
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 1, 77–85
http://dx.doi.org/10.1080/16864360.2015.1059198

Simulation of a robot machining system based on heterogeneous-resolution
representation

Yonghua Chen and Ying Wei

The University of Hong Kong

ABSTRACT
Collision avoidance is a frequently encounteredproblem inmachiningprocesses, especially in robot-
based machining. In a robot machining system, collision may occur between the robot arm, the
tool, tool holder and the work piece together with its fixtures. Therefore, a precise collision detec-
tion algorithm is critical to ensure that the tool path is collision free, particularly in the area where
the tool has contact with the work piece. To verify tool paths, a simulation system is developed. In
the proposed system, the robotic system is modeled as a Constructive Solid Geometry (CSG) tree
where the Denavit-Hartenberg (D-H) notation is applied to represent the robot arm transformation
matrix. A combined CSG representation and STereoLithography (STL) representation, the so called
heterogeneous-resolution method is proposed to represent the work piece. By heterogeneous-
resolution, the area of the work piece near the current machining contact point is represented by
triangular facets at a controlled accuracy whereas other parts of the work piece are described by
grid height array (GHA) to save computation time in order for the simulation to have less latency.
When a collision is detected for a given cutter contact point, both the cutter location and the robot
arm position are modified. The proposed method is implemented into a simulation software where
the feasibility of the algorithm is tested and verified.

KEYWORDS
robot machining; path
planning; collision detection;
simulation

1. Introduction

In modern industries, robotic arms have been widely
used not only in their traditional applications areas such
as pick and place, welding, etc., but also used in large
part machining and grinding [7]. In any robotic appli-
cations, path planning and simulation is very important
as it determines if an expected task can be done satis-
factorily and safely or not [20]. A major part of robotic
simulation is the detection and avoidance of collision.
Collision can be described as detecting the intersection
among objects. The question received substantial atten-
tion in the last decade, and various classes of algorithms
had been developed. Collision detection at discrete time
instance/position is a practical method which had been
used in many collision detection systems. The basic idea
is to model an object in each position at a discrete time
instance/position instance, than calculate the intersec-
tion between/among objects. The most popular method
is by using B-Rep to describe the objects that need to be
checked, and then verifying if the edges of an object pierc-
ing into another object at discrete time instance. Some
improved methods use Spatial-Occupancy Enumeration
(SOE) to address the problem of reducing the number
of pairs of objects or primitives that need to be checked.

CONTACT Yonghua Chen yhchen@hku.hk

Octree [15], k-d tree [21], C-tree [18], CSG-tree, R-tree
and its variant [17], BSP-tree, Boxtree [5], OBBtrees [12],
B-Rep indices [19], tetrahedral meshes [13] and regular
grids [11] are examples of SOE methods to solving this
problem. In the typical Octree, the space is divided into 8
sub-spaces with each one recursively subdivided further
when needed. All the faces/objects that are in one sub-
space don’t intersect with any other faces/objects with
the other 7 sub-spaces. Then, faces/objects need to be
checked is reduced effectively. OBBtree is more efficient
than any other hierarchical trees because of its tightest
bounding box. In OBBtree, instead of using the axis-
aligned rectangular box, it makes use of statistical tech-
niques to analysis the distribution of vertices in space.
Then a tight fitting oriented bounding box is yielded.
The tight box can reduce calculation and detect col-
lision more accurate. More recently, Balasubramaniam
et al. [4] introduced a new precise method named vision-
based collision detection for detecting collision in 5-axis
machining. In their work, visibility is used instead of
accessibility for verifying tool path for rough machining.
At each discrete position along the tool path, if the tool
can “see” the point to be machined, that means there isn’t
collision.

© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/0000-0003-4020-1977
mailto:yhchen@hku.hk
http://www.cadanda.com

78 Y. CHEN AND Y. WEI

In other methods, Boundary Volumes is also a pop-
ular method in collision detection [14–16]. A commer-
cial collision detection software I-COLLIDE [8], with
the method of “sweep and prune”, is often applied in
collision detection. Sweep volume [1] is another repre-
sentation for collision detection, the idea is that when
an object moves along a given line or curve, the maxi-
mum space is the swept volume in a given time interval.
Adding time as a dimension, Cameron [6] developed
a four-dimension collision detection method based on
sweep volume. Based on the four-dimension method, a
vertex algorithmwas developed byAliyu [3] for detecting
collision between two simple objects.

