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Shrinking sphere: A parallel algorithm for computing the thickness of 3D objects
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ABSTRACT
An interactive system is required to enable machine designers to precisely visualize the thickness
of a machine part. The thickness of a 3D object at a surface point is given by the diameter of the
maximum inscribed sphere (MIS) touching that point. In this paper, we propose a novel iterative
algorithm, namely, the shrinking sphere algorithm, for computing the MIS at a specific surface point.
The convergence speed of the proposed algorithm is very high, and several iterations are usually
sufficient for obtaining the MIS. The parallel execution of the algorithm with a graphics processing
unit (GPU) is presented for further improving the computation speed. On the basis of the proposed
algorithm, an experimental thickness visualization system is implemented using Compute Unified
Device Architecture (CUDA). This system can visualize the thickness of a complex object with nearly
two million polygons in several minutes using a PC (Core i7 CPU, 32GB memory and GTX-980 GPU),
which is sufficiently fast for practical purposes.
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1. Introduction

Thickness is a basic parameter in machine part design.
The thickness of individual walls and ribs is important
for calculating allowable stresses and strains of amachine
part. In general, modern products are designed to be
lightweight by reducing the wall thickness as much as
possible. In additive manufacturing, wall thickness is a
crucial factor affecting part production because it has a
significant impact on the production time and cost. An
interactive system is required to enable machine design-
ers to precisely visualize the thickness of 3D objects.

Inmechanical drawing, thickness is defined as the dis-
tance between points on two opposite parallel surfaces
[1]. This definition is not suitable for determining the
thickness specification of objects with complex curved
shapes. There are several methods that have been devel-
oped to define the thickness of complex objects. In the
sphere method, which is the most widely used definition
of thickness for a 3D object, the thickness t at point p on
the object surface is given by the diameter of the max-
imum inscribed sphere (MIS) touching p, as shown in
Fig. 1 [17]. Consider a 3D object, the surface of which
is finely tessellated with small polygons of uniform size.
The thickness of the object can be visualized by comput-
ing the MIS touching a point on each polygon, and by
painting the polygon with a unique color corresponding
to the diameter of the sphere.
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In this visualizationmethod, determination of theMIS
touching a specific surface point is the most important
step. In general, such a sphere is computed using an
iterative root-finding method. In the simple bisection
method, the sphere radius is repeatedly halved or mag-
nified 1.5 times until the solution sphere is obtained.
This method of finding the MIS often requires many
iterations before reaching convergence. In this paper, we
propose a new iterative algorithm, namely, the shrink-
ing sphere algorithm, for computing the MIS touching
a surface point of a polyhedral object. A sphere with a
sufficiently large radius is given as an initial candidate
for the solution. This sphere may have intersections with
some surface polygons of the object. By using the geomet-
ric data of such polygons, a new candidate sphere with a
smaller radius is obtained. This sphere-shrinking process
is repeated until the radius change becomes sufficiently
small. The convergence speed of our algorithm is very
high, and in most cases, no more than five iterations are
required for obtaining the MIS touching a surface point.
We propose three techniques for further improving the
performance of our algorithm: determination of a suit-
able initial sphere, use of hierarchical bounding volumes
for efficiently selecting polygons intersecting the sphere,
and use of the parallel-processing capability of a graphics
processing unit (GPU) to accelerate the computation of
the new sphere.
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Figure 1. Thickness definition in the sphere method.

The remainder of this paper is organized as follows.
Section 2 introduces some definitions of thickness for
3D objects and briefly reviews previous studies on thick-
ness visualization and computation of the MIS. Section 3
describes the process flow of the proposed shrinking
sphere algorithm. Section 4 discusses the use of paral-
lel processing techniques with the GPU for improving
the performance of the algorithm. Section 5 presents the
thickness visualization results for sample objects. Finally,
Section 6 summarizes our findings and concludes the
paper.

2. Related studies

The two main methods for defining the thickness of a
3D object are the ray method and the sphere method
[2,3,17]. In the ray method, the thickness at a point p
on a surface is given by a ray shot from p in a direction
opposite to the local outward normal. The Euclidean dis-
tance d between p and another point q corresponds to
the thickness, where q is the intersection point of the ray
with the immediately opposite surface of the object (see
Fig. 2). This definition is ambiguous if the two surfaces
containing p and q are not parallel, because the thickness
values at p and q will be different.

