
627

Enhancements for Improved Topological Entity Identification Performance in
Multi-user CAD

Ammon Hepworth1, Daniel Staves2, Logan Hill3, Kevin Tew4, C. Greg Jensen5 and W. Edward Red6

1Brigham Young University, ammon.hepworth@byu.edu
2Brigham Young University, danstaves@gmail.com
3Brigham Young University, alhill29@hotmail.com

4Brigham Young University, kevin_tew@byu.edu
5Brigham Young University, cjensen@byu.edu

6Brigham Young University, ered@byu.edu

ABSTRACT

Multi-user CAD allows designers to simultaneously work on a model, allowing designs to be realized
at a much faster rate than ever before. In a replicated, simultaneous multi-user CAD system, it is
critical that models be consistent between clients. A major component of model consistency is ensur-
ing references to topological objects be the same on all clients in the same part. Previous methods
are inefficient for models with a large number of faces and edges. This paper presents enhance-
ments over previous methods which more efficiently identify faces and edges through lazy naming
as well as caching and normalizing topological entity data. The implementation and results of these
enhancements show significant time savings compared to an eager naming method.

Keywords: persistent naming, multi-user CAD, collaborative engineering.

1. INTRODUCTION

Simultaneous multi-user CAD allows a geographically
dispersed team to work concurrently on the same
model as opposed to serially. A replicated multi-user
CAD system employs a client-server (CS) architecture
where each client has a replicated instance of the CAD
part. As users model, operational data is extracted
from clients and sent through a centralized server to
remote clients. Client models are updated as remote
operations are received from the server. This enables
simultaneous modeling and real-time updates from
several remote clients.

One central issue in a replicated, multi-user CAD
system is ensuring that references to topological
entities are consistent between clients. Feature-based
CAD systems create features that parametrically ref-
erence topological entities which include faces, edges
and vertices. References to the topological entities in
a CAD part on one client must be the same on all
clients to ensure dependent features are applied to
the same topological entity on all clients. For exam-
ple, a fillet feature operation applied to an edge in

one client needs to be applied to the same edge in
all other replicated client models. If the system fails
to keep names of features and entities persistent
between clients, models will become inconsistent,
causing errors to occur. This issue is referred to in
the literature as the persistent naming problem [12].

In a previous paper we discuss a persistent nam-
ing method for a multi-user CAD system in which
topological entities of the geometry kernel are not
returned in a predictable order [9]. This is the case
with at least one major geometry kernel (namely
Siemens Parasolid). Since faces and edges cannot be
identified by the order in which they are returned,
the method uniquely identifies them by their geo-
metric properties. These properties are mapped to
a unique identifier and stored in the operational
data forwarded to other clients. When the clients
receive the remote operation, they identify the bodies,
edges, and faces by matching the geometric proper-
ties to their corresponding identifier. This method is
referred to as eager naming because it identifies all
the topological identities as soon as they are created.

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

mailto:ammon.hepworth@byu.edu
mailto:danstaves@gmail.com
mailto:alhill29@hotmail.com
mailto:kevin_tew@byu.edu
mailto:cjensen@byu.edu
mailto:ered@byu.edu
http://www.cadanda.com


628

1.1. Feature Creation Performance Problem

While the eager naming method does ensure con-
sistent identification for all clients, it can take a
considerable time to identify the topological entities
of a feature creation operation which generates many
bodies, edges, or faces. Fig. 1 shows an extrusion
of a grate that creates 406 faces and 1212 edges.
The extrude feature creation operation for the grate

Fig. 1: The extrusion of the grate takes about 5 min.
to identify faces and edges.

takes approximately 5 min. to identify all the topolog-
ical entities using the eager method and is consider
excessive. Each client will need to perform this same
naming algorithm on their local machine, causing
interruption to the user workflow by forcing the user
to wait until the naming operation is complete so local
client work can continue.

1.2. Feature Edit Performance Problem

The eager naming method further interrupts the mod-
eling process when a feature edit operation is per-
formed. A feature edit operation causes not only the
selected feature to change, but also any dependent
features to update as well. Each updated feature can
cause any number of faces and edges to change shape,
size, or location. Because the eager naming method
stores topological entity data together with feature
operation data, the geometric properties of every
topological entity of every dependent feature must be
resent to the server with the edit operation data. This
results in a large amount of data being sent between
clients, as well as a significant amount of time being
spent re-identifying the topological entities of the
dependent features.

The examples shown in Fig. 2 illustrate the feature
edit performance problem well. Image A shows a gear

A B

C

Fig. 2: A: Gear extrusion; B: Fillets added to gear sides, C: Thickened extrusion.