In general, most of the existing collision detection
methods work well for some special case, and the accu-
racy in representing an object isn’t high enough and it
is much lower than the requirement of machining pro-
cesses. In a machining process, since the tool is moved
to a area very close the work piece, a high accuracy such
as 0.01mm is essential in collision detection between
a ball end tool and the machined surface. This accu-
racy requires both a fast and accurate collision detec-
tion method. In the proposed system, the work-piece is
represented as an STL file (this is nowadays very com-
mon as additive manufacturing technologies are in wide
spread use). The accuracy of part representation can
be controlled by the number of triangles. When a tool
approaches the partmodel, triangular facets that are close
enough to it are identified and converted to a Height
Grid Array (HGA) representation (That is, the part sur-
faces under current machining are represented as HGA.
This is why the representation is called heterogeneous-
resolution). With the CSG representation of the robotic
arm, the tool, the tool holder and the heterogeneous-
resolution represented work piece, collision detection
algorithm is developed.

2. System overview

The collision detection developed in this paper is applied
to a robot machining system for large scale object rapid
prototyping. The robotic system consists of an ABB
IRB1400 articulated robot with six-degree-of-freedom
mounted on a two-meter long linear track as shown in
Fig. 1. With this configuration, the robot can cover a
working envelope of 4M (Length) x 2M (Width) x 2M
(Height). Seveal fixtures are installed in the working plat-
form for holding work-pieces, such as, a clamp, a rotary
table, etc. In the current system, collision might occur
among the robot arm, the tool holder, and the work piece.
Accurate collision detection is required especially for the
tool and the work piece since they are very close in the
machining process.

Figure 1. Robot and its cutting tool.

The Robot and its manipulator are active parts in the
robot machining system. In the system, a robot, a high-
speed spindle and a ball end mill cutter are used. Their
shapes are very simple, can be described by cylinders,
boxes and spheres in CSG representation.

To describe the robot arm kinematics, many rotation
algorithms had been applied andDenavit-Hartenberg [9]
notation and its derivations [2] are themost popular.D-H
notation is widely used in the transformation of coordi-
nate systems of linkages and robot mechanisms. It can
be used to represent the transformation matrix between
links. With D-H notation, inverse problem can be solved
easily [10] and the robot arm positions can be calculated
with a given position and orientation of the manipulator.

The D-H Notation allows the description of a generic
robot arm with 4 parameters for each link. With these
parameters, a coordinate system is attached to each link.
By convention, all coordinate systems (or frames) follow
the right hand rule. Fig. 2a shows the D-H coordinate
system of the ABB IRB 1400 robot that was used in the
machining system. (x0, y0, z0)means the base coordinate
system. (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4),
(x5, y5, z5), (x6, y6, z6) represent the coordinate system
each joint of the robot. A complete list of D-H parameters
of each joint of the robot and the tool is given in Table 1.
In the table, referring to Fig. 2b, θ i is the joint angle from
the xi–1 axis to the xi axis about the zi–1 axis (using the
right-hand rule), di is the distance from the origin of the
(i–1)th coordinate frame to the intersection of the zi–1
axis with the xi axis along the zi–1 axis, ai is the offset
distance from the intersection of the zi–1 axis with the xi
axis to the origin of the i th frame along the xi axis (or
the shortest distance between the zi–1 axis and zi axes),
αi is the offset angle from the zi–1 axis to the zi axis about
the xi axis (using the right-hand rule). Themaximumand
minimum angles show the range of each joint.

COMPUTER-AIDED DESIGN & APPLICATIONS 79

(a) (b)

Figure 2. Kinematic configuration of the robot.

Table 1. D-H parameters of the robotic joints.

