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ABSTRACT

Footwear is one of the most widely and intensively used human centric products. Evaluating and
optimizing footwear performance is of outmost importance for human comfort. This paper presents
a definition of foot plantar mechanical comfort along with a detailed approach for evaluating
it through finite element analysis. An extensive review of biomechanical and shoe mechanical
aspects related to human comfort is presented providing ample justification for the selection of
the comfort characteristics which are addressed in this paper. A foot biomodel has been developed
which is combined with solid shoe structures in order to evaluate plantar pressures distribution
and shock absorption. In addition, bending and torsional behavior of shoe structures is also taken
into account and, therefore, appropriate finite element models have been developed and tested.
All experiments are analytically presented and discussed, while the related results illustrate the
potential of the proposed approach to support footwear design optimization under an integrated
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biomechanics-enabled framework.

1. Introduction

Footwear is one of the most widely and intensively used
human-centric product categories influencing human
comfort. Footwear use is both leisure and occupational. It
has also medical implications in podiatry, thus attracting
significant interest in the field of biomechanical research.
Today, increased understanding of foot mechanical com-
fortissues has led to improvements in design and material
selection in footwear development.

This paper deals with the evaluation of footwear per-
formance in terms of plantar mechanical comfort. The
purpose of this work is to provide a unified framework
which is based on analytical finite element models (FEM)
of shoe structures combined with a detailed biomodel
of the human lower foot. The contribution of this paper
is twofold: first, a thorough definition of foot plantar
mechanical comfort is presented along with an extensive
review of the associated literature. Second, a set of sim-
ulation tools is presented based on finite element anal-
ysis (FEA) for assessing plantar comfort parameters as
defined in this work.

The concept of plantar mechanical comfort is first
introduced in Section 2, followed by a review of relevant
assessment practices and the definition of the adopted
plantar mechanical comfort in Section 3. The application

of the finite element method for the evaluation of
mechanical comfort is demonstrated in Section 4 using
indicative examples. Finally, Section 5 discusses the
derived results and concludes this paper with some hints
for future work.

2. The concept and aspects of foot plantar
mechanical comfort

Comfort is “lack of pain” and “a feeling of health and
wellbeing”. It is also situational (reaction to a situation)
consisting of physiological, psychological and physical
aspects [3], [16], [48]. The skeletal part of the foot defines
basic form and provides the foundation for other softer
tissues. The foot is enclosed by the skin which supports
local small scale mechanics that constitute the field of
haptics and tactile comfort. On the other hand, form
and skeletal structure provide for gross mechanics which
involves the foot and the higher body and delimits the
field of foot mechanical comfort.

The foot is the receiving body end for significant loads.
Excessive foot loading can be the cause of discomfort,
pain and actual injury in lower local or other higher parts
of the body. Interaction with the ground is either direct
or through the use of footwear consisting of a sole and
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an upper. The sole is subject to significant forces through
its interaction with the plantar foot side and the ground.
In contrast, the shoe upper is mainly subject to restrictive
or touch forces, that are much smaller compared to plan-
tar loads, limiting dorsal mechanics to fitting and stability
[17]. Thus, mechanical comfort can be divided into plan-
tar mechanical comfort, concerning the interaction of the
foot plantar side with the sole and the ground, and dorsal
mechanical comfort, limited to the dorsal side of the foot
and its interaction with the upper surface of footwear.
Plantar mechanics of the upright stance and gait are of
utmost importance to gross mechanics of the body and it
is addressed in several works [28], [31], [53].

The most important issue in plantar mechanics is
ground reaction forces to the action of body weight [19],
[29], [53]. The normal (to the plantar foot surface) vec-
tors of these forces are markedly greater than transverse
and longitudinal vectors (Fig. 1). Additionally to actual
measurements, the estimation or calculation of normal
plantar forces has been subject to extensive modeling,
including the use of Finite Element Analysis [15], [20],
[43]. The effects of normal plantar forces on discomfort,
pain and injury rates are significant while those of the
shear vectors on gross mechanics are limited, although
they cause superficial tissue damages [7], [18].
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Figure 1. Forces during gait (normalized to body weight) [51].