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


629

which has 20 teeth and a hole through the center.
The gear with 83 faces and 242 edges is created by
an extrusion operation which takes about 22 sec. to
perform with the eager naming logic. Image B shows
fillets applied to all 80 of the vertical edges on the
side of the gear creating 80 additional faces and 240
additional edges taking about 37 sec. Image C shows
the extrusion edited to thicken the gear, changing the
size of all the edges and faces in the model. The extru-
sion edit takes about 41 seconds to perform, which
is longer than the time it takes to perform the fil-
lets. The time to perform this operation includes the
time for extracting the geometric data for each face
and edge in both the extrude and the dependent fillet
operations.

1.3. Performance Enhancements

The eager method, though effective, causes unneces-
sary delay for the most basic of models. For large
models or assemblies, the eager naming method
severely hinders the multi-user, collaborative CAD
experience. We present an approach based on the
geometric identification principles found in the eager
naming method, but overcomes its shortcomings with
three major enhancements.

The first enhancement solves the feature creation
performance problem using lazy naming. Lazy nam-
ing shifts the identification paradigm from naming
each topological entity immediately after its creation,
to a scheme which names topological entities just
before they are referenced by dependent features. The
method is termed lazy because it waits to identify
topological entities when they are actually needed.
Lazy naming dramatically improves feature creation
time because identification does not occur until a
topological entity is actually referenced.

The second enhancement solves the feature edit
performance problem. It persistently stores the topo-
logical entity data separate from the feature data
in the database and stores a cache of the same
data in a client entity dictionary on each client.
This second enhancement eliminates the require-
ment of the eager method to extract the geometric
properties of all dependent features after a feature
edit.

The third enhancement additionally helps improve
performance for edit operations in the Siemens NX
multi-user prototype. This implementation enhance-
ment is called enhanced geometric property extrac-
tion and uses a more efficient method to directly
query the geometric properties of faces and edges.
This is accomplished by taking advantage of the inter-
nal NX identification system (Journal ID’s) which more
quickly extracts the geometric properties of the enti-
ties. These three enhancements dramatically decrease
the time for naming in feature creation and editing for
multi-user CAD, thus improving the overall multi-user
CAD experience.

2. BACKGROUND

2.1. Existing Collaborative CAD Implementations

Research in collaborative CAD has been ongoing since
the mid-90s with two main architectures emerging:
centralized and replicated. A centralized architecture
utilizes a central server which executes modeling
operations received from remote clients. After per-
forming operations, the server passes the resultant
geometric data to clients for visualization and inter-
action. In this approach, the server performs the com-
putation for all geometric operations and clients are
used for visualization and user interaction. WebSPIFF
[4], NetFeature [24], CADDAC [25], CollFeature [33]
and WebCOSMOS [37,38] are all examples of a central
architecture. The advantage to this approach is that
there is only one copy of the model so there is no need
to keep models consistent between clients. Persistent
naming for these types of collaborative CAD systems
are inherently different than that of replicated sys-
tems since there is only one copy of the model. A
downside to this architectural approach is that a large
amount of data needs to be sent over the network [12].
Another disadvantage is that geometric algorithms
must be multi-threaded to enable timely processing of
operations from multiple users. To date, the authors
are not aware of any implementation of this approach
based on commercial CAD software.

Conversely, replicated collaborative CAD systems
have copies of the model data on each client which
are required to stay in sync. Operation data is sent
between clients via a network architecture. ARCADE
[31], CSCW-FeatureM [32], CollIDE [23] and RCCS [12]
are examples of replicated CAD systems built at
the kernel level. Examples of systems that interface
with commercial single user systems are TOBACO [8],
CallabCAD [21], COCAD [16]. In addition, multi-user
systems developed at the NSF Center for e-Design,
BYU site are built as direct plug-ins to major commer-
cial single user systems including Siemens NX, Das-
sault Systemes CATIA and Autodesk Inventor. These
plugins are respectively named NXConnect, CATIA-
Connect and InventorConnect [26–28]. The replicated
approach is easier to implement with existing com-
mercial CAD systems because it does not require
multi-threaded algorithms for parallel operations to
be performed and most commercial CAD system APIs
are single threaded [28]. Another advantage to this
architecture is that it does not require large data to
be sent over the network because operation data is
more concise than visualization data. However, the
main challenge with replicated systems is data consis-
tency and conflict management between clients due to
the lack of a centralized model.

2.2. Persistent Naming

Persistent naming has been a problem for researchers
since the beginning of history-based parametric solid

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


630

modeling. This is because two different models
represent the part. One is the parametric model,
which consists of modeling operations, and the other
is the geometric model [12]. The main issue has to
do with keeping the faces, edges and vertices of
the geometry model consistent with the parametric
model when it is reevaluated from the operational
history. Directly using computer memory pointers
for identification is not a valid technique because
they are transient. Simple enumeration methods do
not always work because model edits change topol-
ogy and the enumeration is no longer legitimate [17].
Several authors have presented solutions to the per-
sistent naming problem in single-user CAD [1–3, 5–7,
20, 34,35].