Joint No. i αi ai di θi Min Angle Max Angle

1 −90 150 475 0 −170 170
2 0 −600 0 0 −70 70
3 90 −120 0 0 −65 70
4 −90 0 720 0 −150 150
5 90 0 0 0 −115 115
6 0 0 85 0 −300 300
Tool 0 100 200 0 – –

Based on these parameters, a robot link matrix can be
generated. The D-H transformation matrix for adjacent
coordinate frames is known as

i−1Ai(θi)i=1,2,3,4,5,6,7

=

⎡
⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤
⎥⎥⎦

(1)

where i−1Ai(θi)n=1,2,3,4,5,6 means the link matrix of each
two adjacent coordinate systems. When i = 7, 6A7(θ7)

means the link from the sixth joint to the end of the tool
and θ7 is constant after installing the tool.

The homogeneous matrix 0T7 which specifying the
location of the end of the tool with respect to the base
coordinate system is the chain product of successive
coordinate transformation matrices of i−1Ai(θi), and is
expressed as

0T7 = 0A1
1A2 · · · 6A7 =

7∏
i=1

i−1Ai(θi) (2)

Given a series of points on the tool path for themanip-
ulators, the positions and orientations of these points are
described as

T =

⎡
⎢⎢⎢⎢⎢⎣

nxj sxj axj Pxj
nyj syj ayj Pyj
nzj szj azj Pzj
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
j=1···m

(3)

where P means position, n, s, a means orientations and
m is the number of positions. This inverse problem can
be solved at each position and proper parameters θ1,θ2,
θ3, θ4, θ5 and θ6 cold be found. With the solution, the
positions of each link (arm) of the robot and the tool can
be calculated in R3.

In the machining process, tool and tool holder will
move to a very close area of the work piece, so they must
be accurately modeled. Given the tool center point, the
ball end of the cutter can be represented as:

Ksphere = {p| |p − po| = R} (4)

where po is vector from the original point to the center of
the sphere and p, po ∈ R3

The shaft of the tool, the spindle, and the robot arm are
cylinders. A cylinder with base point ⇀po, radius R, length
L and orientation n in R3 can be represented as:

Ksphere = {p| |p − λLn − po| = R : (p − λLn − po) • n

= 0, λ ∈ (0, 1)} (5)

where ⇀po,
⇀p ∈ R3 .

80 Y. CHEN AND Y. WEI

The fixture of the spindle can be described as a box,
with a base point vector po, length L, widthW, height H
and orientations n, a, s of three adjacent edges, it can be
represented by six bounding rectangles as:

Kbox =
{
p|p ∈ Kp

i , i = 1, 2 · · · 6
}

(6)

where p ∈ R3 ,Kp
i are six bounding rectangles of the box.

By the solution of the robot transformation matrix,
with the Equation (4), Equation (5) and Equation (6), the
robot and the tool positions can be easily described in R3

by simple CSG primitives for collision detection.

3. STL representation and Grid Height Array
(GHA) representation

An STL file is composed of an unordered list of triangles
which are described by a set of X, Y and Z coordinates in
Cartesian coordinate and a normal vectorwhich points to
the outside of the model surface. For object with curved
surfaces, the STL file is an approximation of the origi-
nal model. The quantity and size of the triangular facets
dictate how accurately the actual model is approximated.

In STL representation, a givenmodel can be described
as:

S = {Tri|Tri = [V1
i ,V

2
i ,V

3
i ,ni]

T , i = 1 · · ·m} (7)

where V1
i ,V

3
i ,V

3
i ∈ R3is the vertices of a triangle, ni is

the normal vector of this triangle, m is the number of
triangles for the model’s exterior surface.

Given a CAD model as Fig. 3a, suppose the machin-
ing orientation is the inverse Z direction of Cartesian
coordinate in Fig. 3, a plane perpendicular to themachin-
ing orientation is tessellated into grids based on which a
HGA is constructed as in Fig. 3c. With GHA, a complex
model is represented as a series of cuboids in a given ori-
entation. Equation (8) shows the GHA representation of

a solid model.

G = hm∗n =

⎡
⎢⎢⎢⎢⎣

h11 h12 · · · h1n

h21
.

...
...

.
...

hm1 · · · · · · hmn

⎤
⎥⎥⎥⎥⎦

(8)

where m is the number of grids in row and n is the
number of grids in column,m× n is the number of grids
in this GHA. The accuracy of GHA is based on grid size.

