
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 2, 173–183
http://dx.doi.org/10.1080/16864360.2015.1084184

Parallel LOD for CADmodel rendering with effective GPUmemory usage

Chao Peng1 and Yong Cao2

1University of Alabama in Huntsville, USA; 2Virginia Tech, USA

ABSTRACT
Lack ofmemory is one of reasons thatmakes rendering ofmassive CADmodels challenging on a sin-
gle workstation. As CPUmain memory size reaches tens of gigabytes, GPUmemory is far behind. To
render amodel with several gigabytes of vertices and triangles, Level-Of-Detail (LOD) algorithms are
used to view-dependently select potionsof datasets from thedata repository onCPU, and then trans-
fer them toGPUat each time a framebeing rendered. But, the question of how to effectively and fully
utilize GPU memory to achieve best possible rendering quality for an oversized CAD model has not
been addressed. In this paper, we propose a parallel LOD approach that uses both view parameters
and GPUmemory size for adaptive adjustments of geometric complexity. Also, our GPU out-of-core
technique minimizes the size of CPU-to-GPU data transfer by taking advantages of frame-to-frame
coherence. The experimental results show that our approach effectively renders Boeing 777 airplane
model, composed of over 300 million triangles, at highly interactive frame rates.

KEYWORDS
Level-of-detail; massive
model rendering; GPU
out-of-core; GPGPU

1. Introduction

With the support of OpenGL driver, a modern GPU
is capable of rasterizing thousands of millions of trian-
gles per second. GPU computational power is affected
by the density of transistors. In the past two decades, as
Chen stated in [3], the number of transistors on GPU
was “more than doubling for every one and half years,
exceeding the projection of Moore’s Law”. GPU evolution
has achieved billions of transistors per chip. Under such
performance trend, GPUs continue to support the ren-
dering of large 3Dmodels as they continue to advance in
complexity.

The size of GPUmemory is limited. While CPUmain
memory has been well developed to cache large datasets
(feasible to allocate tens of gigabytes memory on RAMs),
GPUs do not have the same storage capability. Standard
GPU devices on the market are often configured with
2–4GB memory. A complex CAD model, such as Boe-
ing 777 airplane model - all triangles, vertices, surface
normals and geometry colors requiring 6GB memory on
storage - cannot fit into the GPU. We can transfer only
a portion of data to GPU. Then, to render it, a LOD
technique is applied to construct a simplified version
as the rendering alternative. In this paper, we present a
GPU-accelerated parallel LOD approach to dynamically
select and transfer data from CPU to GPU, and generate
a simplified version of the model at each time a frame
being rendered. Note that, extreme geometry models

CONTACT Chao Peng chao.peng@uah.edu

may exceed CPU memory limits, so traditional external
memory algorithms were designed to fetch and access
data stored in slow bulk memory (e.g., hard drives) [29].
Those externalmemory approaches are not our focus and
excluded from the discussion of this paper.

Memory size determines the total number of prim-
itives, which is a budget to be allocated to all objects.
Conceptually, an object can be rendered at any level of
detail. While preferring to determine the desired level
by considering its visual importance, we also need to
make sure the number of primitives for the objects is not
over budget. This brings a problem known as LOD Selec-
tion. Existing LOD selection solutions, such as [11], [17],
[21], consider only view parameters. Given a view angle
and distance to the model, objects close to the camera
need more geometric detail than those far away. When-
ever the view angle or distance changes, the detail of
objects change; accordingly, a new portion of data should
be selected.

Using only view parameters may cause two problems:
(1) the size of selected data portions exceeds GPU mem-
orymaximum and cannot fit into the GPU for rendering;
(2) the size of selected data portions is less than the GPU
memory size, so they can be rendered but GPU memory
is not fully utilized. In this paper, we present a two-
pass LOD selection algorithm that considers both view
parameters and GPU memory size to ensure full utiliza-
tion of GPU memory while preserving visual fidelity.

© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/0000-0001-8838-2469
http://orcid.org/0000-0001-7422-8284
mailto:chao.peng@uah.edu
http://www.cadanda.com

174 C. PENG AND Y. CAO

Our rendering approach contains three major com-
ponents: LOD Selection, LOD Model Generation, and
OpenGL Rendering, as illustrated in Fig. 1. LOD Selec-
tion determines the geometric complexity of objects. It
computes the numbers of vertices and triangles for each
object. LOD Model Generation fetches corresponding
portions of vertices and triangles from the repository of
mainmemory to theGPU, and generates the desired sim-
plified versions. OpenGL Rendering rasterizes simplified
meshes.

Figure 1. System overview.

The rest of this paper is organized as follows. Section
2 reviews previous work related this paper. We describe
our GPU-accelerated mesh simplification approach in
Section 3.We describe our contribution in LOD selection
in Section 4.We show our experimental results in Section
5. Section 6 concludes our work.

2. Related work

In the past, many researchers worked on massive model
rendering. Yoon et al. [33] discussed various techniques
supporting interactive visualization of massive 3D mod-
els. Related to this paper, we review some existing LOD
algorithms. Given a 3D object at distance to the cam-
era, LOD algorithms can approximate a less complicated
but visually faithful representation. The basic idea is dis-
crete LOD, such as [24], that creates a set of simplified
versions. Discrete LOD allows instantly accessing a LOD
representation, but it may cause visual popping artifacts,
where the transition of a level of detail to another is
abrupt and noticeable to the viewer. Giegl et al. [14]
blended neighbor LOD representations in image space
to minimize the artifacts, but the smooth transitions
between LOD representations are still hard to achieve.
Continuous LOD algorithms have been developed by
using a series of operations on geometric primitives, such
as progressive modification ([12], [18]), selective refine-
ments ([19], [32]), image-driven methods ([16], [22])
and parallel algorithms ([8], [9]). The most well-known
algorithm is Progressive Meshes [18] that simplifies a tri-
angular mesh based on a sequence of edge-collapsing
operations. At each edge-collapsing operation, an edge
is selected and removed by merging its two vertices, and

corresponding triangles are eliminated. Operations con-
tinue until the mesh cannot be further simplified (e.g.,
reaching the base mesh). One of the questions is how
to find the target position when merging the two ver-
tices of the edge. Galand and Heckbert [12] and Lind-
strom [23] introduced Quadric Error Metrics (QEM) to
find a target position by minimizing the sum of squared
distances to face planes. Later, Garland and Zhou [13]
extended QEM to any dimension. Swarovsky [28] used
the coordinates of one of two vertices as the target
one, so that they can avoid memory allocation for new
vertices.