In replicated, collaborative CAD systems, persis-
tent naming is concerned primarily with uniquely
identifying topological entities on various remote
clients. Jing et al. recognize that naming topological
entities directly from modeling history may not be a
valid solution if operations on various clients may be
performed in a different order. They present meth-
ods to solve this by naming topological entities of a
given feature in a consistent order [13, 18,19]. One
assumption that was made in their implementation is
that topological entities are returned in a predictable
order. However, this is not the case with all geome-
try kernels. Siemens Parasolid, for example, does not
return faces, edges and vertices in a predictable order
[30]. The ordered naming method is also not possi-
ble if persistent naming is required across multiple
different CAD systems. Jing et al. present methods
for persistent naming in a replicated, multi-user CAD
system across multiple different CAD systems. This
technique is based on geometric properties of the
object and are limited to simple geometry and swept
features [14,15]. In a previous paper, we present a
general method to identify topological entities based
on unique feature and geometric properties [9].

3. LAZY NAMING TO ENHANCE FEATURE
CREATION PERFORMANCE

The eager naming method identifies and names every
face and edge immediately after a feature is cre-
ated. This method of identifying topological entities
is computationally expensive for models with many
faces and edges. Conversely, lazy naming identifies
and names topological entities when they are used by
dependent features. Since the number of referenced
entities is far less than the total number of entities
that exist in the model, lazy naming saves a significant
amount of computation time not having to identify
nearly as many topological entities.

For example, when creating fillets on the top edges
of a cube (as in Fig. 3), only the four edges that are
referenced by the fillet operation are identified and
named with the lazy naming method. Conversely, in
the eager method, each edge and face in the cube are

identified and named immediately after creation. In
addition, after the fillets are applied, all the newly
created edges and faces must be named. This eager
process would require the identification and naming
of 24 edges and 10 faces.

Fig. 3: The fillet operation with the eager method
identifies 34 entities vs. the lazy method which
requires identifying only 4.

The lazy naming method functions as follows:

1. An operation which references topological
entities is performed by a client

2. The referenced topological entities of the oper-
ation are given unique names by the client

3. Unique geometric properties are found for the
topological entities

4. The body on which the named topological
entities reside are identified (see details below)

5. The unique name, geometric properties and
body identifier are sent to the server along with
the operation data

6. The server forwards the operation data, unique
name, geometric properties and body identifier
to all remote clients

7. The remote clients identify the topological
entities by the body on which they reside and
the unique geometric properties and give them
the unique names

8. The remote client performs the operation ref-
erencing the topological entity by its newly
given unique name

In order for the lazy naming method to uniquely
identify faces and edges, the body on which these
topological entities reside must be uniquely identified
(as seen in step 4). The eager naming method iden-
tifies bodies by the edges and faces which comprise
the body. This is not possible with the lazy naming
method because not all the topological entities are
identified. Instead, a body is uniquely identified by the
feature which originally created it and its bounding
box. Bodies can be uniquely identified by the feature
which created it, except for in the case where a feature
creates multiple bodies. When a feature creates multi-
ple bodies, the bounding box is employed to uniquely
identify each body created by the feature. Therefore

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


631

the combination of the creation feature and bound-
ing box uniquely identifies all bodies in a CAD model,
assuming features don’t create multiple bodies in the
same space.

4. DATA CACHE AND NORMALIZATION TO
ENHANCE FEATURE EDIT PERFORMANCE

Central to the feature edit enhancement is the entity
dictionary. There are two separate implementations
of the entity dictionary, one on each client and one in
the central database. The client entity dictionary is a
cache which stores a relation between the persistent
names of topological entities, their geometric proper-
ties, and computer memory pointers which reference
those entities in the model. The database entity dic-
tionary is the authoritative, persistent copy of the
geometric properties and names of the topological
entities. The topological entities are stored separately
from the features that use them, allowing updates to
entities to take place without having to update all the
features which reference them.

4.1. Client Entity Dictionary Cache

In a replicated, multi-user CAD environment, after an
operation is performed, the data required to recreate
that operation on other client machines is put into
a data object. The data object is then forwarded to
the server and distributed to other clients. As part of
the lazy naming method, all topological entities refer-
enced by the operation undergo the naming process.
This process caches the following data in the client
entity dictionary for easy access: (1) the unique name
of the entity, (2) the geometric properties to uniquely
identify the entity on a remote client and (3) the com-
puter memory pointer to the entity on the local client.
The first and second elements are included with the

operation data sent to other clients when an operation
is performed.

