respectively. Hence theGCS is considered
to be a generalized curve of the clothoid curve as well
as the logarithmic spiral. The differentiation of the above
equation with respect to s yields

dκ(s)
ds

= Sq − pr
(S + rs)2

. (2.2)

The domain of definition of the curve is 0 ≤ s ≤ S. Since
dκ(s) / ds does not change its sign for the whole domain,
the curvature increases or decreases monotonically.

Assume that the curvatures at the start and end points
are given by κ0 = p / S and κ1 = (p+ qS) / (1+ r)S,
respectively. Since the curvature κ(s) is a derivative of the
direction angle θ(s), θ(s) is given by

dy
dx

θ(s) = θ0 + pr − Sq
r2

log
(
1 + rs

S

)
+ qs

r
(2.3)

where θ0 gives the direction angle at the start point.
The term log corresponds to the variation of the direction
angle of a clothoid curve. The term qs / r increases in
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(a) (b)

(c)

Figure 1. Examples of -shift GLAC and their RoC and LCG.

proportion to s and as a result it increases the direction
angle. It corresponds to the variation of the direction
angle of a circular arc. It can be said that the variation of
the direction angle of the GCS is a combination of those
of the clothoid curve and the circular arc.

2.2. Comparisonwith log-aesthetic curve and its
generalization

To introduce α into the GCS, we assume that the slope
of the logarithmic curvature graph is expressed by λ in
the following discussions. Gobithaasan and Miura [2]
showed that λ of an arbitrary planar curve is given by

λ(t) = 1 + ρ(t)
ρ′(t)2

(
ρ′(t)s′′(t)

s′(t)
− ρ′′(t)

)
(2.4)

When the curve is parametrized by the arc length s, it is
given by

λ(s) = 1 − ρ(s)ρ′′(s)
ρ′(s)2

(2.5)

Hence λ of the GCS is given by

λ(s) = 2r(−κ0 + κ1 + rκ1)
(1 + r)S(κ0 − κ1)

s + 2rκ0
(1 + r)(κ0 − κ1)

− 1

(2.6)

The above expression indicates that λ(s) is given by a
linear function of the arc length s.

From Eq. (2.1) the curvature is given by

ρ(s) = S + rs
p + qs

(2.7)

It is possible to extend the above equation as follows:

ρ(s)α = S + rs
p + qs

(2.8)

similar to that of the log-aesthetic curve. However, it
explicitly includes the total length S of the curve. The
value of the constant r is restricted and it should be
greater than –1. When the signs of p and q are differ-
ent, the sign of the right expression could change its sign
because of the change of the sign of its denominator
p+ qs. There are four parameters (p, q, r and S) and the
expression of the direction angle obtained by the integra-
tion of the curvature includes a hypergeometric function.
Therefore we generalize Eq. (2.7) as follows.

ρ(s) = S + rs
p + qs

= f + g
p + qs

(2.9)

where f = r / q and g = S–pr / q are constants. Hence it
can be transformed into

(ρ(s) − f )−1 = cs + d (2.10)

where c = q / g, d = p / g. This equation means that ρ(s)
shifted by f is given by a linear function of s. α can be
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introduced to this equation as follows:

ρ(s) = (cs + d)
1
α + f (2.11)

The right side of the above equation has three param-
eters c, d and f if we exclude α. The meaning of the
equation can clearly be interpreted as the radius of curva-
ture is shifted by f. This type of the generalization is called
ρ-shift.

It is possible to start from Eq. (2.1) and to perform the
same extension for the curvature κ(s) as follows:

κ(s) = (cs + d)−
1
α + f (2.12)

This extension has several practical merits and this
type is called κ-shift. The curve obtained by either of
these two types of generalization is the Generalized Log-
Aesthetic Curve: GLAC.

3. Riccati differential equations

Generally a Riccati differential equation [1] is given by

dy
dx

+ P(x) + Q(x) y + R(x)y2 = 0 (3.1)

It is known that equation (3.1) cannot be solved by inte-
gration in general. However if a particular solution is
known, then it can be solved. This solution method is
known as reduction of order which may involve trial-
error approach. In the case of P(x) = 0, we may convert
to Bernoulli equation in which a feasible solution can
be obtained by various means. Assume that a particular
solution of Eq. (1) is given by η(x) and the general solu-
tion is given by y = η(x)+ z(x). Then Eq. (3.1) becomes

dz
dx

+ {Q(x) + 2R(x)Q(x) η}z + R(x)z2 = 0 (3.2)

The above equation is classified as a Bernoulli equation
which is discussed in the following section.