Parallel LOD algorithms are proposed by utilizing
modernGPUdevices. The challenge in parallel algorithm
design was how to remove data dependencies introduced
in traditional CPU-based algorithms, so that fine-grained
GPU architectures can be fully utilized to gain a sig-
nificant performance boost. DeCoro and Tatarchuk [7]
presented a vertex clustering method using the shader-
based fixed GPU graphics pipeline. The representative
vertex position for each cluster can be independently
computed in geometry shader stage. Hu et al. [20] intro-
duced a GPU-based approach for view-dependent Pro-
gressive Meshes, where vertex dependencies were not
fully considered during a cascade of vertex splitting
events. Derzapf et al. [9] encoded the dependency infor-
mation into a GPU-friendly compact data structure; then
later, Derzapf et al. [10] extended their previous work to
out-of-core applications. Peng andCao [26] used an array
structure to support GPU parallelization. Derzapf and
Guthe [8] presented a dependency-free progressive mesh
algorithm on GPU using a bounding volume hierarchy
over split and collapse operations.

As CADmodels become more complex, they may not
be stored on GPU for rendering. Instead, they are main-
tained in external memory (e.g., hard drives); and data
portions are selected and transferred to internal memory
(e.g., RAMs). Mesh simplification algorithms and out-of-
core techniques are merged with hierarchical structures,
where the desired simplified model can be generated
by traversing the hierarchies. Aliaga et al. [1] presented
an interactive rendering system of complex models. The
system employed prefetching schemes for models larger
than available CPU main memory. Bruderlin et al. [2]
introduced a visibility guided rendering approach with
KD-tree for real time visualization of large datasets. Their
approach determined the polygons contributing most to
the scene on a frame-by-frame basis. Popov et al. [27]
introduced a high performance ray-tracing approach on
GPU. KD-tree was used to partition and store triangles
in the space hierarchy, and they achieve a peak per-
formance of 16 million rays per second for reasonably
complex scenes. KD-tree required a significant amount

COMPUTER-AIDED DESIGN & APPLICATIONS 175

of memory. Each GPU thread (or a ray) traverses the
KD-tree to find visible triangles and eliminate invisible
ones. Depending on space partitioning criteria of KD-
tree, the traversal might lead to significant imbalanced
workload among GPU threads. Varadhan and Manocha
[30] presented a prioritized prefetching approach for
efficient out-of-core data management. Their approach
considered both LOD- and visibility-based coherence
between successive frames. Correa et al. [6] proposed
a visibility-based prefetching algorithm. They predicted
the set of nodes likely seen next and sent them to mem-
ory ahead of time. Yoon et al. [34] used a cluster-based
integration approach with out-of-core data management,
where the input 3D model is represented with multi-
ple progressive meshes in a clustered hierarchy (CHPM).
Cignoni et al. [4] used a binary tree for mesh parti-
tioning, and allowed the construction ofmulti-resolution
and per-node simplification. Cignoni et al. [5] later used
a geometry-based multi-resolution structure for out-of-
core data management, where a hierarchy of tetrahedra
is constructed by recursively partitioning the input mod-
els. Gobbetti and Marton [15] represented data with a
volume hierarchy, by which their approach tightly inte-
grated the algorithms of LOD, culling and out-of-core for
massive model rendering.

3. GPU-acceleratedmesh simplification

Most simplification algorithms are not naturally data par-
allel and donot have trivial GPU implementations. Tradi-
tional simplification algorithms rely on hierarchical data
structures. The inter-dependencies introduced between
levels of the hierarchymake such algorithms unable to be
implemented in parallel. To address this problem, simi-
lar to [26], we present a dependency-free approach that
supports continuous LOD on GPUs.

3.1. GPU-friendly preprocessing

Our approach originates from the idea of edge collaps-
ing. The order of edge-collapsing operations indicates
how details of an object are reduced. These operations
are recorded in an array structure, called ECol. Each ele-
ment in ECol corresponds to a vertex, and its value is the
index of the target vertex that it collapses to. The stor-
age of vertices and triangles is rearranged based on the
order of the operations. In practice, the first removed ver-
tex during collapsing is put at the last position in the
vertex set; and the last removed vertex is put to the first
position. The same rearrangement is applied to the tri-
angle set. If a coarse version of the model is needed, we
select a small number of continuous vertices and triangles
starting from the first element in the sets. Fig. 2 gives an
example of the preprocessing with a mesh composed of
7 vertices and 8 triangles. Let’s define ecol(i) that returns
the value of theith element of ECol. Map is an array to
store the vertex count and triangle count remaining after
each collapsing operation. If j is the remaining vertex
count, the value of jth element inMap returned bymap(j)
is the remaining triangle count. As shown in Fig. 2(a),
Map is initialized so thatmap(7) = 8.

To preserve visual quality, we restrict boundary edges
are non-collapsible. A boundary edge is the edge exist-
ing only in one triangle. Two vertices of this edge are
boundary vertices. We use Q to denote the set of bound-
ary vertices. As a result, the lowest LOD of an object is
represented with the triangles formed by boundary ver-
tices, rather than a single triangle. Equation 1 expresses
general rules to collapse an edge (va, vb). N/A indicates
that the edge is a boundary edge.

Collapse(edge) =

⎧⎪⎪⎨
⎪⎪⎩

va→ vb, (va /∈ Q)

vb → va, (va ∈ Q, vb /∈ Q)

N/A, (va, vb ∈ Q)

, where a < b

(1)

(a) (b) (c) (d) (e)

Figure 2. Apreprocessingexampleof collapsing-based simplification. (a)-(d) show the intermediatemeshes resultedbyedge-collapsing
operations. At each operation, the collapsing-related information is recorded into four array structures. (e) shows the final array structures
after handling the boundary vertices.