Fig. 4, illustrates the naming process that occurs
after the user performs a fillet operation. The user
selects edges 1 and 2 to perform the operation. After
the operation is complete, entries are created in the
client entity dictionary storing the entity name, Geo-
metric ID (G-ID) and computer memory pointer. The
G-ID holds unique geometric properties as well as the
body of which the topological entity is attached.

When a remote operation is received from the
server, the local entity dictionary is searched to make
sure the referenced entities have been previously
identified. If a topological entity name is not found
in the remote client’s dictionary, the geometric prop-
erties are used to find the topological entity on a given
body and add it to the entity dictionary. This is done
using a tolerance to compare the geometric proper-
ties of the G-ID of the entity to all of the geometric
properties of the topological entities of the body it is
attached to. When the topological entity is identified,
it is assigned the same unique name forwarded from
the remote client. The unique name and local mem-
ory pointer is cached in the client entity dictionary
for quick look-up when another remote operation is
received.

A critical aspect to this method is that feature
operation data and topological entity data are iso-
lated. The eager naming method stores topological
entity data together with feature operation data. If
this data is not normalized, whenever a user performs
an edit operation, both the geometric properties of
the topological entities and operation data required
to recreate the dependent features of the edit oper-
ation must be extracted and resent to the server. By
storing the entities separate from the features which
use them, dependent feature data does not need to
be extracted and resent for every edit operation. Only
updated geometric data for all changed topological

Fig. 4: The client entity dictionary contains the entity name, Geometric ID and entity memory pointer for a
specific client. The memory pointer is stored for quick access to the entity on a client.

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


632

entities in the model are sent to the server with the
operation data. The updated geometric data is easily
found by querying the client entity dictionary cache
for changed entities.

4.2. Normalized Database Entity Dictionary

As features are created, edited, or deleted, data used
to replicate these operations on other clients are for-
warded through a server and stored persistently in a
database. This data is the authoritative source of the
model. It fully describes how to recreate the feature
on another client and includes the geometric prop-
erties of topological entities that are referenced by
the feature operation. As features are accepted by the
server from remote clients, the data is added to the
database to allow users who load the model in the
future to download the most up-to-date features and
topological entity data.

The database entity dictionary stores the topolog-
ical entity data separate from the feature operation
data, as seen in Fig. 5. The entity dictionary consists
of the persistent name of the referenced topological
entity, the unique geometric information for identifi-
cation, and the name of the feature which references

the entity. The database also stores the feature data
which consists of the data necessary to create the fea-
ture on the client. The feature data references the
entity data in the database so that when a feature
is applied to a client the appropriate entity data is
referenced.

By normalizing the data, any changes to the topo-
logical entity can be updated in the database entity
dictionary without having to update the feature data.
Edit and delete operations change the geometric prop-
erties of some topological entities. If a dependent
feature references one of those changed entities, this
data needs to be updated in the database. It is impor-
tant to have the feature and entity data sets separated
to avoid unnecessarily updating the feature data set
which requires an update to the dependent features
on all clients. This saves a time because all dependent
features do not need to be updated when their parent
feature changes.

4.3. Coordinating the Database and Client Entity
Dictionaries

When a part is loaded, operations are performed
based on the feature and entity data which are stored

Fig. 5: The feature data references the entity dictionary in the database. The database entity dictionary is the
global reference for all clients.

Fig. 6: Image showing the relationship between feature creation and the client entity dictionary.

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


633

in the database. As each operation is performed,
a referenced entity is uniquely identified using the
unique geometric properties of the entity. Once the
entity is found, the local memory pointer, along with
the entity name and G-ID are stored in the client entity
dictionary. After all the referenced entities for the
feature are stored in the client entity dictionary, the
feature is created based on the data referenced from
the client entity dictionary. Fig. 6 shows a represen-
tation of the database entity dictionary (upper table)
which directly corresponds to topological entities on
the client model. The lower table in Fig. 6 depicts the
client entity dictionary.

When create or edit operations are performed on
the client it is critical that all the new or updated
data be sent to the server. The most recent geomet-
ric properties of the changed topological entities are
compared against the geometric properties stored in
the client entity dictionary to determine which enti-
ties have updated. When the most recent topological
entity data is different or missing from that found in
the client entity dictionary, the geometric properties
of these entities are sent to the server with the edit
or delete operation data. The operation data together
with the updated topological entity data is termed
an update message. Although the operation data and
updated topological entity data is stored separately, it
is critical that the update message contain both pieces
of data because the entire message must be either
accepted or rejected by the server as a single unit
to ensure that it occurs as one operation. The server
verification process for model consistency is outlined
in [10].