Insole shape conformance to the foot affects their
resulting contact areas [51] while outsole design deter-
mines the contact between the outsole and the floor,
thus, affecting plantar pressure distribution. Insole fitting
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has attracted significant attention. Trials conducted on
patients with plantar fasciitis support claims that insole
geometry affects comfort perception [52]. Along with
footbed geometry, material effects analyses have been
part of insole comfort studies. Besides insole shape, spe-
cial arrangements such as ordinary and reverse heeling,
wedged soles and rocker complicate force transfer char-
acteristics [45]. The effects of sole geometry and materials
on comfort aspects are well documented [11], [15], [25],
[34], [41], [50].

Another major issue in plantar mechanics is cushioning.
In biomechanics, it is the ability of a material to reduce
forces that have the potential to cause injury (shock
absorption). In particular, the relation between maxi-
mum values of plantar forces and areas of discomfort
or pain is the subject of the works [7], [26]. Maximum
force values are therefore a simple yet sufficient measure
for evaluating shock absorption. In contrast to biome-
chanics, in ergonomics, interest shifts onto material hard-
ness or compression characteristics related to fatigue and
discomfort. Goonetilleke [19] reviewed cushioning and
proposed relevant metrics based on hardness, material
compression, deceleration on impact, rebound resilience
and percentage energy lost.

Bending and torsional deformation characteristics of
footwear are also mechanical comfort aspects arising due
to the very use of sole structures and their interaction
with the ground. The influence of longitudinal bending
characteristics on push-off forces during the gait cycle has
been demonstrated in [13] and so have the relationships
between longitudinal rotation and lateral rotation along
the toe break line with comfort [23].

3. Previous work on plantar mechanical comfort
assessment and the proposed approach

3.1. Previous work

Most researchers and foot health practitioners focus on
specific comfort aspects (e.g. plantar loading, confor-
mity, shock absorption) and make use of proven mea-
surement arrangements that have been in existence for
several decades [6], [14], [16], [22], [30], [39], [51].
In addition, proprietary testing arrangements for bend-
ing and torsion characteristics of sole assemblies have
been developed (e.g. the CTC flexometer and the TNO
— IND/MPO Torsion Tester). Moreover, biomechanical
researchers have identified cause-effect relationships and
developed analytic, differential and finite element mod-
els for plantar mechanics, though most are limited to
individual mechanical aspects. Until recently, specialists
lacked an integrated approach to mechanical comfort
assessment. An integrated set of design specifications
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and testing guidelines for footwear comfort was first
developed in 2002 in Brazil [46]. These specifications
considered mass, plantar pressure distribution, cushion-
ing, balance, fitting and thermal aspects but were lim-
ited to design guidelines and late or post-developmental
testing.

Given the recent advances in IT and virtual engineer-
ing, the emphasis shifted towards mechanical comfort
assessment tools prior to physical prototyping. Mechan-
ics simulation evolved from simple analytical [27] to rhe-
ological models [2] and more recently to finite element
analysis (FEA) based tools [5]. Taking into account such
advances and the need for an integrated pre-prototyping
aid to comfort design, an interesting multi-aspect testing
tool was developed during the European CEC-MADE-
SHOE project under the name Virtual Shoe Test Bed
[4]. In this approach, comfort is described in terms of
the following aspects: normal plantar pressure, cushion-
ing, shock absorption, bending, torsion, friction, stabil-
ity, footwear weight and thermal aspects of footwear.
Extensive use of simplified analytical and rheological dif-
ferential models was made along with a detailed and
specialized material library to support a virtual com-
fort engineering tool. More recently the project Opt-
Shoes [40] has moved to the use of FEA to evaluate
plantar loading, shock absorption (through maximum
force values), bending and torsional characteristics of the
sole. Geometric plantar and dorsal conformity are also
addressed. The OptShoes approach is built on the con-
cept of mechanical comfort as established by both the
VSTB virtual engineering tool and the Brazilian specifi-
cations.

FEA has been applied in biomechanics for the cal-
culation of stress-strain relationships within tissues due
to interaction with the environment. In foot biomechan-
ics, early research [8], [27], [34], [38] resulted in simple
though adequate 2D and 3D models. Such early models
were used for material sensitivity studies [11], [33] and
for investigating the effects of insole geometry on plantar
pressure distribution [9]. Advances in FEA and IT led to
the development of improved models [10], [47] followed
by more advanced simulation cases [1], [11], [21], [25],
[56], [7]. Some assumptions are often made, e.g. cartilage
is treated as extension of osseus tissue and tarsal bones
are considered as one large solid in order to reduce the
complexity of the produced model [8], [12] and facilitate
FE modeling.