4. Bernoulli differential equations

Let n be a constant and n�=1, a Bernoulli differential
equation [1] is given by

dy
dx

+ P(x)y = Q(x)yn (4.1)

If n = 2, equation (4.1) is regarded as a Riccati equation
as shown in the previous section. By dividing both sides
of Eq. (4.1) with yn, we obtain

1
yn

dy
dx

+ P(x)
1

yn−1 = Q(x) (4.2)

By letting z = 1 / yn–1, we can further simplify as
follows

1
1 − n

dz
dx

+ P(x)z = Q(x) (4.3)

The equation (4.3) is a linear differential equation which
can be solved by separation of variables.

5. Riccati equations satisfied by the
log-aesthetic curve

According to Sato and Shimizu [5], similarity curvature
is defined as follows:

S :=
dκ
ds
κ2 = −dρ

ds
(5.1)

where s is arc length, κ is curvature andρ = 1 / κ is radius
of curvature. The above curvature is invariant under sim-
ilarity transformation. Since the arc length s is variant by
similarity transformation, wemay use the direction angle
θ to define the curve γ (θ). Since ds = ρdθ , the similarity
curvature is given by

S(θ) = −
dρ
dθ
ρ

(5.2)

A curve is said to be a log-aesthetic curve (LAC) if it
has a linear logarithmic curvature graph (LCG). Thus,
in 2006 Miura [4] developed the fundamental equation
of LA curves by extracting curvature function from a
linear LGC.TheY axis of the logarithmic curvature graph
(LCG) is given by

Y = − log
(∣∣∣∣d(log ρ)

ds

∣∣∣∣
)

= X − log(|S|) (5.3)

where X = logρ. The gradient (α) of the logarithmic
curvature graph is given by

α = dY
dX

= 1 −
dS
dX
S

= 1 +
ds
dθ
S2

(5.4)

Therefore a LAC with shape parameter α satisfies the
following Riccati equation:

dS
dθ

= (α − 1)S2 (5.5)

However, we may convert it into a Bernoulli equation
which can be solved with separation of variables. Its
general solution is given by

S(θ) = − λ

(α − 1)λθ + 1
(5.6)

We denote the right side of the above equation as L(α, λ;
θ). By solving this equation for ρ(θ), we obtain

ρ(θ) =
{
eλθ (α = 1)
((α − 1)λθ + 1)

1
α−1 (α �= 1)
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6. The evolutes of log-aesthetic curves

For a given smooth curve γ (s), its evolute σ (s) is
defined by

σ(s) = γ (s) + ργ (s) nγ (s) (6.1)

where ργ (s) and nγ (s) are its radius of curvature and nor-
mal vector of curve γ (s) respectively. Conversely γ (s) is
called an involute of σ (s). The first derivative of σ (s) is
given by

dσ
ds

= dρλ

ds
nγ (6.2)

The above equation indicates that the direction angle of
curve σ (s) is aligned along the normal vector of γ (s)
and its directional angle is rotated counterclockwise by
90 degrees. Note that from the above equation, param-
eter s is not an arc length parameter of σ (s). Its second
derivative is given by

d2σ
ds2

= d2ρλ

ds2
nγ − 1

ργ

dργ

ds
Tγ (6.3)

Hence

dσ
ds

× d2σ
ds2

= 1
ργ

(
dργ

ds

)2
(6.4)

Therefore the radius of curvature ρσ (s) of curve σ (s) is
given by

ρσ (s) =

∣∣∣dσds
∣∣∣3∣∣∣dσds × d2σ
ds2

∣∣∣ = ργ

dργ

ds
= dργ

dθ
(6.5)

Since dS /dθ = (dργ /dθ)2/ρ2
γ − (d2ργ /dθ2)/ργ , the

relationship between similarity curvatures S(θ) and
T(θ +π / 2) is given by

dS(θ)

dθ
= S(θ)2 − T

(
θ + π

2

)
S(θ) (6.6)

We regard the above equation as a Bernoulli (special case
of Riccati) equation which has T(θ + π / 2) as a coeffi-
cient. When α �=1, the similarity curvature S(θ) = L(α,
λ; θ) of LAC can be rewritten as follows:

dS
dθ

= (α − 1)S2 = S2 − {(2 − α)S}S (6.7)

This equation is equivalent to the Riccati equation of
the involute curve whose evolute’s similarity curvature
is given by T(θ + π/2) = (2 − α)L(α, λ; θ). Hence if
α = 2, the evolute of the LAC with S(θ) = L(α, λ; θ)

is a circular arc (T(θ) = 0). If α �={1, 2}, the similarity
curvature of the evolute is

T(θ) = (2 − α)L
(
α, λ; θ − π

2

)

= L
(

1
2 − α

, (2 − α)λ; θ − π

2

)
(6.8)

These results conform to those obtained by Yoshida and
Saito [6].