5. ENHANCEMENT IMPLEMENTATIONS IN
NXCONNECT

The lazy naming, data cache and normalization
enhancements were implemented in NXConnect to
improve feature creation and edit performance. The
enhanced geometric property extraction was also
implemented to additionally improve feature edit per-
formance. NXConnect is a replicated multi-user CAD
system under development at BYU. It has been devel-
oped as a plugin to Siemens NX and extends the
functionality of the existing system to be multi-user
using the NX Open API. The client-server architecture
allows data to be sent between clients who each have
a replicated instance of the model. As operations are
performed by one client, the data to perform the oper-
ation is extracted by the plugin and sent to the server.
The server forwards data to remote clients and has
logic to ensure that operations on all clients occur in
a consistent order [10,11, 22, 26–29, 36].

When an operation is performed on a client in
which a topological entity is referenced, uniquely
identifying attributes are extracted and placed into
the client entity dictionary. The NX API uniquely iden-
tifies each topological entity with an identifier called

a Journal ID (J-ID). A J-ID is a string value which
contains an ephemeral name and geometric proper-
ties for an entity. The enhanced geometric property
extraction utilizes the J-ID to rapidly extract geo-
metric properties from an entity in a faster way
than querying the entity for its geometric properties
through the API as done in [9]. Alone, the J-ID is not
necessarily unique. However, it becomes unique if the
geometric properties of the J-ID are combined with a
uniquely identified body, which is given a Body ID (B-
ID). The B-ID is concatenated with the geometric data
and put into the client entity dictionary as the G-ID.
This G-ID is forwarded with the operation data to the
server for verification and subsequent dissemination
to other clients.

When an operation is verified by the server, the
database entity dictionary is updated by adding or
updating a row in the topological entity and feature
tables in the SQL database on the server. At the same
time, the operation and topological entity data is sent
to remote clients. When an operation is received by
a remote client, all unverified operations are sup-
pressed to put the model in the same state as when
the operation was performed on the originating client.
Next, the client entity dictionary is searched by name
to see if the topological entity had already been iden-
tified. If it is not found in the entity dictionary, the
entity is identified in the model. The B-ID forwarded
from the originating client is used to identify the
body with the same corresponding B-ID in the remote
client. Once the body is identified, the J-ID of each
edge or face of that body is extracted and compared
with the G-ID forwarded from the originating client.
This identifies the corresponding face or edge which
the operation should reference. The operation is then
performed on the client.

When loading an existing part from the database,
the client entity dictionary is initialized in the follow-
ing way: A part file is stored in the database which
is uploaded at checkpoints determined by the users,
as described by [9]. When a checkpoint is set, a handle
(persistent pointer) to each topological entity is stored
with the entity name as a string in the attributes of
the part. When the part is loaded, the string is parsed
to extract the handles of each topological entity.
This handle is used to get the memory pointer and
unique name of each topological entity. This allows
the client entity dictionary to be initialized without
having to re-identify each topological entity, which
saves a significant amount of time on load.

6. RESULTS

To validate that the three enhancements significantly
improve times for feature creation and edits, several
timed tests were performed to compare the imple-
mentation with these enhancements to the eager
naming implementation presented in [9]. Several
tests were run on three different implementations of

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


634

persistent naming methods in NXConnect. The first
implementation tested is the eager naming imple-
mentation presented in [9]. The second implementa-
tion tested incorporates the lazy naming, data cache
and normalization enhancements that can be applied
to multiple CAD systems. The third implementation
tested additionally includes the enhanced geomet-
ric property extraction that is only applicable to NX.
Three runs for each implementation for several mod-
els are performed. The tests were performed on an
Intel(R) Xeon(R) CPU E5–1603 0 at 2.80 GHz with 16
GB ram with 64-bit Windows 7.

6.1. Feature Creation Enhancement Tests

The first two tests are designed to test the feature cre-
ation enhancement of lazy naming. The first test was
an extrusion of a rack for a rack and pinion assem-
bly which creates 204 faces and 606 edges (shown
in Fig. 7). The average computation time of three
runs of the rack extrusion using the eager naming
implementation was 1 min. 30 sec. on the originating
client. Conversely, the average time it took for three
tests using lazy naming with was 3 sec., represent-
ing a 30X speed-up. The enhanced geometric property
extraction had no additional benefit for this creation
operation because no geometric property extraction
takes place when a create operation is performed (see
Tab. 1).

The second test was the extrusion of a grate pre-
sented in the introduction and shown in Fig. 1. This
operation creates 406 faces and 1212 edges. The aver-
age computation time of three runs of the extrusion
operation and naming logic using the implementation
in [9] was 4 min. and 39 sec. However, the average
time it took using lazy naming was 6 sec. The remain-
ing 6 sec. is the time for NX to perform the operation,
extract the operation data and perform error rejection
and consistency logic [10]. The pinion and grate tests
show a 47X speed-up using the lazy naming method
(see Tab. 2). Again, the enhanced geometric property
extraction had no additional benefit because this is a
creation operation.