176 C. PENG AND Y. CAO

There are five steps at each collapsing operation
detailed as follows:
(1) Choosing an edge to collapse.We calculate the cost

value for each edge that indicates the rate of visual
changes if collapsed. Our cost function is similar
to the function introduced by Melax [25] for game
development, but we set the cost values of bound-
ary edges are infinitely large. We collapse the edge
evaluated with theminimal cost bymerging one ver-
tex, denoted as vsrc, to the target one, denoted as
vtar, using Equation 1. This collapsing information
is recorded in ECol such that ecol(src) = tar.

(2) Permutation for vertices. Let’s say m is the num-
ber of vertices in the currently operating version
of the mesh. src is replaced by m, which indicates
vsrcwill be restored to the mth position in the rear-
ranged vertex set. To maintain such information, we
use arrayPermuteV , where each element represents
a vertex index, and its value is the new index that
it is permuted to. We denote permuteV(src) = m to
access the value at src in the array.

(3) Vertex-triangle counts. All triangles containing
both vsrcand vtarare removed from the mesh. If
ktriangles are removed and n triangles remain,
Mapis updated such thatmap(m− 1) = n− k.

(4) Permutation for triangles. Let’s say n is the num-
ber of remaining triangles in the current operation,
and two triangles, tr1 and tr2, are removed, where r1
and r2 (r1 < r2) are the indices of triangles. Similar
to Step (2), we use an array calledPermuteT, where
each element represents the index of a removed
triangle, and the value of the element is the new
index. We denote functions of permuteT(r1) =
n and permuteT(r2) = n− 1 to access the new
indices, respectively.

(5) Cleaning up.We delete vsrc, tr1 and tr2, then update
m and n for next iteration of collapsing operation.

Algorithm 1 :Data rearrangement
Input: V , T, ECol, PermuteV , PermuteT
Output: V ′,T′,ECol′

1: for each vi ∈ V do;
2: ECol′[permuteV(i)]← permuteV[ecol(i)];
3: V ′.vpermuteV(i)← V .vi;
4: end for
5: for each ti ∈ T do
6: T′.tpermuteT(i)← T.ti;
7: end for

The vertex and triangle sets are rearranged based on
the values in PermuteV and PermuteT. In the mesh, V
is the vertex set {v1, v2, . . . , vp} and T is the triangle

set {t1, t2, . . . , ts}. The rearranged object is defined
as O′ = (V ′,T′). our data rearrangement algorithm is
described inAlgorithm 1. Fig. 3(a) is an example showing
howECols,VandT are rearranged. As a result, if a simpli-
fied version ofO′contains ivertices (i ∈ [q, p]), where q is
the number of boundary vertices and p is the total num-
ber of vertices, we can retrieve the required number of
triangles j = map(i). As a result, the desired shape of the
simplified object is generated with only a subset ofV ′that
is {v1, v2, . . . , vi} and a subset of T′ that is {t1, t2, . . . , tj}.

3.2. Triangle reformation

A simplified object is generated by using the selected por-
tion of vertices and triangles. With the rearranged data,
the desired portions can be quickly identified as long
as we know the desired number of vertices and trian-
gles. After the desired data portions are sent to GPU, we
generate a new version of the model by reshaping each
triangle. We call this process as Triangle Reformation.
Of course the renderer would be able to rasterize those
GPU-residing vertices and triangles without applying the
triangle reformation algorithm. But that would make the
object fragmented. To preserve objects’ visual appear-
ance, shapes of selected triangles need to be reconfigured
using selected vertices.

Algorithm 2 Triangle Reformation
Input: T, n, ECol
Output: T′

1: for each tk ∈ T in parallel do
2: for i = 1 to 3 do
3: vidx← the i th vertex index of tk;
4: while vidx > n do
5: vidx← ecol(vidx);
6: end while
7: replace i th vertex index with vidx;
8: end for
9: end for

Given a triangletk, its three vertex indices may not
be within the range of selected vertices, so they must be
replaced with indices from the range. We denote T to be
the set of selected triangles, n is the desired number of
vertices, andT′is the reformedT. As shown in Algorithm
2, the reformation algorithm is executed in parallel. One
GPU thread handles one triangle. For each of three ver-
tex indices, we replace it with a new target vertex index
by looking up ECol. Fig. 3(b) is an example demonstrat-
ing the reforming process. Fig. 4 shows five versions of
Boeing 777 model generated by the triangle reformation
algorithm.

COMPUTER-AIDED DESIGN & APPLICATIONS 177

(a)

(b)

Figure 3. An example of data rearrangement. (a) shows vertices and triangles of the original object (left) with ECol of Fig. 2, which is
rearranged to a new representation (right) with the rearranged ECol′ after Algorithm 1. (b) shows the process of triangle reformation.
Assuming the desired vertex count is vc = 5 for the example object of Fig. 2(a). By looking up corresponding elements in Map, the
triangle count is tc = 4. Selected triangles are reformed using Algorithm 2. The result object has the same shape as Fig. 2(c).

(a) (b) (c) (d) (e)

Figure 4. Five levels of detail of Boeing 777 model. The numbers of triangles and vertices (triangle/vertex) are: (a) 38.0M/25.0M; (b)
26.6M/17.5M; (c) 15.1M/10.0M; (d) 7.4M/5.0M; (e) 3.7M/2.5M.

Our algorithm enables massive parallelization on
GPU, in which each GPU thread is assigned with a sin-
gle triangle rather than an object. Of course, object-level
parallelization could be a trivial scheme because objects
in the model are individual design parts and do not
connect to each other, but that would cause GPU com-
putation resources to be underutilized. The number of
GPU threads launched would be equal to the number of
objects, which is far less than the number of triangles. The
reason we can have triangle-level parallelization is due to
the use of ECols. Note that each object has an ECol. To
reform a triangle, we first identify which object it belongs
to. This can be easily done with the result of LOD selec-
tion - binary searching the array that stores the desired
number of triangles of all objects (see Section 4). Then
the GPU thread having this triangle looks up the corre-
sponding ECol as described in Algorithm 2 (line 2–8).