4. Heterogeneous-resolution representation

In STL representation, all geometric features are repre-
sented by triangles. Since the description of a triangle is
very simple, determining if it has intersection with an
object or not is very simple. But a STL file is usually con-
sisted of tens (or hundreds) of thousands of triangles. If
every triangle is checked in the calculation, it is very com-
putation expensive. In the presented method, a method
called heterogeneous-resolution is applied to increase the
efficiency of collision detection.

With GHA, a surface model can be described at a
given accuracy using simple CSG primitives. If there
is collision between the GHA model and other parts
in the working environment, collision might occur. Of
course, GHA can be used as the model representa-
tion in collision detection, but in the area around the
tool contact point, the accuracy of GHA is not high
enough for collision detection. To be more precise in
collision detection, the original STL representation is
used. Since the number of the triangles in a STL file
is very large, it is desirable to remove triangles that are
unlikely to cause any collision at a given tool position.
Here the proposed heterogeneous-resolution representa-
tion is used for this purpose. In geometric representation,

(a) (b) (c)

Figure 3. Grid Height Array concept.

COMPUTER-AIDED DESIGN & APPLICATIONS 81

Figure 4. Projecting STL file to the tessellated plane.

the heterogeneous-resolution is a hybrid CSG/STL rep-
resentation. In terms of heterogeneous-resolution repre-
sentation, the surface of the model close to the tool and
tool holders is represented by its original triangular facets
from the STL file while the rest is represented by GHA
which is amuch simpler representation and requiremuch
less memory space.

The key problem in heterogeneous-resolution repre-
sentation is to identify the relevant triangles between
the tool and the work piece. In R3, finding the relations
between the triangles and the moving tool is very dif-
ficult. In the proposed method, the relationship of the
tool and the triangular surfaces is found by projecting
them onto the tessellated plane of GHA, then grids on
the plane are taken as a media to identify them. The fol-
lowing description focuses on the three steps in finding
the relevant triangles:
1. Project triangles of the whole STL file onto the tessel-

lated plane of GHA and identify the occupied grids
for each triangle;

2. Project the tool onto the sameplane andfind the inter-
sected grids which should be represented by triangles;

3. For each grid relevant to the tool on the projection
plane, find the relevant triangles.
With the GHA representation in Equation (8), the

grids set can be described as

GF = {Gfg | [V1
fg , V

2
fg , V

3
fg , V

4
fg] : f

= 1, 2, · · ·m, g = 1, 2, · · · n} (9)

Suppose the machining orientation is along Z axis.
According to the grids applied in theGHA, projecting tri-
angular mesh S as Equation (7–8) on the tessellatedXOY
plane. Fig. 4 shows two projected triangles in the mesh
and the projected triangle set is

Sp = {Tri|Tri = [V1
i ,V

2
i ,V

3
i ,ni]

T , i = 1 · · ·mt} (10)

where Vi ∈ R2,mt is the number of triangles.

Figure 5. Projecting tool to the tessellated plane.

To find the relevant grids, the maximum and mini-
mum X and Y value of the three vertices of the triangle
are found. To triangle i, the gray area cjb1h1 in Fig. 5
represents the possible relevant grids as:

GRP
i = {rpGi

pq|[V1
pq,V

2
pq,V

3
pq,V

4
pq] : p ≤ m, q ≤ n}

(11)
All vertices of these possible relevant grids are checked

to find if any of them are inside the triangle. Relevant
grids are found by the following cases:

Gi
P = {pGi

pq|[V1
pq,V

2
pq,V

3
pq,V

4
pq] : p ≤ m, q ≤ n}

(12a)
while V1

pq ∈ Tri or V2
pq ∈ Tri or V3

pq ∈ Tri or V4
pq ∈ Tri;