6.2. Feature Edit Enhancement Tests

The next tests show the significant time savings with
the feature creation and edit enhancements. Since
there is a significant difference between the times

Implementation Ave. time of 3 tests Speed-up

Eager naming 1 min. 30 sec.

Lazy naming,
data cache and
normalization
enhancements

3 sec. 30X

Plus enhanced geo-
metric property
extraction

3 sec. 30X

Tab. 1: Implementation time comparison for the
extrusion of rack test.

Implementation Ave. time of 3 tests Speed-up

Eager naming 4 min. 39 sec.

Lazy naming,
data cache and
normalization
enhancements

6 sec. 47X

Plus enhanced geo-
metric property
extraction

6 sec. 47X

Tab. 2: Implementation time comparison for the
extrusion of the grate.

it takes to perform the operation on the originat-
ing client compared to the time it takes to perform
the operation on a remote client for the lazy naming
implementations, both times are measured in these
tests. Since the eager method performs the same logic
on the originating client as on a remote client, only the
originating time is reported.

The third test is a gear with a fillet operation cre-
ating fillets on the inside and outside edges of the
teeth (see Fig. 8). Although the extrusion only has
one dependent feature (the fillet operation), editing
the extrusion requires the identification of 83 faces
and 242 edges for the extrusion with an additional
80 faces and 240 edges for the fillet operation. This
is a total of 163 faces and 482 faces to identify when
the feature and dependent feature are identified using
the eager implementation. The average computation
time of three tests of the extrusion edit operation was

Fig. 7: Extrusion of rack creating 204 faces and 606 edges.

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


635

Fig. 8: Edit of extrusion length of gear with fillets.

41 sec. using the eager naming implementation. Con-
versely, it took 15 sec. to perform the edit operation
with the lazy naming, data cache and normalization
enhancements on an originating client and 7 sec. on a
remote client. It only took 4 seconds to perform with
the additional enhanced geometric property extrac-
tion on an originating client and only 1 sec. on a
remote client (see Tab. 3).

The fourth test is the edit of a feature with sev-
eral child components. This test is the editing of the
extrusion height of a cylinder approximated by cham-
fering a cube several times. Fig. 9 shows how this
approximated cylinder is created. The leftmost image

in Fig. 9 shows the extrusion of a square. The mid-
dle image shows chamfers around the edges creating
an octagon extrusion. Each of those edges are again
chamfered. This process is repeated six times, cre-
ating an extrusion of a body with 256 sides which
approximates a cylinder, shown in the far right image.
The resulting cylinder approximation body has a total
of 258 faces and 768 edges.

The test performed on this body is to edit the value
of the original square extrusion to make it half of the
original length (see Fig. 10). This operation requires a
re-evaluation of all the dependent chamfers so they

Fig. 10: Edit extrusion length to half the original
length.

Fig. 9: Cube with many chamfers added until it approximates a cylinder with 256 sides.

Implementation Ave. time of three tests Speed-up

Eager naming 41 sec.

Lazy naming, data cache and
normalization enhancements
(originating)

15 sec. 3X

Lazy naming, data cache and
normalization enhancements
(remote)

7 sec. 6X

Plus enhanced geomet-
ric property extraction
(originating)

4 sec. 10X

Plus enhanced geometric
property extraction (remote)

1 sec. 40X

Tab. 3: Implementation time comparison for the gear extrusion length
edit.

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


636

Implementation Ave. time of 3 tests Speed-up

Eager naming 7 min. 35 sec.

Lazy naming, data cache and normalization
enhancements (originating)

1 min. 43 sec. 4X

Lazy naming, data cache and normalization
enhancements (remote)

30 sec. 15X

Plus enhanced geometric property
extraction (originating)

8 sec. 57X

Plus enhanced geometric property
extraction (remote)

6 sec. 76X

Tab. 4: Implementation time comparison for the extrusion edit of the approx-
imated cylinder.

update as well. The average of three tests using the
eager naming implementation is 7 min. and 35 sec.
With the eager implementation, the edit operation
requires the identification of all the faces and edges
after each chamfer operation, totally 522 faces and
1524 edges. The lazy naming, data cache and nor-
malization enhancements only takes an average of 1
min. 43 sec. on an originating client and 30 sec. on
a remote client. Conversely, the implementation with
the enhanced geometric property extraction took only
8 sec. on an originating client and 6 sec. on a remote
client. (see Tab. 4)

Significant time savings were seen with the
enhancements in all four test cases. For the latter two
tests, the time to perform the operation on the remote
client was significantly less than the time it took on
the originating client. The reason it takes more time
on the originating client is because the originating
client must determine which entities have moved in
order to send the geometric properties of the updated
topological entities to the server. Since the remote
clients receive the updated geometric properties of
the topological entities, they update the client entity
dictionary directly, taking much less time.