3.3. GPU out-of-core

During runtime, before generating the simplified model,
the selected portion of vertices and triangles are trans-
ferred from CPU to GPU, known as GPU Out-of-Core

technique. Since the bandwidth of the PCIe bus is
limited, CPU-to-GPU data transfer usually is a major
performance bottleneck. For instance, let’s say a GPU
device is configured with 4GB memory. When trans-
ferring 4GB data to this GPU through PCIe 2.0 bus,
it takes 250 ms. Let’s say the target frame rate is 20
frames per second, meaning one frame must be ren-
dered within 50 ms. Clearly, the bandwidth of PCIe
bus is too small. Frame-to-frame coherence technique,
such as [7, 26, 31], are used to identify data differ-
ence between frames. In a walkthrough application, there
is always some data used for rendering current frame
able to be used for next frame. Transferring only frame-
difference (additional data) reduces the workload of PCIe
bus. In this work, similar to our previous work [26],
we employ a frame-to-frame coherence approach that
minimizes the latency of data transfer. Because vertices
and triangles have been rearranged in increasing orders
of detail, the additional data is made by continuously
selecting data sets from the repository on CPU main
memory. For the ith object of the model, the set of
frame-different vertices is �vcfi = vcfi − vcf−1i , where
vcfi is the selected number of vertices, f is the current

178 C. PENG AND Y. CAO

frame, f − 1 is the previous frame. If vcfi ≤ 0, no addi-
tional vertices are needed; otherwise, the set of ver-
tices {vcf−1i , vcf−1i + 1, vcf−1i + 2, . . . , vcfi } is
selected and sent to the GPU.

After the GPU receives the data, we need a reassem-
bling procedure to combine the new data set and the old
one. Between two successive frames, some objects’ detail
may increase, and others may decrease. If we fill new data
into the blank memory blocks released by those objects
whose detail decreases, the entire data buffer would
be fragmented, since those blocks are small, many and
unsorted. Fragmented data hurts rendering. The stan-
dard graphics pipeline supports high-performance ren-
dering by taking the driver’s hints about primitive usage
patterns, for example, OpenGL’s non-immediate-mode
rendering method with Vertex Buffer Object (VBO). To
use VBO feature for fast rendering, data has to be orga-
nized in the same appearance order as they are originally
stored. Note that vertices, triangles and surface normals
are stored and rasterized based on theVBOstructure, and
our simplification algorithm retains the VBO structure
while reducing geometric complexity. Thus, the reassem-
bling procedure must meet the VBO structure. This can
be done in parallel on GPU. Each GPU thread handles
one target element of the destination memory block,
where the element will be filled with either an element of
old data or an element of additional data. We first iden-
tify the parent object that the target element belongs to
by binary-searching the prefix-summed vc. Second, we
convert the index of the element into a local index by
subtracting the offset indicated in vc. If this local index
is smaller than the size of old data, the target element is
filled with the element in old data; otherwise, it is filled
with a new element.

Once the reassembling procedure is done, triangles
and vertices stored in the destination memory block are
the data for next frame. They are just a portion of orig-
inal dataset selected from the CPU repository according
to a few LOD criteria (see details in Section 4). Vertex
indices in those triangles are original indices used to rep-
resent the full detail, so they are then replaced with new
ones using Algorithm 2 to construct simplified versions
of objects.

4. LOD selection

Now, the question is how to determine the desired levels
of detail. Given a specific viewpoint, we need to find out
how many vertices and triangles should be selected from
the data repository. CAD models manage 3D data in a
multi-object manner, where each object contains a small
number of triangles and vertices to describe its geometric

shape. To have a complete description of the whole
model, hundreds of thousands of objects may be cre-
ated. Conceptually, an object can be rendered at any level
of detail. But, as we know, GPU memory size is insuffi-
cient to hold the entire dataset. Thus, the total number
of geometry primitives must be budgeted according to
the available GPU memory. Also, the criteria of allocat-
ing budget to objects must be well designed to satisfy
the requirement of visual quality. In this section, we
present a two-pass algorithm that effectively distribute
hardware-constrained primitive budget.

4.1. First-pass algorithm

We should guide LOD selection with reference to the sys-
tem of human’s visual perception. As an object moves
away from the viewer, less detail of the object is captured.
If we can predict what detail people can perceive, we can
remove imperceptible detail so that the computational
resources will not be wasted for rendering unnecessary
mesh details. In practice, people examine the projected
area of the object on the display screen. A larger area
results in a higher level of detail. We employ Equation 2
for the first-pass algorithm.

vci = N
w1/α
i∑m

i=1 w
1/α
i

, wherewi = β
Ai

Di
Pβ
i ,β = α − 1

(2)
N represents the total number of vertices on GPU (the

budget that is usually determined by hardware limita-
tions). vci is the number of vertices for the ith object,
computed out of total m objects. Ai represents the pro-
jected area on the screen. The exponent 1/α is a factor
to estimate the object’s contributions for model percep-
tion. We set it to 3 in our experiments. Di is the dis-
tance between the object and the camera viewpoint. Pi
is the original number of geometry primitives. During
the preprocessing step, as mentioned in Section 3.1, the
remaining number of triangles after each edge-collapsing
operation is recorded. Thus, during the runtime, after
computing vci, we can retrieve the corresponding num-
ber of triangles, which would be used to generate the final
simplified version of the object.

In an object, the disconnected faces separated by bor-
ders and holes are important visual features. We preserve
those important features by restricting boundary edges
are non-collapsible, and the simplest version of the object
is made by boundary vertices. Let’s define the set of
boundary vertices for the ith object as Qi. Then vci has
a lower bound value, which is the size of Qi. vci also has
an upper bound value, which is the original number of
vertices of the object.

COMPUTER-AIDED DESIGN & APPLICATIONS 179

We denote mini as the size of Qi and maxi as the
original number of vertices. According to the result of
Equation 2, if vci is not in [mini, maxi], we are not able
to generate a simplified version of the object.

vci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vci (vci ∈ [mini, maxi])

maxi (vci > maxi)

mini (vci/mini ∈ [MinT, 1])

0 (vci/mini < MinT)

(3)

We employ Equation 3 to map vci into the range
of [mini, maxi]. Here we introduce a parameter called
MinT (MinT ∈ (0, 1)), which is the threshold at the lower
bound of vertex count. In the case of vci < mini,MinT is
used to evaluate how close vciis to themini. If vci/mini <

MinT, we ignore the object’s visual contribution and set
vci to zero; otherwise, we set it to mini, which is rendered
with the simplest representation.