Figure 2. Thickness definition in the ray method.

The sphere method returns consistent results for any
object. In this method, the thickness at a point p on a
surface is given by the diameter of the MIS touching p
(see Fig. 1(a)). Because the locus of the center of the
MIS corresponds to the medial axis of the object [7], the
thickness at a point corresponds to twice the distance
between the point and the medial axis. In some cases, the
thickness given by the sphere method is not consistent

with the standard definition of thickness. For example,
the thickness at a corner of a plate-like shape is smaller
than that in the middle, as shown in Fig. 1(b). Subbu-
raj et al. [19] proposed “exterior thickness,” a modified
version of the sphere method, which uses the skeleton of
an object instead of the medial axis to define the thick-
ness. However, this method is not suitable for evaluating
the thickness of a thin wedge shape, where the thickness
value becomes much greater than expected.

Some commercial CAD systems [16,18] provide thick-
ness visualization functions. Most of these utilize the
thickness evaluation software GeomCaliper [6] as an
add-on function. GeomCaliper is a system specialized for
the thickness visualization of polyhedral solid models; it
supports both the ray method and the sphere method.
According to the developer’s report [17], GeomCaliper
employs a uniform grid and k-d tree to achieve effec-
tive thickness computation; however, its technical details
have not been published. It has been graphically shown
in [17] that the thickness analysis time of GeomCaliper
is proportional to the square of the number of polygons;
therefore, a model with many polygons requires a long
computation time.

At present, studies on thickness visualization are not
being actively conducted by academic communities. Sub-
buraj et al. proposed thickness analysis based on a voxel
model [19]. In addition to “exterior thickness,” they pro-
posed two new metrics, namely, “radiographic thick-
ness,” a variant of the ray method, and “interior thick-
ness,” a type of distance field. A distance field is a voxel-
based shape representation in which each voxel records
the distance between its center and the object bound-
ary [11]. Lu et al. proposed another distance-field-based
thickness evaluation method for detecting thicker zones
in 3D objects [12]. Further, we developed a thickness
visualization system for a solid model in a previous study
[9,10], whereby the thickness at a point on the object
surface is determined using the sphere method and a
distance field. Because the above-mentioned methods
involve expensive distance field computation for thick-
ness visualization, they are not useful for small-scale
computers with limited resources.

Computation of the MIS of a 3D object is a challeng-
ing theoretical problem. Xie et al. proposed an algorithm
for computing the MIS in high-dimensional polytopes,
such as a convex polyhedron [20]. Computation of the
MIS has also been discussed in the field of tolerance anal-
ysis. Sphericity tolerance controls the form error of a
sphere-like object. Under such tolerance, the amount of
shape deviation is evaluated according to the difference
between the radii of two spheres. One bounds the shape
internally, whereas the other bounds the shape externally;
the MIS of the shape corresponds to the former [5]. In
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the medical image analysis field, theMIS is used to deter-
mine the centerline of the blood vessel models obtained
from computerized tomography (CT) scans [15]. These
works focused on the computation of the MIS in a gen-
eral position, and they are not useful for evaluating the
object thickness at a specific surface point.

3. Thickness visualization of polyhedral objects

Our method requires a tessellated CAD model, such as
a model in the STL format, of an object as the input.
Most commercial CAD systems provide a function to
output a model of a solid with curved surfaces as a
group of triangular polygons with a specified conver-
sion accuracy and polygon size. For example, the user of
a CATIA system can control the accuracy and polygon
size of the output tessellated model using two parame-
ters referred to as “sag” and “step.” Our proposedmethod
visualizes the object thickness by painting each surface
polygon with a unique color corresponding to its thick-
ness. The object surface should be finely tessellated with
small polygons of uniform size. Because a single thick-
ness value is assigned to each polygon, fine visualiza-
tion cannot be achieved with a low-resolution polyhedral
model.