The enhanced geometric property extraction
implementation significantly improved times for edit
operations. The speed-up is even more significant for
feature edits with several dependencies. The geomet-
ric property extraction enhancement improves times
for edit operations because it speeds up the geometric
property extraction time in NX. Geometric property
extraction is fundamental in determining which enti-
ties have moved after an edit operation. Conversely,
no geometric property extraction takes place when a
create operation is performed since the lazy naming
approach delays naming of topological entities until
they are referenced by a dependent feature.

7. CONCLUSION

We present three enhancements to dramatically
reduce the time required for persistent naming in

a multi-user CAD system compared with the eager
naming method. The first enhancement improves fea-
ture creation performance using lazy naming which
defers naming topological entities until they are actu-
ally referenced by dependent features. The second
method enhancement improves feature edit perfor-
mance by caching data on the client using an entity
dictionary. It also normalizes the topological entity
data and operation data to alleviate the need to
update dependent features when an edit operation
takes place. The third enhancement utilizes the NX
Journal ID to rapidly extract geometric properties of
topological entities to additionally enhance edit per-
formance. Testing these enhancements in NXConnect
shows that these speed-up the naming process in
multi-user CAD by at least an order of magnitude over
the eager naming method. Significant time savings
benefits are also seen on feature edits with dependent
features, especially for features with several depen-
dencies. Time savings are even more significant for
feature edits with the enhanced geometric property
extraction implementation in NXConnect.

REFERENCES

[1] Baba-Ali, M.; Marcheix, D.; Skapin, X.: A method
to improve matching process by shape char-
acteristics in parametric systems, Computer-
Aided Design and Applications, 6(3), 2009,
341–350. http://dx.doi.org/10.3722/cadaps.20
09.341-350

[2] Bidarra, R.; Nyirenda, P.; Bronsvoort, W.: A
feature-based solution to the persistent nam-
ing problem, Computer-Aided Design and
Applications, 2(1), 2005, 517–526. http://dx.do
i.org/10.1080/16864360.2005.10738401

[3] Bidarra, R.; Bronsvoort, W.: Persistent naming
through persistent entities, Geometric Model-
ing and Processing, Proceedings, 2002, 233–
240.

[4] Bidarra, R.; Van den Berg, E.; Bronsvoort,
W. F.: A Collaborative Feature Modeling

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.3722/cadaps.2009.341-350
http://dx.doi.org/10.3722/cadaps.2009.341-350
http://dx.doi.org/10.1080/16864360.2005.10738401
http://dx.doi.org/10.1080/16864360.2005.10738401
http://www.cadanda.com


637

System, Journal of Computing and Informa-
tion Science in Engineering, 2(3), 2002, 192.
http://dx.doi.org/10.1115/1.1521435

[5] Capoyleas, V.; Chen, X.; Hoffmann, C.: Generic
naming in generative, constraint-based design,
Computer-Aided Design, 28(1), 1996, 17–26.
http://dx.doi.org/10.1016/0010-4485(95)0001
4-3

[6] Chen, X.; Hoffmann, C.: On editability of
feature-based design, Computer-Aided Design,
27(12), 1995, 905–914. http://dx.doi.org/10.10
16/0010-4485(95)00013-5

[7] Chen, Z.; Gao, S.; Zhang, F.; Peng, Q.: An
approach to naming and identifying topolog-
ical entities, Chinese Journal of Computers,
24(11), 2001, 1170–1177.

[8] Dietrich, U., v. Lukas, U., Morche, I.: Cooperative
modeling with TOBACO, Proceedings of Team-
CAD: GVU/NIST Worskshop on Collaboritive
Design, 1997.

[9] Hepworth, A.; Nysetvold, T; Bennett, J.; Phelps,
G.; Jensen, C. G.: Scalable Integration of
Commercial File Types in Multi-User CAD,
Computer-Aided Design & Applications, 11(4),
2014, 459–467. http://dx.doi.org/10.1080/168
64360.2014.881190

[10] Hepworth, A. I.; Tew, K.; Trent, M.; Ricks, D.;
Jensen, C. G.; Red, W. E.; Model Consistency
and Conflict Resolution with Data Preservation
in Multi-user CAD, Journal of Computing and
Information Science in Engineering, accepted
2014. http://dx.doi.org/10.1115/1.4026553

[11] Hepworth, A. I.; Tew, K.; Nysetvold, T.; Ben-
nett, M.; Jensen, C. G.; Automated Conflict
Avoidance in Multi-User CAD, Computer-Aided
Design & Applications, 11(2), 2014, 141–152.
http://dx.doi.org/10.1080/16864360.2014.84
6070

[12] Jing, S.; He, F.; Han, S.; Cai, X.; Liu, H.:
A method for topological entity correspon-
dence in a replicated collaborative CAD system,
Computers in Industry, 60(7), 2009, 467–475.
http://dx.doi.org/10.1016/j.compind.2009.02.
005

[13] Jing, S.; He, F.; Cai, X.; Liu, H.: Collaborative
naming for replicated collaborative solid mod-
eling system; International Design Engineer-
ing Technical Conferences & Computers and
Information in Engineering Conference, 2008,
141–150.