4.2. Second-pass algorithm

With Equation 3, vci is guaranteed to be a valid value. But
if we add up all vertex counts, the sum (denoted as N ′)
may not match the given budget N. If many objects have
vci > maxi or vci/mini < MinT (vci �= 0), N′ is smaller
than N, then renderer does not obtain the expected
amount of data, which means we waste computational
resources. If most of objects have vci/mini ∈ [MinT, 1],
more than expected data are added, and renderer may
receive data exceeding memory limit.

Our second-pass algorithm, as shown in Algorithm 3,
adjusts geometry complexity of objects by redistributing
remaining budget (when N′ < N), or further reducing
it (when N′ > N). As a result, renderer is guaranteed
with exact workload as specified inN. We describe the
algorithm for the case of N′ < N. Below are three steps
to redistribute the remaining budget:
(1) Sorting key-value pairs. We distribute the remain-

ing budget (�N = N − N ′) to visually important
objects. In Equation 2, wi defines the weights of
visual importance of the objects. We define the
set of key-value pairs L = {< weight, idx >} (idx ∈
[0,m)), where idx is an object index, and weightis
the value retrieved from widx. We sort L according
to weights to move visually important objects to the
front.

(2) Identifying candidates. We identify candidate
objects whose details should be increased by obtain-
ing a piece from �N. We first compute the number
of vertices that an object can increase by. We intro-
duce array VDif , where VDif = maxj − vcj, i repre-
sents the ith element of sorted L, and j = Li.idx. We

perform prefix sum operation over VDif . We then
employ a binary search procedure overVDif , so that
we can find k objects obtaining pieces from �N, by
satisfying VDifk ≤ �N < VDifk + 1.

(3) Redistributing �N to the candidates. We increase
the number of vertices and triangles of those candi-
dates. The final complexity of objects will match the
given budget N.

Algorithm 3 Second-Pass
Input: L, vc, max, N′, N
Output: vc
1: if N′ < N then
2: sort L in decrease order of L.weights in parallel;
3: for i th element in L in parallel do
4: j← Li.idx;
5: VDi← maxj − vcj;
6: end for
7: prefix sum then binary search VDif in parallel;
8: for i th element in k selected objects in parallel do

9: j← Li.idx;
10: vcj← maxj;
11: end for
12: end if
13: if N′ > N then
14: sort L in increase order of L.weights in parallel;
15: for i th element in L in parallel do
16: j← Li.idx;
17: VDi← vcj;
18: end for
19: prefix sum then binary search VDif in parallel;
20: for i th element in k selected objects in parallel do
21: j← Li.idx;
22: vcj← 0;
23: end for
24: end if

If N′ > N, we use a similar algorithm. But we con-
struct VDif differently, where VDifi = vcj, and j =
Li.idx. So VDif indicates the number of vertices reduced
fromobjects. After applying the prefix sumoperation and
binary search, we reduce the vc of those selected objects
to zero, since their weights indicate that they are the least
important object in visual appearance. With the number
of selected vertices, we find the corresponding number of
selected triangles tc, where tci = map(vci).

5. Experimental results

We implemented the experimental software application
on a 64-bit Windows system using C++, OpenGL and
NVIDIA CUDA 6.0 SDK. We used Boeing 777 airplane

180 C. PENG AND Y. CAO

Figure 5. Boeing 777 model rendered by our approach.

model, which is an exceptionally complex CAD model.
It consists of many loosely connected, badly tessellated,
intertwining detailed objects with widely varying spa-
tial ratios and complex topologies, as shown in Fig. 5.
It has 718 thousand objects containing 332 million tri-
angles and 223 million vertices. We set MinT to 0.65 in
our experiments. We are confident that the complexity
of the Boeing airplane model sufficiently represents the
benchmarks of our target application domains.

5.1. Preprocessing performance

The preprocessing stage is performed to record the
edge-collapsing information and rearrange data stor-
age, where edges are collapsed one-by-one until reach-
ing the simplest version of the object. On average, the
preprocessing performance is 5.0 K triangles/sec, which
is slightly slower than our previous work [26] due to
the extra calculations over boundary vertices. Derzapf
and Guthe [8] constructed the bounding volume hier-
archy at 50 nodes/min. Yoon et al. [34] generated the
CHPM structure at 3.0 K triangles/sec; Cignoni et al.
[5] constructed the multiresolution-based static LODs at
30k triangles/sec on the network system with 16 CPUs;
Gobbetti et al. [15] built the volume hierarchy at 1 K

triangles/sec on one CPU and 20k triangles/sec on 16
CPUs. Our approach requires extra memory to store
collapsing information (ECols). For the Boeing airplane
model, 582.5MB is needed to store ECols, which is only
8.7% of the model size (6.7GB). ECols are stored on GPU
memory during entire runtime, so that the overhead of
sending them from CPU to GPU is avoided. Derzapf and
Guthe [16] preprocessed St. Matthew model (372M tri-
angles) requiring 2GB additional memory to store the
nodes of the bounding volume hierarchy, which is 23.9%
of the original size of St. Matthew model. They kept the
nodes on hard drive and sent selected nodes along with
the selected geometries to CPU main memory, and then
toGPUmemory. This was a time-consuming out-of-core
data management.

5.2. Runtime performance

We evaluated runtime performance on a workstation
equipped with an Intel(R) Core(TM) i7 2.67 GHz CPU
(4 cores), 12GB RAM, PCIe 2.0×16 and a NVIDIA GTX
680 with 4GB GPU memory. We created a camera navi-
gation path. With the two-pass LOD selection algorithm,
we can precisely specify the desired geometry complex-
ity of the model by giving the value of N. Fig. 6 plots the

COMPUTER-AIDED DESIGN & APPLICATIONS 181

Figure 6. Performance with NVIDIA GTX 680.

relation between the overall performance and values of
N. Each dot in graphs represents the averaged values from
all rendered frames. A larger value of Ngives a finer data
representation that ensures the accuracy but decreases
performance. Cignoni et al. [5] made an average of 70M
triangles/sec using their TetraPuzzle approach. Gobbetti
et al. [15] sustained an average of 45M primitives/sec
with their far voxel approach. Derzapf and Guthe [8]
achieved 180M triangles/sec for in-core implementation
and 140M for out-of-core implementation. The system
throughput of our implementation is a function of N. It
is 205M triangles/sec with N equal to 18M.