3.1. Basic algorithm

Thickness visualization is achieved using the following
three-step algorithm:

Step 1: For each polygon f, select a point p on the poly-
gon where the thickness of the object is measured. In
our current implementation, the center of gravity of the
polygon is selected as p.

Step 2: The thickness value at p corresponds to the
diameter of the MIS touching p. Our shrinking sphere
algorithm is used in the computation.

Step 3: To complete the visualization, each polygon
f is painted with a unique color corresponding to its
thickness value.

The processing required for Steps 1 and 3 is straight-
forward. Therefore, only the shrinking sphere algorithm
used in Step 2 is detailed here. In this step, the follow-
ing processing is repeated for a point p on each surface
polygon f of the object to obtain the MIS touching p.

Step 2.1Cast a ray from p along the opposite direction
of the surface normal at p. The center points of all spheres
touching pmust be located on the ray.

Step 2.2 As an initial candidate for the target sphere,
a sphere with a sufficiently large radius touching p is
defined. The MIS touching p is obtained by repeatedly
shrinking the initial sphere in the following manner.

• The candidate sphere has some inclusions and/or
intersections with the surface polygons of the object.
In our algorithm, any case in which the sphere touches
or contains a surface polygon is recognized as an
intersection.

• For each intersecting polygon f i except f, a point pi on
the polygon that is closest to the center point c of the
sphere is computed. In the case shown in Fig. 3(a), the
candidate sphere intersects six polygons. A polygon
f 3 is recognized as an intersecting polygon because it
touches the sphere surface. Six points, p0, p1, p2, p3,
p4, and p5, are computed as the closest points on each
of the intersecting polygons.

• Based on the computed points, the next candidate
sphere touching p is obtained. For each pi, a new
sphere whose center point is on the ray andwhose sur-
face passes through both p and pi is computed (see Fig.
3(b)). From the computed spheres, a sphere with the
smallest radius (bold sphere passing through p5 in the
figure) is selected as the next candidate. By definition,
the new sphere must have a smaller radius than the
previous sphere.

(a) (b)

Figure 3. Sphere-shrinking process in Step 2.2.

The sphere-shrinking process described above is iter-
ated until the diameter change between the previous
sphere and the new sphere becomes sufficiently small.
In our current implementation, the process terminates
when the diameter change becomes smaller than 1/106
of the model size. The obtained sphere corresponds to
the MIS touching p. The diameter of the sphere is con-
sidered to be the thickness of polygon f at p. The conver-
gence speed of this algorithm for obtaining the solution
sphere is very high. In the case shown in Fig. 3(b), the
selected sphere in the first iteration becomes the solu-
tion. Fig. 4 presents a flowchart summarizing the entire
processing flow.

3.2. Initial candidate sphere

In our algorithm, the size of the initial candidate sphere
has a significant impact on the computation result and
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Figure 4. Flowchart summarizing the shrinking sphere process.

cost. The initial sphere must have a sufficiently large
radius; otherwise, it may not have any intersections with
the surface polygons, and our algorithm will not work.
On the other hand, if the radius of the initial sphere is
too large, it will have toomany intersections with the sur-
face polygons, and Step 2.2 will therefore require a longer
computation time to determine the next sphere.

In our implementation, the initial sphere for a surface
point p is obtained using the ray method. As mentioned
in Section 2, this method returns the distance between
p and another point q, where q is the intersection point
of a ray shot from p with the immediately opposite sur-
face of the object. This distance is used as the diameter of
the initial sphere touching p. Such a sphere touches the
object surface at q when the two polygons containing p
and q are parallel, as in Fig. 5(a). The sphere will pene-
trate the object surface near qwhen the two polygons are
not parallel, as in Fig. 5(b). In all cases, an initial sphere
can be defined that has some intersecting polygons or a
polygon contacting at a location other than p, and the

(a) (b)

Figure 5. Initial candidate sphere determined using the ray
method.

sphere-shrinking process can be executed properly. Most
mechanical parts are designed to have constant thickness
throughout the surface; therefore it is highly likely that
this initial sphere is the MIS touching p (see Fig. 6), and
fast convergence of the sphere-shrinking process can be
expected.

Figure 6. Initial candidate spheres of a part with constant thick-
ness.