GP
i = Gi

RP, p ≤ m, q ≤ n (12b)

where V1
pq /∈ Tri or V2

pq /∈ Tri or V3
pq /∈ Tri or V4

pq /∈ Tri.
For instance, the relevant grids of triangle i are found

as deep gray area in Fig. 4.
Then, the tool is projected to the same plane. Usually,

the fixtures of the tool are much higher than the model
surface features, so only the tool, tool shank and spindle
are considered here. As Fig. 1, the spindle’s radius is the
largest one. Because the tool orientation is parallel to the
Z axis of the coordinate, so the projection of the tool is a
circle whose radius is the radius of the spindle as Fig. 5.
Using the same algorithm as above, the relevant grids are
got as the deep gray area as

GTP = {Gtp
st | [V1

st , V
2
st , V

3
st ,V

4
st] : s ≤ mt ≤ n} (13)

With the grids selected by tool, the relevant triangles
are selected. To each gridGtp

st inGTP and each triangleTri
in Sp,

K = Gtp
st ∩ GP

i , s < m, t < n (14)

where GP
i is the grids occupied by Tri. If K �= �, this

triangles is marked and should appear in the multi-
resolution model. Such as in Fig. 4, grid e1d1fg relates to

82 Y. CHEN AND Y. WEI

(a)

(b) (c)

(d) (e)

Figure 6. Multi-resolution representation.

the tool and triangle i in Fig. 5, so, in this grid, the work
piece should be represented by triangle i.

By GHA and the identified triangles, the original
model is represented at a heterogeneous-resolution accu-
racy as

M =

⎡
⎢⎢⎢⎢⎣

h1,1 h1,2 · · · h1,n

h2,1 h2,2
. . .

...
...

. . . T
...

hm,1 · · · · · · hm,n

⎤
⎥⎥⎥⎥⎦

(15)

In this model, the concerned area T, which is com-
posed of grids in GTP, is represented by the original STL
file. The rest is described by GHA, which is a series of
cuboids.

Fig. 6 shows an example model by heterogeneous-
resolution. In Fig. 6a, a simple STL model is shown
where in Fig. 6b, c, d, e, the model is described by
heterogeneous-resolution according to the tool position.
In Fig. 6b, c, d, e, the area under the tool which is sup-
posed to be the area under machining is described by
triangles from STL files where the rest are represented by
GHA. Thus, high accuracy (about 0.01mm) can be eas-
ily got in the area under the tool. To the rest, detecting
collision among CSG features is easy and fast.

5. Collision detection

When the tool moves to a CL/CM point on the tool path,
collision may occur between the tool (including spindle
and tool holder) and work piece or between the robot

and the work piece. Using the above algorithm, the robot
and the tool are represented by simple CSG primitives
while the work piece is represented with heterogeneous-
resolution representation. With these representations,
the collision detection problem is simplified to the fol-
lowing operations:
1. Detecting collision between simple CSG primitives;
2. Detecting collision between simple CSG primi-

tives and triangular facets from the heterogene
ous-resolution represented object.

5.1. Detecting collision between simple CSG
primitives

Collision detection between simple CSG primitives is
described in many previous works. There are three kinds
of simple CSG primitives in the robot machining system
as the following
1. Sphere: The ball end of the tool;
2. Cylinder: Tool shank, spindle and robot arm;
3. Box: Tool fixture and GHA.

Since tool, tool fixture, spindle and robot arm are part
of the robot, there can’t be any collision among them. The
collision detection problem is further simplified to:
1. Detecting collision between sphere and box;
2. Detecting collision between cylinder and box;
3. Detecting collision between box and box;

Detecting collision among simple CSG primitives can
be done by solving simple equations. If there is colli-
sion between two primitives, the equations represent-
ing the primitives will have a solution or one primitive
is enclosed by another. For instance, given a sphere as
Equation 4 and a box as Equation 6, Equation 16 can be
got as:

⎧⎨
⎩

|p − po| = R

po ∈ Kp
i , i = 1, 2 · · · 6

(16)

where the first one is the sphere and the second is the six
faces of a box. If a solution is got or the sphere encloses
the box or the box encloses the sphere, that means there
is collision.

5.2. Detecting collision between CSG primitives and
triangular facets

Collision detection between simple CSG primitives and
triangles can be ascribed to solving simple equations. The
calculations can be further simplified by a unique feature
of STL file. A STL representation provides not only the
vertices of a triangle, but also the unit normal of the tri-
angle. With the unit normal of a triangle, calculating the
distance from a point to a triangle is very easy as in Fig. 7.