Table 1. Performance breakdown.

N FPS LOD Selection
LODModel
Generation

OpenGL
Rendering

18.0M 11.5 11.4 ms (13.0%) 69.5 ms (79.5%) 6.6 ms (7.5%)
10.5M 14.4 11.5 ms (16.5%) 51.4 ms (74.0%) 6.6 ms (9.5%)
3.0M 24.3 11.5 ms (27.9%) 23.8 ms (57.8%) 5.9 ms (14.3%)

Table 1 and the graph on the right in Fig. 6 show
breakdowns of performance. The time on LOD Selection
scales with the number of objects. We use Axis-Aligned
Bounding Boxes (AABBs) of the objects for LOD selec-
tion. At each time a frame being rendered, all AABBs are
used to determine desired geometry complexity. Theo-
retically, the execution time of LOD Selection is constant
regardless the value of N. The other two components
scale linearly to the values of N. The areas in the graph
represent the averaged execution times from the entire
rendered frames with different values of N. The time of
LOD Selection scales with the number of objects, so it
does not vary with different values of N. Because of the
limitation of PCIe’s bandwidth, transferring data from
CPU to GPU is a major performance bottleneck. Note
that only triangles and vertices are CPU-to-GPU trans-
ferred. Other types of data such as ECols and Maps are
stored onGPUduring the runtime.With the camera path
in our experiments, 430 K triangles and 232 K vertices

(a) (b)

Figure 7. Comparison of rendering quality. N is set to be 10.5M on both.

182 C. PENG AND Y. CAO

(frame-different data) per frame are transferred through
the PCIe bus, but they still cause LOD Model Generation
to be themost time-consuming component.WithNequal
to 18M, on average, data transfer time is 47.9 ms per
frame, and the time for constructing the simplifiedmodel
is 21.6 ms per frame. So in LOD Model Generation com-
ponent, the processing of GPU out-of-core results in a
more significant performance impact than the computa-
tions for constructing the simplified model. We employ
OpenGL’s VBO feature for rendering, which is never a
major performance factor.

We also compare the result produced with our two-
pass algorithm to the result with only the first- pass
algorithm. As shown in Fig. 7, given the same value of
N, the complexity adjustment strategy in the two-pass
algorithm preserves the appearance detail, especially on
those thin and small objects.

6. Conclusion

In this paper, we presented a parallel approach on GPU
to interactively render complex 3D CAD models. Our
LOD selection algorithm ensures full utilization of GPU
memory. While achieving high performance, we maxi-
mize the details on a simplified version of the original
model. Our approach also supports the tunable strat-
egy for adaptive level-of-detail controls, which can sat-
isfy different rendering constraints. Besides continuing to
improve our implementation, we would like to explore
other metrics that may deliver better performance and
visual quality. Our algorithm assumes the input model
contains multiple objects. We believe that, with a few
changes, our approach should support the scanned sur-
face model rendering. Also, we would like to explore
different memory spaces of GPU devices.We think about
using shared memory to further improve the perfor-
mance. Of course, our rendering is handled by OpenGL
with VBOs, which achieves best possible performance
with the support of OpenGL driver for hardware accel-
eration; but triangle reformation and GPU out-of-core
components may take advantages of shared memory.
The restriction is that shared memory is visible only
to threads within the block, and data there is accessi-
ble for the duration of the block. We would consider
how to wisely assign triangles to GPU threads and how
to handle latency caused by data transfer from global
memory to shared memory at each time a frame being
rendered.

Acknowledgements

This work was partially supported by the NSF grant, CNS
1464323, and the New Faculty Research Program of University

of Alabama in Huntsville. We gratefully acknowledge the sup-
port ofNVIDIACorporationwith the donation ofGPUdevices
used for this research. We also thank anonymous reviewers for
their suggestions and comments. We also thank David Kasik of
Boeing for providing the 3D model of Boeing 777 airplane.

ORCID

Chao Peng http://orcid.org/[0000-0001-8838-2469]
Yong Cao http://orcid.org/[0000-0001-7422-8284]

References

[1] Aliaga, D.; Cohen, J.; Wilson, A.; Baker, E.; Zhang, H.;
Erikson, C.; Hoff, K.; Hudson, T.; Stuerzlinger, W.; Bastos,
R.; Whitton, M.; Brooks, F.; Manocha, D.: MMR: an inter-
active massive model rendering system using geometric
and image-based acceleration, Proceedings of Sympo-
sium on Interactive 3D Graphics (I3D ‘99), ACM, New
York, NY,USA, 1999, 199–206. http://dx.doi.org/10.1145/
300523.300554

[2] Brüderlin, B.; Heyer, M.; Pfützner, S.: Visibility-guided
rendering for real time visualization of extremely large
data sets, Tutorial on European Conference on Com-
puter Graphics (Eurogaphics’06), Eurographics Associa-
tion and Wiley Blackwell, Vienna, Austria, 2006. http://
www.sci.utah.edu/∼ abe/massive06/EG06-Beat.pdf

[3] Chen, J.: Gpu technology trends and future requirements,
Electron Devices Meeting (IEDM), IEEE International,
Baltimore, MD, USA, 2009, 1–6. http://dx.doi.org/10.
1109/IEDM.2009.5424433

[4] Cignoni, P.; Ganovelli, F.; Gobbetti, E.; Marton, F.; Pon-
chio, F.; Scopigno, R.: BDAM-batched dynamic adaptive
meshes for high performance terrain visualization, Com-
puter Graphics Forum, 22(3), 2003, 505–514. http://dx.
doi.org/10.1111/1467-8659.00698

[5] Cignoni, P.; Ganovelli, F.; Gobbetti, E.; Marton, F.; Pon-
chio, F.; Scopign, R.: Adaptive tetra- puzzles: efficient
out-of-core construction and visualization of gigantic
multiresolution polygonal models, ACM Transactions on
Graphics (TOG), 23(3), 2004, 796–803. http://dx.doi.org/
10.1145/1186562.1015802