Most of the above mentioned works deal with individ-
ual biomechanics aspects of lower foot without offering
a consistent approach to the development of human-
centric products like footwear. On the other hand, a
main goal of this work is to integrate various foot biome-
chanics aspects in order to allow for the derivation

of a recommendation for the design or the functional
improvement of footwear.

3.2. The proposed approach

Foot structures are often combined with structures
resembling soles and floor surfaces. Such multi-layered
multi-material assemblies, have been designed, meshed
and simulated by several researchers in the past [12], [34].
Similarly, in this work, complex sole structures have been
developed with the aid of parametric CAD software.

With regard to bending and torsion analysis of soles,
it is assumed that the sole assembly is flexible enough to
bend and follow the foot motion through forces devel-
oped due to the presence of the footwear fastening sys-
tem. It is also assumed that foot supination-pronation
and varus-valgus angles are 0°. In flexible structures, the
strain energy required for bending the sole and conform-
ing to rotation around the metatarsophalangeal articu-
lations is much lower than in rigid ones. For walking
and some track athletics, flexible footwear are consid-
ered more comfortable than rigid ones [54]. The use of
energy measures is preferred to forces or moments, as is
the case in some laboratory equipment. Energy (or work)
is a true indication of human effort to bend the sole struc-
ture. Given wide variations in sizes, geometry and mate-
rial arrangements in footwear soles, strain energy can be
normalized to strain energy density (strain energy per
unit volume) and, given the interest in changes of bend-
ing characteristics along the structure, to strain energy
per unit volume and unit length. Maximum principal
stresses and their exact location within the sole assem-
bly can also be calculated for identifying areas of stress
concentration. Sole flexibility is an intrinsic property to
the footwear structure, depending on footwear geometry,
material arrangements and the assembly technology used
between sole and upper. Therefore, bending and torsion
analysis does not require the use of a foot biomodel.

Maximum bending occurs during the push-off phase
of gait. It takes place around the metatarsophalangeal
articulations and the bending angle, for the joints con-
cerned, is of the order of 55°. The position of these joints
is estimated at 26% of the foot length, measured from the
end of the big toe. Therefore, during the push-oft phase,
the part of the sole to the front of the metatarsophalangeal
articulations is, practically, fixed to the ground and the
rear part is bent upwards to 55°.

In additionto bending, the ability of the structure
to “twist” is critical to comfort. Published research on
the effects of longitudinal torsion rigidity on mechanical
comfort is limited; however, there is consensus on the fact
that increased resistance to torsion leads to increased heel
pronation, thus increasing discomfort, pain and injury



rates [35], [36], [42], [45]. Practically, any sole assem-
bly may be subject to torsion due to natural pronation
or supination, as well as uneven ground. Most torsion
related published research on footwear refers to mid and
long distance running activities and forefoot landing.
This is not the case with gait, where the heel strikes the
ground first and forefoot contact with the floor follows
later. However, it is known that, during gait, there is a
natural tendency for pronation during heel strike and
supination during pushing-off. Therefore, torsion applies
both to the front and the rear parts of footwear, though
at different instances of the gait cycle. Thus, it makes
sense to study torsion effects on comfort on each end
of footwear. Due to lack of symmetry (e.g. flared sole
designs), analyses shall account for both clockwise and
anticlockwise rotations. As in the case of bending, max-
imum principal stresses, strain energy, strain energy per
unit volume and strain energy per unit volume and unit
length can be calculated and the use of forces or torque
avoided. Maximum ankle mobility allows for rotation up
to 15° so angles of sole torsional deformation are not
expected to exceed this value.

Additionally, the simulation of the forces applied to
sole structure and the reactions applied to human foot
can be evidently examined by computing the correspond-
ing plantar pressures distribution. This is achieved by
using an adequate foot biomodel and appropriate mate-
rial properties of the soft/hard tissues. Strain energy den-
sity is selected as a measurement of shock absorption
which describes the capacity of the selected material to
absorb shock energy during human upright position and
gait.