Because the STL model does not guarantee water-
tightness, the ray method may fail to obtain an inter-
section point on the opposite surface when the ray
passes through the gap between polygons. We consider
a bounding box that tightly encloses the entire object.
Any inscribed sphere of the object must be contained
within this box; thus, a sphere whose diameter is equal
to smallest length of the box is used as the initial sphere
when the ray method fails. Because such a sphere has a
very large radius andwould probably containmany inter-
secting polygons, much more time would be required in
Step 2.2 to select a sphere with the smallest radius. How-
ever, the possibility of the ray passing through a gap is
usually very small and the additional computation time
caused by the initial large sphere can be ignored in most
cases. Based on our experiments, the percentage of rays
passing through a gap is less than 0.01% for CAD mod-
els of mechanical parts. This percentage increases to 1%
formodels constructed based on laser-scanned data from
real objects because their lack of uniformity inevitably
produces errors in the measurements of their shapes.

3.3. Use of hierarchical bounding box

The most time-consuming task in our algorithm is the
detection of all surface polygons intersecting the sphere.
The hierarchical structure of the axis-aligned bounding
box (AABB) [13] is introduced for improving the effi-
ciency of our algorithm. An AABB that tightly encloses
the polygons is defined by measuring the coordinate
ranges of the polygons in the x-, y-, and z-axis directions.
We define a root AABB that encloses all the triangular
polygons of the given model. Next, we project the center
points of all the polygons in the AABB to a line paral-
lel to its longest axis, and we sort the polygons according
to the order of the projected points on the line (see Fig.
7). Then, two AABBs are formed, one by the first n/2
sorted polygons and the other by the remaining polygons.
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These twoAABBs are considered to be the children of the
root AABB. The sorting and grouping operations of poly-
gons and the process of defining childAABBs are iterated,
and a binary AABB tree is obtained. The tree construc-
tion process is terminated when all leaf AABBs of the
tree contain only nmax or fewer polygons, where nmax is
the maximum number of polygons allowed for each leaf
AABB. In our implementation, we set nmax = 4 based
on numerical experiments. Each leaf AABB retains the
number of polygons within as well as the geometric data
(coordinates of vertices) of the polygons.

Figure 7. Hierarchical AABB tree construction process.

The AABB tree allows efficient detection of the sur-
face polygons intersecting a sphere. The tree is traversed
in the depth-first manner. At each tree node, the dis-
tance d between the center point c of the sphere and
the AABB corresponding to the tree node is measured
using an algorithm proposed in [4]. If d is larger than the
sphere radius, no polygon within the box intersects the
sphere, and the traversal of its child nodes can be can-
celed. Otherwise, its children are checked in a recursive
manner. In the case shown in Fig. 8, only child AABBs
of BBox0 are traversed because the distance between
BBox0 and the sphere center is smaller than the sphere
radius. After the culling operation during the AABB tree
traversal, some AABBs at the leaf nodes of the tree are
obtained. These AABBs hold polygons sufficiently close
to the center point, and they may have intersections with
the sphere. Because the oriented bounding box (OBB)
can hold the polygons within, a hierarchical OBB tree is

Figure 8. Culling operation with bounding boxes.

generally known to bemore efficient in the culling opera-
tion [8]. According to our experiments, inmost cases, the
implementation using the AABB shows 10% better per-
formance in terms of the required computation time than
the implementation using the OBB.

The AABB tree is also valuable for efficiently select-
ing polygons intersecting the ray used in the initial sphere
determination process. The tree is traversed in the depth-
first manner in this selection. At each tree node, the
intersection between the ray and an AABB correspond-
ing to the node is checked. If the ray does not cross the
box, no polygons within the box intersect the ray, and
the traversal of its child nodes can be canceled. If the ray
does cross the box, its child nodes are traversed in a recur-
sive manner to detect a possible crossing between the ray
and their holding polygons. After the tree traversal, some
leaf AABBs are obtained. Since the polygons within these
AABBs are the only ones that intersect with the ray, these
are applied in the initial sphere determination process
using the ray method.