COMPUTER-AIDED DESIGN & APPLICATIONS 83

Figure 7. Calculating the distance of a point and a triangle.

Figure 8. Representing a cylinder using spheres.

Suppose the normal of a triangle is n, given a vector p in
R3 which point to a point P, a vector pvi from point P to
a vertex of the triangles can be defined as:

pv = pvi − p (17)

The scalar product of vector pv and the normal direc-
tion n is:

M = n • pv (18)

IfM is less than zero, thatmeans the point is at the side
in which n points to, otherwise it is at the other side. |M|
is the distance from the point to the triangle.

Given a sphere as Equation (4) and a triangle set as
Equation (8), collision won’t occur when |M| > R, where
R is the radius of the sphere.

If |M| < R, collision may occur between the triangle
and the sphere. The question could be summarized by
detecting if the ball pierces into the triangle, or if the tri-
angle is enclosed by the box. By solving the equations,
collision is easily detected when there is an intersection.

The shape of tool shank and the spindle is cylinder.
With a cylinder as Equation (5) and a triangle set as
Equation (8), the collision can be detected by dividing
the cylinder into a series of spheres along its centerline
as Fig. 8. Given a tolerance T, the distance between two
adjacent spheres is

d ≤ 2
√
R2 − (R − T)2 (19)

where R = D
2 . Then a cylinder could be described by k

spheres where

k = int(
L
d

+ 0.5) (20)

where L is the length of the cylinder.
With these spheres, collision between the cylinder

and the triangles can be easily and quickly detected by
detecting collision between the spheres and the triangles.

Collision between a box and a triangle could be sum-
marized by detecting if any edges pierces into the surface
of another object or if the triangle is enclosed by the box.

5.3. Collision detection algorithm

With the above description, Algorithm 1 is developed to
detecting collision in the system.

If a collision is detected, centered at the CM point, the
tool is rotated at a given step ofπ/36 along the generation
line of a cone whose apex is the CMpoint as Fig. 9. At this
position, the projection of the tool is not a circle. Here a
rectangle is defined in the projection plane as in Fig. 10
to find the relevant triangles, the width of the projected
rectangle is

W = 2R (21)

and the length is

L = Ls sin
π

6
+ R sin

π

6
(22)

where Ls is the length of the spindle and R is the radius of
the spindle.

If collision still occurs when the vertex angle of the
cone is more than π/4, to avoid vibrations caused by the
cutting force, the tool should retreat a given step (say by

84 Y. CHEN AND Y. WEI

Figure 9. Rotating the tool.

Figure 10. Inclined spindle projection.

0.1mm), then the algorithm is repeated until no collision
is detected.

6. Applications

The proposed collision detection method is based on
the above heterogeneous-resolution representation of a
work piece model. Compared to tradition methods, it is
a simple and precise solution. Simulations are performed
before the machining of the two models in the experi-
ment. All simulation is based on a computer with Intel(R)
Core(TM)2, DuoCPUE8500@ 3.16GHz and 8GBRAM
memory. In the machining simulation of the first one,
a small boat hull model (300mm in length, 120mm in
width, and 100mm in height) is clamped using a vise in
front of the robot as in Fig. 11a. The computational time is

Figure 12. Actual machining process for a large ship model.

approximately 395 seconds (without finishing cutter path
simulation). In the second sample, a large boat model of
567 (Height) X150 (Width) X 250 (Length) mm is fixed
on a rotary table as in Fig. 11b. With such a fixture, the
robot can approach the model surface from many possi-
ble orientations. The simulation takes approximately 568
seconds (without finishing cutter path simulation). The
actual machining process is shown in Fig. 12. The results
of the experiments have demonstrated that the simula-
tion and collision detection algorithms are effective for
the robot machining system. In future research, GPU
cards will be added to increase the graphical processing
speed.

7. Conclusions

The multi-resolution based collision algorithm aims at
a robot machining system for rapid prototyping. In the
presented algorithm, with a given tool position and ori-
entation on the tool path, each components on the robot
ismodeled withD-Hnotation.With the presentedmulti-
resolution technology, the concerned area of the work

(a) (b)

Figure 11. System simulation.