Concluding, the proposed plantar mechanical comfort
approach with respect to footwear design-optimization
consists of the estimation of the following comfort-
related aspects/parameters:

e Sole structure bending and torsion
e Foot planar pressures distribution (incl. shock absorp-
tion)

A unique characteristic of the proposed method is
that all aforementioned comfort parameters are evaluated
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under a unified environment offering to the designer the
means to assess the performance a footwear product.
In the next section, we demonstrate how these comfort
parameters can be evaluated using analytic FE models of
shoe structures combined with a detailed biomodel of the
foot.

4. Evaluation of plantar mechanical comfort
using finite element analysis

4.1. Calculation of bending and torsion parameters

A 3D sole model is reconstructed that resembles an asym-
metric flat sole (Fig. 2(a)). The maximum length of the
structure is 290 mm, the maximum width 120 mm and
depth 10mm. A corresponding FE model of the sole
has been developed which consists of 4747 tetrahedral
elements with maximum size of 10 mm (Fig. 2(b)). Struc-
tures consisting of an outer sole and a mid sole were also
developed in order to simulate a typical poly-urethane
(PU) sole system of the market (Fig. 2(c)) with 5mm
thickness for the outer sole, and 10 mm for the midsole.
Four of the most usual footwear sole elastomer mate-
rials were selected for the analyses (Tab. 1) and linear
mechanical properties were assumed for each trial.

4.1.1. Calculation of bending

The structure is fixed on its lower front side (forward of
the 26% of the total length of the structure) and the back
part of the structure is bent upwards. This involves the

Table 1. Materials used for the bending and torsion analyses.

Young Modulus
(Typical Range)

Young Modulus
(Selected Value)

Poisson
Material MPa MPa Ratio
Poly-isoprene 2-4 2 0.499
Poly-butadiene 4-6 5 0.485
Double Density 4-12 8 0.3
polu-urethane (PU)
Single Density 2 2 0.28
poly-urethane (PU)

Figure 2. Models of the sole (from left to right): (a) 3D model of a single-layer sole, (b) the finite element mesh of the same sole, (c) 3D

model of a double-layer sole.
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lifting of a reference line section by 150 mm (Fig. 3). The
produced deformation corresponds to angles of bend of
approximately 55° (maximum expected angle of bend at
pushing-oft). Table 2 presents the results of the analyses
for the four material combinations selected.

Figure 3. Setting initial conditions for bending analysis.

Calculated values for both maximum principal stress
and strain energy are higher for increased Young’s
modulus of the sole material, indicating a realistic
approach to assessing bending deformation characteris-
tics of footwear components.

Graphical illustrations (fringe diagrams) for maxi-
mum principal stress and strain energy per unit volume
distribution within the sole structure, for polyboutadiene
elastomer are provided on Fig. 4(a) and Fig. 4(b) respec-
tively. In particular, the calculated and illustrated strain
energy distribution, on the middle area of the sole is as
expected for such a practical upwards oriented bending
of the sole with the front part firmly secured. Such graph-
ical presentation of distribution for either stresses or

Table 2. Bending Analysis Results.

energy quantities allows for problematic areas within the
structure to be identified and sole design to be improved.

4.1.2. Calculation of torsion

The presented trials are restricted to the heel area and
anticlockwise rotational deformation of the structure but
a similar approach can be applied for the forepart area of
the sole structure, as well as clockwise rotational defor-
mation.

The structure is fixed as for the bending analyses
(Fig. 5). Torsion effect is simulated by translating two
points located at the ends of a straight line section on
the lower part at opposite directions. Table 3 presents the
results of the analyses for the four material combinations
selected.

High values for principal stresses are due to bound-
ary conditions that force Cartesian translation of points
rather than rotational movement. However, total strain
energy, as proposed in this work, appears to be a true
and accurate measure for the structure, material prop-
erties and deformation concerned. Calculated values for

Figure 5. Setting initial conditions for torsion analysis.