[6] Correa, W.; Klosowski, J.; Silva, C.: Visibility-based
prefetching for interactive out-of-core rendering, Pro-
ceedings of Symposium on Parallel and Large-Data Visu-
alization andGraphics (PVG’03), IEEEComputer Society,
Seattle, Washington, USA, 2003, 2. http://dx.doi.org/10.
1109/PVG.2003.10002

[7] DeCoro, C.; Tatarchuk, N.: Real-time mesh simplifica-
tion using the GPU, Proceedings of Symposium on Inter-
active 3D Graphics and Games (I3D ‘07), ACM, New
York, NY, USA, 2007, 161–166. http://doi.acm.org/10.
1145/1230100.1230128

[8] Derzapf, E.; Guthe, M.: Dependency-free parallel pro-
gressive meshes, Computer Graphics Forum, 31(8), 2012,
2288–2302. http://dx.doi.org/10.1111/j.1467-8659.2012.
03154.x

[9] Derzapf, E.; Menzel, N.; Guthe, M.: Parallel view-
dependent refinement of compact progressive meshes,
Eurographics Symposium on Parallel Graphics and
Visualization (EG PGV’10), Eurographics Association,

http://orcid.org/[0000-0001-8838-2469]
http://orcid.org/[0000-0001-7422-8284]
http://dx.doi.org/10.1145/300523.300554
http://dx.doi.org/10.1145/300523.300554
http://www.sci.utah.edu/~abe/massive06/EG06-Beat.pdf
http://www.sci.utah.edu/~abe/massive06/EG06-Beat.pdf
http://dx.doi.org/10.1109/IEDM.2009.5424433
http://dx.doi.org/10.1109/IEDM.2009.5424433
http://dx.doi.org/10.1111/1467-8659.00698
http://dx.doi.org/10.1111/1467-8659.00698
http://dx.doi.org/10.1145/1186562.1015802
http://dx.doi.org/10.1145/1186562.1015802
http://dx.doi.org/10.1109/PVG.2003.10002
http://dx.doi.org/10.1109/PVG.2003.10002
http://doi.acm.org/10.1145/1230100.1230128
http://doi.acm.org/10.1145/1230100.1230128
http://dx.doi.org/10.1111/j.1467-8659.2012.03154.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03154.x

COMPUTER-AIDED DESIGN & APPLICATIONS 183

Aire-la-Ville, Switzerland, 2010, 53–62. http://dx.doi.org/
10.2312/EGPGV/EGPGV10/053-062

[10] Derzapf, E.; Menzel, N.; Guthe, M.: Parallel view-
dependent out-of-core progressive meshes, Proceedings
of the Vision Modeling and Visualization Workshop
(VMV’10), Eurograohics Association, Siegen, Germany,
2010, 25–32. http://dx.doi.org/10.2312/PE/VMV/
VMV10/025-032

[11] Funkhouser, T. A.; Séquin, C. H.: Adaptive display
algorithm for interactive frame rates during visualization
of complex virtual environments, Proceedings of the 20th
Annual Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH ‘93), ACM, New York, NY,
USA, 1993, 247– 254. http://dx.doi.org/10.1145/166117.
166149

[12] Garland, M.; Heckbert, P. S.: Surface simplification using
quadric error metrics, Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ‘97), ACM Press/Addison-Wesley
Publishing Co, New York, NY, USA, 1997, 209–216.
http://dx.doi.org/10.1145/258734.258849

[13] Garland, M.; Zhou, Y.: Quadric-based simplification in
any dimension, ACM Transactions on Graphics (TOG),
24(2), 2005, 209–239. http://dx.doi.org/10.1145/1061347.
1061350

[14] Giegl, M.; Wimmer, M.: Unpopping: Solving the image-
space blend problem for smooth discrete lod transitions,
Computer Graphics Forum, 26(1), 2007, 46–49. http://dx.
doi.org/10.1111/j.1467-8659.2007.00943.x

[15] Gobbetti, E.; Marton, F.: Far voxels: a multiresolution
framework for interactive rendering of huge complex 3d
models on commodity graphics platforms, ACM Trans-
action on Graphics (TOG), 24(3), 878–885. http://dx.doi.
org/10.1145/1073204.1073277

[16] Gu, X.; Gortler, S. J.; Hoppe, H.: Geometry images, ACM
Transactions on Graphics (TOG), 21(3), 2002, 355–361.
http://dx.doi.org/10.1145/566654.566589

[17] Hollander, M.; Ritschel, T.; Eisemann, E.; Boubekeur,
T.: Manylods: Parallel many-view level-of- detail selec-
tion for real-time global illumination, Computer Graph-
ics Forum, 30(4), 2011, 1233–1240. http://dx.doi.org/10.
1111/j.1467-8659.2011.01982.x

[18] Hoppe, H.: Progressive meshes, Proceedings of the 23rd
Annual Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH ‘96), ACM, New York, NY,
USA, 1996, 99–108. http://dx.doi.org/10.1145/237170.
237216

[19] Hoppe, H.: View-dependent refinement of progressive
meshes, Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques (SIG-
GRAPH ‘97), ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1997, 189–198. http://dx.doi.
org/10.1145/258734.258843

[20] Hu, L.; Sander, P. V.; Hoppe, H.: Parallel view-dependent
refinement of progressivemeshes, Proceedings of Sympo-
sium on Interactive 3D Graphics and Games (I3D ‘09),
ACM, New York, NY, USA, 2009, 169–176. http://dx.doi.
org/10.1145/1507149.1507177

[21] Ji, J.; Wu, E.; Li, S.; Liu, X.: Dynamic LOD on GPU,
in Computer Graphics International, IEEE, Stony Brook,
NY, USA, 2005, 108–114. http://dx.doi.org/10.1109/CGI.
2005.1500386

[22] Lindstrom, P.; Turk, G.: Image-driven simplification,
ACM Transactions on Graphics, 19(3), 2000, 204–241.
http://dx.doi.org/10.1145/353981.353995