Conversely we assume that α �={1, 2} and T(θ) =
L

(
1

2−α
, (2 − α)λ; θ − π

2

)
. Then LAC is a particular

solution of the following Riccati equation:

dS
dθ

= S(θ)2 − T
(
θ + π

2

)
S(θ) (6.9)

The general solution is obtained using the above partic-
ular solution as follows

S(θ) = L(α, λ; θ)

1 + C((α − 1)λθ + 1)
1

1−α

(6.10)

where C is a constant of integration. This gives the simi-
larity curvature of the ρ-shift GLAC [2] as shown in the
next section.

7. Similarity curvature of ρ-shift GLAC

The radius of curvature (ρ) of ρ-shift GLAC is given by

ρρ−GLAC(θ) =
{
eλθ + ν (α = 1)
((ακ − 1)λθ + 1)

1
α−1 + ν (α �= 1)

(7.1)

When α �={1, 2}, its similarity curvature is given by

Sρ−GLAC = −
dρρ−GLAC

dθ
ρρ−GLAC

= L(α, λ; θ)

1 + ν((α − 1)λθ + 1)
1

1−α

(7.2)

The above equation is equivalent to Eq. (6.10).

8. κ-shift GLAC

As stated above, there are two types of GLAC [1]; ρ-shift
and κ-shift. This section shows the derivation of κ-shift
GLAC.

8.1. Reciprocal of similarity curvature

If the similarity curvature S is invariant under similar-
ity transformation, its reciprocal 1 / S is also invariant if
S�=0. We define V = 1 / S and call it similarity radius of
curvature since it is the reciprocal of similarity curvature.
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As dV/dθ = −(dS/dθ)/S2, Eq. (5.5) is written with
V by

dV
dθ

= 1 − α (8.1)

The above differential equation can be solved analytically
and we may obtain the following general solution:

V(θ) = − (α − 1)λθ + 1
λ

(8.2)

This satisfies V(θ) = 1 / S(θ) where S(θ) is given by Eq.
(11). We denote this general solution asM(α, λ; θ).

8.2. Derivation of κ-shift GLAC formula

Substituting S(θ) with V(θ), Eq. (6.6) becomes

dV(θ)

dθ
= T

(
θ + π

2

)
V(θ) − 1 (8.3)

The general solution of the above equation is given by

V(θ) = −
((α − 1)λθ + 1)

α−2
α−1

(
C + ((α − 1)λθ + 1)

1
α−1

)
λ

(8.4)

= 1 + C((α − 1)λθ + 1)
1

1−α

L(α, λ; θ)
(8.5)

The above equation is indeed the reciprocal of S(θ) given
in Eq. (7.2).

On the other hand, the similarity radius of curva-
ture of the κ-shift GLAC whose curvature is equal to
((α − 1)λθ + 1)

1
1−α + ν is given by

Vκ−GALC(θ)

= −
((α − 1)λθ + 1)

α
α−1

(
v + ((α − 1)λθ + 1)

1
1−α

)
λ

(8.6)

Eqs. (8.4) and (8.6) may look different. However, if we
define β = 2–α, and substitute it into Eq.(8.6), we obtain

V(θ)

= −
((1 − β)λθ + 1)

β
β−1

(
C + ((1 − β)λθ + 1)

1
1−β

)
λ

(8.7)

Hence
V(−θ)

= −
((β − 1)λθ + 1)

β
β−1

(
C + ((β − 1)λθ + 1)

1
1−β

)
λ

= M(β , λ;−θ)
(
1 + ν((1 − β)λθ + 1)

1
β−1

)
(8.8)

Therefore the solutions represent a κ-shift GLAC whose
LCG gradient equals to β = 2–α and the curve direc-
tion is reversed. As expected, κ-shift GLAC reduces to
V(θ) = M(β , λ; θ) when ν = 0.

9. Conclusions

Sato and Shimizu have shown the relationship between
LAC and ρ-shift GLAC using the concept of similarity
geometry and Riccati equation. In this paper, we com-
plete the research rewriting the fundamental formula
of κ-shift GLAC as a solution of a Bernoulli equation
which complies with the results obtained in previous
studies. One possible future research is that applying
the same procedures to GLAC itself, we may be able
to derive a new curve, which may extend its drawable
region more.
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