Maximum Principal

Strain Energy per unit Strain Energy per unit

Stress Total Strain Energy volume volume and unit length
Material MPa (N mm~2) mJ (N mm) mJ mm—3 mJ mm—*
Poly-isoprene 0.4747 82.6338 3.2001 x 10~* 1.1035 x 1076
Poly-butadiene 0.7503 164.3751 6.3656 x 10~* 2.1950 x 107°
Double Density PU 1.1412 248.8644 9.6375 x 1074 33233 x 1076
Double & Single Density PU system 2.0638 805.2205 20.7887 x 10~ 7.1685 x 107°

080027
040000
0.31508
023016
0.44523
0.08031
-0.02481
-0.10953
-0.16446
-0.27838
0.37mMz

7.116e-02
5.000e-03
4.375e-03
3.750e-03
3.125e-03
2.500e-03
1.875-03
1.250e-03
6.250e-04
0.000e+00
9.372e-10

Figure 4. FEA distribution fringe diagrams (from left to right): (@) Maximum principal stresses on bending, (b) Strain energy per unit

volume on bending.



Table 3. Torsion Analysis Results.
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Maximum Principal

Strain Energy per unit Strain Energy per unit

Stress Total Strain Energy volume volume and unit length
Material MPa (N mm~2) mJ (N mm) mJmm~—3 mJmm—*
Poly-isoprene 47194 15.6129 0.6046 x 10~* 0.2085 x 10~°
Poly-butadiene 4.3262 33.2739 1.2886 x 1074 0.4433 x 1076
Double Density PU 12.1621 54.5362 2.1120 x 10~* 0.7283 x 1076
Double & Single Density PU system 28.1788 123.2040 3.1808 x 10~* 1.0968 x 1076
3.08202 5.942e+00
0.05000 . 5.000e-04
0.04375 4 375e-04
0.03750 3.750e-04
0.03125 3.125e-04
0.02500 ! 2.500e-04
0.01875 SS==—=  1.875e-04
0.01250 1.250e-04
0.00625 6.250e-05
0.00000 0.000e+00
-0.77404 2.399e-09

Figure 6. FEA distribution fringe diagrams (from left to right): (a) Maximum principal stresses on torsion, (b) Strain energy per unit

volume on torsion.

both maximum principal stress and strain energy are
higher for increased Young’s modulus of the sole mate-
rial, indicating a realistic approach to assessing torsion
deformation characteristics of footwear components.

Fringe diagrams for maximum principal stress and
strain energy per unit volume distribution within the sole
structure for poly-boutadiene elastomer are provided on
Fig. 6(a) and Fig. 6(b) respectively. In particular, the cal-
culated and illustrated strain energy distribution, on the
“shank” area of the sole is in line with practical scenar-
ios that exhibit such a “twisting” of the sole with the front
part firmly secured on the floor.

4.2. Plantar pressures and shock absorption
analysis

A biomodel of the foot consisting of soft tissue and an
inner structure resembling the bone structure is devel-
oped. The geometry of the model is derived from a com-
plete reconstruction from dense CT scans and a Reverse
Engineering (RE) methodology where a point-cloud is
extracted from the CT sections. The model consisting
of the soft tissue and an embedded bone structure is
assumed to rest on sole solid models (Fig. 7). Because of
the large difference of stiffness between bones and soft
tissue, bone structure was assumed rigid and cavities in
the soft tissue model were fixed. Linear material prop-
erties were considered for the soft tissue with a Young’s
modulus of 1.15 MPa. Contact elements were developed
between the soft tissue and the sole and the model was
loaded with a step-wise normal displacement of the lower
part of the sole. The reaction force, evaluated from the
solution, was considered to be the force applied to the

foot. For the analysis, ANSYS software code was imple-
mented.

Figure 7. Foot/sole FE model.

The four materials for the single and double sole
described in the previous section are used. The goal of
this investigation is to evaluate the effect of sole mate-
rial on the mechanical behavior of the system, including
maximum plantar pressure and strain energy density.
Typical distributions of the plantar pressure (minimum
principal stress) for poly-isoprene and double density PU
soles are shown in Fig. 8. The results show that the sole
material has a small effect on both the distribution of the
plantar pressure and its maximum value.

The force-displacement curves of the four models are
shown in Fig. 9. No significant difference is observed.
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Figure 8. Distribution of plantar pressure for poly-isoprene and double density PU soles (at 350 N).