4. Parallel computations with GPU

In order to select the polygons intersecting the sphere,
point-polygon distance computation is executed between
the center point of the sphere and the polygons within
the leaf AABBs obtained after the culling operation. For
each intersecting polygon f i except polygon f where
the initial given point p is located, a point pi on the
polygon closest to the center point is computed. A new
smaller sphere whose center point is on the ray shot
from the given point p and whose surface passes through
both p and pi is obtained. These computations for each
intersecting polygon are mutually independent; there-
fore, they can be performed using the GPU in a parallel
manner.

The GPU is designed to have hundreds of small
streaming processors (SPs) on a chip. These SPs can exe-
cute the same instructions with different data in paral-
lel. In the implementation of the parallel distance com-
putation software, Compute Unified Device Architec-
ture (CUDA) is used [14]. CUDA enables programmers
to utilize a GPU as a general-purpose single instruc-
tion/multiple data (SIMD)-type parallel processor. The
main factor responsible for the acceleration gained by the
GPU is the replacement of iterative execution of a func-
tion in a loop with parallel execution of its equivalent
threads on the SPs. CUDA provides a parallel execution
framework of threads in a C program. Using CUDA,
programmers can describe a code to execute at most
65535× 65535× 512 threads simultaneously.

In our current implementation, each thread is
assigned to compute the radius of a new sphere based
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on the polygons in each leaf AABB. More precisely, the
following computations are executed by each thread.
1. The thread computes the distance between the cen-

ter point of the current sphere and each polygon in
a leaf AABB corresponding to the thread.

2. If the distance is greater than the sphere radius, then
the polygon data is simply discarded because the
polygon does not intersect the sphere. If the poly-
gon corresponds to polygon f where the initial given
point p is located, then this polygon is also omit-
ted from the following computations. Otherwise, a
point on the polygon closest to the center point of the
sphere is computed for each intersecting polygon.

3. A new sphere is derived by using the coordinates
of p and the coordinates of the closest point on the
intersecting polygon. The thread repeats the sphere-
defining process for all the polygons in its corre-
sponding AABB, and it returns the smallest sphere
for the AABB as its result.

Fig. 9 shows four threads invoked for four leaf AABBs.
Each thread computes the smallest sphere for its corre-
sponding AABB as shown in the figure.

Figure 9. Each thread computes the smallest sphere for its corre-
sponding AABB.

After the execution of all the threads, the smallest
sphere among the computed spheres is selected as the
next candidate for the MIS touching p. In the case shown
in Fig. 9, a sphere passing through point p1 is selected
from among the four spheres. Because the computations
of theMIS for a surface pointp and for another point q are
mutually independent, the sphere-shrinking operation
can be executed for multiple surface points in a paral-
lel manner. In our current implementation, the program
simultaneously executes the threadsmentioned above for
2048 surface points. This number of parallel processing
points was determined by computational experiments in
our current computing environment. This number can

be increased in the future with a GPU containing more
streaming processors.

This implementation is not optimized for fully uti-
lizing the computation ability of the GPU. In the GPU
computation, the geometric data of the polygons is stored
in the global memory of the graphics board. Because
the data access speed of the global memory is much
lower than the computation speed of the GPU, the arith-
metic unit of the GPU has to suspend processing until
the required geometric data is completely transferred
from the global memory to the registers of the arithmetic
unit. In order to overcome this problem, a new parallel
algorithm that uses the fast shared memory mechanism
has been proposed; however, it has not been implemented
thus far.

5. Computational experiments

Using the shrinking sphere algorithm, we implemented a
thickness visualization system based onMicrosoft Visual
C++ and CUDA 6.5. In our experiments, we employed
a Windows 8.1 64-bit PC (Intel Core-i7 4.0GHz CPU,
32GB main memory, nVIDIA GTX-980 GPU). Fig. 10
shows the results obtained by applying our system to five
sample models. In these images, red is assigned to zero
thickness and blue is assigned to the maximum thickness
of the model. In the visualization result for a cup (Sample
A in Fig. 10), the blue zone (thicker zone) is extracted in
the inner wall of the cup where the handle is connected
outside the cup. As shown in Fig. 1(a), such a connect-
ing part can contain a larger sphere than its adjacent wall
part. Yellow lines (thicker zones) are visible in the curved
surface in the top part of Sample D (see also Fig. 11(a)).
There are many ribs in the other side of the part, and the
yellow lines correspond to the connecting part of the ribs.
As in the case of the cup, the connecting part of the rib
can contain a larger sphere. Fig. 11 shows close-up views
of Samples D and E shown in Fig. 10 (they correspond to
the dotted squares in Fig. 10). Fine and precise thickness
visualization is achieved for surfaces with small polygons.