COMPUTER-AIDED DESIGN & APPLICATIONS 85

piece is represented by STL format at a given accuracy
where the others are described byGHA.When collision is
detected for a given contact point, the tool orientation is
modified in order to avoid it. Comparing to the tradition
method, it can get a fast and precise solution especially for
two close objects. With the conducted simulations and
experiments, the effectiveness of the system is verified.

Acknowledgements

The authors are grateful to a CRCG small project grant from
the University of Hong Kong.

ORCID

Yonghua Chen http://orcid.org/0000-0003-4020-1977

References

[1] Abdel-Malek, K.; Yeh, H.-J.; Othman, S.: Sweep vol-
umes: void and boundary identification, Computer-
AidedDesign, 30(13), 1998, 1009–1018. http://dx.doi.org/
10.10/S0010-4485(98)00054-2.

[2] Abderrahikm, M.; Whittaker, A.-R.: Kinematic model
identification of industrial manipulators, Robotics and
Computer Integrated Manufacturing, 16, 2000, 1–8.
http://dx.doi.org/10.1016/S0736-5845(99)00038-1.

[3] Aliyu, M.-D.-S.; Al-Sultan K.-S.: Fast collision detection
in four-dimensional space, European Journal of Opera-
tional Research, 114, 1999, 437–445. http://dx.doi.org/10.
1109/70.56661.

[4] Balasubramaniam, M.; Laxmiprasad, P.; Sarma, S; Shaikh,
Z.: Generating 5-axis NC roughing paths directly from a
tessellated representation, Computer-Aided Design, (32),
2000, 261–277. http://dx.doi.org/10.1016/S0010–4485
(99)00103-7.

[5] Barequet, G.; Chazelle, B.; Guibas, L.-J., Mitchell, J., Tal,
A.: BOXTREE: a hierarchical representation for surfaces
in 3D, Computer Graphics Forum, 15(C), 22–26 August,
1996, 387–396. http://dx.doi.org/10.1111/1467-8659.
1530387.

[6] Cameron, S.: Collision detection by four-dimensional
intersection testing, IEEE transactions on robotics and
automation, 6(3), 1990, 291–302. http://dx.doi.org/
10.1109/70.56661.

[7] Chen, Y.-H.; Deng, F.-H.: Robot Machining: Recent
Development and Future Research Issues, International
Journal ofAdvancedManufacturingTechnology, 66(9–12),
2012, 1489–1497. http://dx.doi.org/10.1007/s00170-012-
4433-4.

[8] Cohen, J.; Lin, M.; Manocha, D.; Ponamgi, M.: I-
COLLIDE: an interactive and exact collision collision
detection system for large-scale enviroment, Proceedings

of ACM Interactive 3D Graphics Conference, 1995,
189–196. http://dx.doi.org/10.1145/199404.199437.

[9] Denavit, J.; Hartenberg, R.-S.: A kinematic notation for
lower-pairmechanisms based onmatrices, ASME Journal
of Applied Mechanisms, 22(2), 1965, 215–221.

[10] Fu, K.-S.; Gonzalez, R.-C.; Lee, C.-S.-G.: Robotics: Con-
trol, Sensing, Vision, and Intelligence,McGraw-Hill Book
Company, Singapore, 1987.

[11] Garcia, A.-A; Serrano, N; Flaquer, J.: Solving the colli-
sion detection problem, IEEE Computer Graphics Appli-
cation, 1(4), 1994, 36–43. http://dx.doi.org/10.1109/38.
279041.

[12] Gottschalk, S.; Lin, M.-C.; Manocha, D.: OBBtree: A
hierarchical structure for rapid interference detection,
Proceedings of SIGGRAPH’96, New Orlean, USA, 4–9
August, 1996, 171–180. http://dx.doi.org/10.1145/237170.
237244.

[13] Held, M.; Klosowski, J.-T.; Mitchell, J.-S-.B.: Evaluation
of collision detection methods for virtual reality fly-
throughs, Proceedings of 7th Can. Conf. Comput. Geom.,
Quebec, Canada, 27–28 May, 1995, 205–210.