This may be attributed to the small contribution of the
sole material to the stiffness of the whole model due to
its small volume as compared to the volume of the soft
tissue. The maximum plantar pressure with the applied
load is presented in Fig. 10. In this case, the results for
a single sole with a much higher stiffness (PVC with
Young’s modulus of 3 GPa) are also presented. No signif-
icant effect of the sole material is noticed. It should be
noted that the maximum pressure depends on local con-
tact behavior and the differences for the four materials
are in the range of FE accuracy. However, for a signifi-
cant stiffer material, higher values of contact pressure are
clearly observed.
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8 4
o
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1] T T
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Figure 9. Force-displacement curves.

In this work, as described in the previous section, the
parameter considered to represent the capacity for shock

0.4

=
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o
r

~Polyisoprene
~Polybutadiene
01

~Double density PU
—Double & single density PU
-PVC

0 0:2 0.4 06
Force (kN)

Figure 10. Maximum plantar pressure - applied force curves.

absorption is the strain energy density. In the bending
and torsional loading of the sole, the same displace-
ment for each material was used and the strain energy
increased with stiffness. However, during the normal use
of the sole, the displacement depends on the applied load,
the stiffness of the sole and the contact area and pres-
sure. In Fig. 11 and Fig. 12, the strain energy density of
the sole evaluated for each load step is compared to the
applied load and the maximum plantar pressure. Clearly,
the increase in sole stiffness results in lower strain energy
and, therefore, lower capacity for shock absorption. The
results of Fig. 11 suggest that after, approximately, 20 kg
of force, the relationship between load and strain energy
density is linear, meaning that there is no significant
change in the contact area. The same is observed for
the relationship between strain energy density and max-
imum plantar pressure. This may provide a useful tool
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mum plantar pressure.

for evaluating the strain energy density. Finally, Fig. 13
presents a comparison of the values of strain energy den-
sity at an applied load of 350 N and suggests an almost
inverse proportionality between strain energy density
and sole stiffness.
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Figure 13. Strain energy density at 350 N (35 kg) for the materi-
als used arranged in descending order of stiffness. Stiffness values
have been obtained from Tab. 1.
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5. Conclusions and future work

The finite element analysis of the system of the foot
biomodel and the solid sole model produced accurate
results for the foot plantar pressures distribution. In par-
ticular, it was observed that the sole material has a small
effect on both the distribution of the plantar pressure and
its maximum values. For the four material options con-
sidered, as well as the far more rigid PVC, the shapes of
the force-displacement curves were similar as expected,
though relatively higher values of contact pressures were
registered for the much stiffer PVC.

The parameter that is considered to represent the
capacity for shock absorption in the proposed approach
is the strain energy density. The analyses revealed that
increased stiffness of the sole leads to lower strain energy
and, therefore, lower capacity for shock absorption. Thus,
strain energy density may provide a useful aid to the study
of shock absorption aspects.

Furthermore, analyses of bending and torsion sole
deformation, demonstrate the capacity of the proposed
approach to investigate relevant characteristics of sole
structures. In particular, strain energy per unit volume
and strain energy per unit volume and unit length appear
to have an excellent potential to be measures of the abil-
ity of the structures to bend or “twist” in motion. Fig. 14
and Fig. 15 illustrate the strain energy per unit volume
for the bending and torsion analyses respectively. The
results correlate with practical selection guidelines in the
footwear industry (i.e., the use of isoprene based natural
rubber is recommended for very flexible and “twistable”
structures, compared to the use of polyurethanes).

All results are realistic, in accordance to footwear
manufacturing practices and demonstrate that the pro-
posed definition of foot plantar mechanical comfort has
the capacity to supplement the footwear development
process as an optimization aid. Future work will focus
on improving the boundary and loading conditions on all
comfort parameters in order to simulate with the highest
possible accuracy the plantar mechanical comfort as it is
defined in this work. In addition, although the results of
the proposed approach are comparable with those in the
literature, lab experiments are planned to be carried out
in order to verify our approach with real testing data.

Another area of interest is related to investigat-
ing mechanical comfort characteristics with regard to
footwear grading. Such grading related investigations
are becoming easier to manage due to recent param-
eterization advances [32],[49]. The potential to inte-
grate mechanical assessment, with grading and virtual
footwear fitting and styling systems [55] may provide
manufacturers with a powerful virtual engineering sys-
tem supporting a full range of product development.
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Figure 15. Strain Energy per unit volume for torsion analysis.
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