Table 1 lists the time required to compute the thickness
of all the surface polygons of the five samplemodels. Sam-
ples A, B, C, D, and E correspond to the sample models
illustrated in Fig. 10. The shrinking sphere process is ter-
minatedwhen the diameter change becomes smaller than
a predefined small epsilon value, which was 1/106 of the
approximate size of the model for the results presented
here. From the table, it is clear that our algorithmachieves
very fast convergence. Not more than five iterations are
usually sufficient to obtain the MIS. We implemented
another MIS computation program using the bisection
method. This method used the same initial sphere given
by the raymethod and the same termination condition of
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Figure 10. Thickness visualization results for sample parts.
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(b)(a)

Figure 11. Close-up views of Samples D and E.

Table 1. : Time required for thickness visualization.

Model
Number of
polygons Model size

Average iterations for
convergence CPU comp. t0(s) GPU comp. t1(s) t0/t1

A 17,970 225.5× 204.8× 181.0 4.66 1.57 0.93 1.69
B 197,450 969.7× 967.7× 305.0 4.90 79.05 25.77 3.07
C 202,520 212.8× 152.9× 99.7 4.42 148.76 30.28 4.91
D 1,708,000 72.5× 344.5× 210.3 2.78 355.21 159.60 2.23
E 1,972,196 153.2× 160.2× 105.1 3.88 1542.29 339.04 4.55

the iteration; however, in general, this program required
four or five times more iterations to obtain the MIS for
the samplemodels given in Fig. 10. For example, the aver-
age number of iterations for Sample Ewas 16.40 using the
bisection method, which is 4.2 times more than the nec-
essary number of iterations using the shrinking sphere
method.

Computation using the GPU was two to five times
faster than computation using the CPU, especially for

complex objects with numerous polygons. The thickness
of an object with nearly two million polygons (Sample E)
was computed in several minutes. Fig. 12 shows the per-
formance of our system according to the increase in the
number of polygons. The surface polygons of Sample A
(uniformly thin shape) and B (thick and complex shape)
were subdivided to obtain several newmodels of the same
shape, but with a different number of polygons. These
polygons were used in the experiments that obtained the

Figure 12. Time required for thickness visualization.



COMPUTER-AIDED DESIGN & APPLICATIONS 207

results in Fig. 12. The two curves visible in the graph
are not straight lines; however, owing to the slow rate
at which their slopes increase, they appear to approxi-
mate straight lines. A similar tendency appeared in the
computation results for other models.

6. Conclusions

The shrinking sphere algorithm was proposed in this
paper as a novel algorithm for calculating the thickness
of tessellatedmodels based on theMIS, and the proposed
algorithm was applied to the thickness visualization of
different samples. In this algorithm, a sphere with a suf-
ficiently large radius touching a surface point is given as
the initial candidate. Such a sphere has intersections with
surface polygons of the object. Based on the intersecting
polygons, a new sphere with a smaller radius is obtained.
This sphere-shrinking process is repeated until the radius
change between the previous sphere and the new sphere
becomes sufficiently small.

The shrinking sphere algorithm has a high conver-
gence speed, and no more than five iterations are usually
sufficient for obtaining the MIS. Three additional meth-
ods were presented to improve the performance of the
proposed algorithm:
• Determination of a suitable initial candidate sphere

using the ray method,
• Use of hierarchical bounding volumes for efficiently

selecting polygons intersecting the sphere,
• Use of the parallel-processing capability of the GPU to

accelerate the computation.
Based on the proposed algorithm, an experimental

thickness visualization system was implemented. This
system could visualize the thickness of a complex object
with nearly two million polygons in several minutes,
which is sufficiently fast for practical purposes.
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