[14] Hubbard, M.: Collision detection for interactive graph-
ics applications, IEEE Transaction of Visual Computer
Graphics, 1(3), 1995, 218–230. http://dx.doi.org/10.1109/
2945.466717.

[15] Noborio, H.; Fukuda, S.; Arimoto, S.: Fast interference
check method using octree representation, Advanced
Robotics, 3(3), 1989, 193–212. http:/dx.doi.org/10.1163/
156855389X00091.

[16] Palmer, I.-J; Grimsdale, R.-L.: Collision detection for ani-
mation using sphere-trees, Computer Graphics Forum,
14(2), 1995, 105–116. http://dx.doi/org/10.1111/1467-
8659.1420105.

[17] Samet H.: Spatial Data Structures: Quadtrees, Octrees,
and Other Hierarchical Methods, Addison-Wesley, Read-
ing, MA, 1989.

[18] Sellis, T.; Roussopoulos, N.; Faloutsos, C.: The R C-tree: A
dynamic index formultidimensional objects, Proceedings
13th VLDBConference, Brighton, U.K, 12–14 Spetember,
1987, 507–518.

[19] Vanecek, G. Jr.: Brep-index: a multidimensional space
partitioning tree, International Journal of Computer
GeometryApplications, 1(3), 1991, 243–261. http://dx.doi.
org/10.1142/S0218195991000189.

[20] Vosniakos, G.; Matsas, E.: Improving feasibility of
robotic milling through robot placement optimization,
Robotics and Computer-integrated manufacturing, 26,
2010, 517–525. http://dx.doi.org/10.1016/j.rcim.2010.04.
001.

[21] Youn, J.-H.; and Kohn, K.: Realtime collision detection
for virtual reality applications, IEEE First Annual Vir-
tual Reality Symposium, Seattle, USA, 18–22 September,
1993, 415–421. http://dx.doi.org/10.1109/VRAIS.1993.
380750.

http://orcid.org/0000-0003-4020-1977
http://dx.doi.org/10.10/S0010-4485(98)00054-2
http://dx.doi.org/10.10/S0010-4485(98)00054-2
http://dx.doi.org/10.1016/S0736-5845(99)00038-1
http://dx.doi.org/10.1109/70.56661
http://dx.doi.org/10.1109/70.56661
http://dx.doi.org/10.1016/S0010–4485(99)00103-7
http://dx.doi.org/10.1016/S0010–4485(99)00103-7
http://dx.doi.org/10.1111/1467-8659.1530387
http://dx.doi.org/10.1111/1467-8659.1530387
http://dx.doi.org/10.1109/70.56661
http://dx.doi.org/10.1109/70.56661
http://dx.doi.org/10.1007/s00170-012-4433-4
http://dx.doi.org/10.1007/s00170-012-4433-4
http://dx.doi.org/10.1145/199404.199437
http://dx.doi.org/10.1109/38.279041
http://dx.doi.org/10.1109/38.279041
http://dx.doi.org/10.1145/237170.237244
http://dx.doi.org/10.1145/237170.237244
http://dx.doi.org/10.1109/2945.466717
http://dx.doi.org/10.1109/2945.466717
http:/dx.doi.org/10.1163/156855389X00091
http:/dx.doi.org/10.1163/156855389X00091
http://dx.doi/org/10.1111/1467-8659.1420105
http://dx.doi/org/10.1111/1467-8659.1420105
http://dx.doi.org/10.1142/S0218195991000189
http://dx.doi.org/10.1142/S0218195991000189
http://dx.doi.org/10.1016/j.rcim.2010.04.001
http://dx.doi.org/10.1016/j.rcim.2010.04.001
http://dx.doi.org/10.1109/VRAIS.1993.380750
http://dx.doi.org/10.1109/VRAIS.1993.380750

	1. Introduction
	2. System overview
	3. STL representation and Grid Height Array (GHA) representation
	4. Heterogeneous-resolution representation
	5. Collision detection
	5.1. Detecting collision between simple CSG primitives
	5.2. Detecting collision between CSG primitives and triangular facets
	5.3. Collision detection algorithm

	6. Applications
	7. Conclusions
	Acknowledgements
	ORCID
	References