[23] Lindstrom, P.: Out-of-core simplification of large polyg-
onal models, Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques
(SIGGRAPH ‘00), ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 2000, 259–262. http://dx.
doi.org/10.1145/344779.344912

[24] Luebke, D.;Watson, B.; Cohen, J. D.; Reddy,M.; Varshney,
A.: Level of Detail for 3D Graphics, Elsevier Science Inc.,
New York, NY, USA, 2002. http://lodbook.com/

[25] Melax, S.: A simple, fast, and effective polygon reduc-
tion algorithm, Game Developer, 1998, 44–49. http://dev.
gameres.com/program/Visual/3D/PolygonReduction.pdf

[26] Peng, C.; Cao, Y.: A GPU-based approach for massive
model rendering with frame-to-frame coherence, Com-
puter Graphics Forum, 31(2pt2), 2012, 393–402. http://
dx.doi.org/10.1111/j.1467-8659.2012.03018.x

[27] Popov, S.; Günther, J.; Seidel, H.-P.; Slusallek, P.: Stackless
KD-tree traversal for high performance GPU ray tracing,
Computer Graphics Forum, 26(3), 2007, 415–424. http://
dx.doi.org/10.1111/j.1467-8659.2007.01064.x

[28] Swarovsky, J.: Extreme detail graphics, Proceedings of
Game Developers Conference, 1999, 899–904. http://
www.svarovsky.org/ExtremeD

[29] Toledo, S.: A survey of out-of-core algorithms in numeri-
cal linear algebra, ExternalMemoryAlgorithms andVisu-
alization, American Mathematical Society, Boston, MA,
USA, 50, 1999, 161–179. http://dl.acm.org/citation.cfm?
id= 327789

[30] Varadhan, G.; Manocha, D.: Out-of-core rendering of
massive geometric environments, Proceedings of Visual-
ization (VIS’02), IEEE, Boston, MA, USA, 2002, 69–76.
http://dx.doi.org/10.1109/VISUAL.2002.1183759

[31] Wang, R.; Huo, Y.; Yuan, Y.; Zhou, K.; Hua, W.;
Bao, H.: GPU-based out-of-core many-lights render-
ing, ACM Transactions on Graphics (TOG), 32(6),
2013, 210:1–210:10. http://dx.doi.org/10.1145/2508363.
2508413

[32] Xia, J. C.; El-Sana, J.; Varshney, A.: Adaptive real-
time level-of-detail-based rendering for polygonal mod-
els, IEEE Transactions on Visualization and Computer
Graphics, 3(2), 1997, 171–183. http://dx.doi.org/10.1109/
2945.597799

[33] Yoon, S.; Gobbetti, E.; Kasik, D.; Manocha, D.: Real-time
massive model rendering, Synthesis Lectures on Com-
puter Graphics and Animation, 2008, 1–122. http://dx.
doi.org/10.2200/S00131ED1V01Y200807CGR007

[34] Yoon, S.-E.; Salomon, B.; Gayle, R.; Manocha, D.: Quick-
VDR: Interactive view-dependent rendering of massive
models, Proceedings of Visualization (VIS’04), IEEE,
Austin, TX, USA, 2004, 131–138. http://dx.doi.org/10.
1109/VISUAL.2004.86

http://dx.doi.org/10.2312/EGPGV/EGPGV10/053-062
http://dx.doi.org/10.2312/EGPGV/EGPGV10/053-062
http://dx.doi.org/10.2312/PE/VMV/VMV10/025-032
http://dx.doi.org/10.2312/PE/VMV/VMV10/025-032
http://dx.doi.org/10.1145/166117.166149
http://dx.doi.org/10.1145/166117.166149
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1145/1061347.1061350
http://dx.doi.org/10.1145/1061347.1061350
http://dx.doi.org/10.1111/j.1467-8659.2007.00943.x
http://dx.doi.org/10.1111/j.1467-8659.2007.00943.x
http://dx.doi.org/10.1145/1073204.1073277
http://dx.doi.org/10.1145/1073204.1073277
http://dx.doi.org/10.1145/566654.566589
http://dx.doi.org/10.1111/j.1467-8659.2011.01982.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01982.x
http://dx.doi.org/10.1145/237170.237216
http://dx.doi.org/10.1145/237170.237216
http://dx.doi.org/10.1145/258734.258843
http://dx.doi.org/10.1145/258734.258843
http://dx.doi.org/10.1145/1507149.1507177
http://dx.doi.org/10.1145/1507149.1507177
http://dx.doi.org/10.1109/CGI.2005.1500386
http://dx.doi.org/10.1109/CGI.2005.1500386
http://dx.doi.org/10.1145/353981.353995
http://dx.doi.org/10.1145/344779.344912
http://dx.doi.org/10.1145/344779.344912
http://lodbook.com/
http://dev.gameres.com/program/Visual/3D/PolygonReduction.pdf
http://dev.gameres.com/program/Visual/3D/PolygonReduction.pdf
http://dx.doi.org/10.1111/j.1467-8659.2012.03018.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03018.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01064.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01064.x
http://www.svarovsky.org/ExtremeD
http://www.svarovsky.org/ExtremeD
http://dl.acm.org/citation.cfm?id=327789
http://dl.acm.org/citation.cfm?id=327789
http://dx.doi.org/10.1109/VISUAL.2002.1183759
http://dx.doi.org/10.1145/2508363.2508413
http://dx.doi.org/10.1145/2508363.2508413
http://dx.doi.org/10.1109/2945.597799
http://dx.doi.org/10.1109/2945.597799
http://dx.doi.org/10.2200/S00131ED1V01Y200807CGR007
http://dx.doi.org/10.2200/S00131ED1V01Y200807CGR007
http://dx.doi.org/10.1109/VISUAL.2004.86
http://dx.doi.org/10.1109/VISUAL.2004.86

	1. Introduction
	2. Related work
	3. GPU-accelerated mesh simplification
	3.1. GPU-friendly preprocessing
	3.2. Triangle reformation
	3.3. GPU out-of-core

	4. LOD selection
	4.1. First-pass algorithm
	4.2. Second-pass algorithm

	5. Experimental results
	5.1. Preprocessing performance
	5.2. Runtime performance

	6. Conclusion
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