[14] Jing, S.; Yuan, Q.: Consistent Naming for Sweep-
ing Features in Replicated Collaborative Model-
ing System, International Conference on Infor-
mation Management, Innovation Management
and Industrial Engineering, 2009, 90–93.

[15] Jing, S.; Yuan, Q.: Consistent Naming for Sweep-
ing Features in Replicated Collaborative Model-
ing System, Computer-aided Industrial Design
and Conceptual Design, 2009, 899–904.

[16] Kao, Y.; Lin G.: Development of a collaborative
CAD/CAM system, Robotics and Computer-
Integrated Manufacturing, 14(1), 1998, 55–68.
http://dx.doi.org/10.1016/S0736-5845(97)000
14-8

[17] Kripac, J.: A mechanism for persistently nam-
ing topological entities in history-based para-
metric solid models, ACM Symposium on Solid
Modeling and Applications, 3, 1995, 21–30.
http://dx.doi.org/10.1145/218013.218024

[18] Liao, B.; He, F.; Jing, S.: Replicated Collab-
orative Solid Modeling and Naming Prob-
lems, Ninth International Conference on Com-
puter Aided Design and Computer Graphics,
2005.

[19] Liao, B.; He, F.; Jing, S.; Wu, Y.: A Transformation-
Based Method for Name Converge in Quiescent
Context of Replicated Solid Modeling Systems,
Proceedings of the 10th International Con-
ference on Computer Supported Cooperative
Work in Design, 2006.

[20] Marcheix, D.; Pierra, G.: A survey of the persis-
tent naming problem, Proceedings of the sev-
enth ACM symposium on Solid modeling and
applications, 2002, 13–22. http://dx.doi.org/10
.1145/566282.566288

[21] Mishra, P.; Varshney, A.; Kaufman, A.: Collab-
CAD: A Toolkit for Integrated Synchronous and
Asynchronous Sharing of CAD Applications,
In J. Rossignac (Ed.), Proceedings TeamCAD:
GVU/NIST workshop on collaborative design,
1997, 131–137.

[22] Moncur, R.; Jensen, C.; Teng, C.; Red, E.:
Data Consistency and Conflict Avoidance in a
Multi-User CAx Environment, Computer-Aided
Design and Applications, 10(5), 2013, 727–744.
http://dx.doi.org/10.3722/cadaps.2013.727-7
44

[23] Nam, T.; Wright, D.; Collide: A Shared 3D
Workspace for CAD, Proceedings of Conference
on Network Entities, 1998.

[24] Qiang, L.; Zhang, Y. F.; Nee. A.Y.C.: A Dis-
tributive and Collaborative Concurrent Prod-
uct Design System through the WWW/Internet,
The International Journal of Advanced Man-
ufacturing Technology, 17(5), 2001, 315–322.
http://dx.doi.org/10.1007/s001700170165

[25] Ramani, K.; Agrawal, A.; Babu, M.; Hoffmann,
C.: CADDAC: Multi-Client Collaborative Shape
Design System with Server-based Geometry
Kernel, Journal of Computing and Informa-
tion Science in Engineering, 3(2), 2003, 170.
http://dx.doi.org/10.1115/1.1582882

[26] Red, E.; Jensen, C.; Holyoak, V.; Marshall, F.;
Xu, Y.: v-Cax: A Research Agenda for Collabora-
tive Computer-Aided Applications, Computer-
Aided Design and Applications, 7(3), 2010,
387–404. http://dx.doi.org/10.3722/cadaps.20
10.387-404

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1115/1.1521435
http://dx.doi.org/10.1016/0010-4485(95)00014-3
http://dx.doi.org/10.1016/0010-4485(95)00014-3
http://dx.doi.org/10.1016/0010-4485(95)00013-5
http://dx.doi.org/10.1016/0010-4485(95)00013-5
http://dx.doi.org/10.1080/16864360.2014.881190
http://dx.doi.org/10.1080/16864360.2014.881190
http://dx.doi.org/10.1115/1.4026553
http://dx.doi.org/10.1080/16864360.2014.846070
http://dx.doi.org/10.1080/16864360.2014.846070
http://dx.doi.org/10.1016/j.compind.2009.02.005
http://dx.doi.org/10.1016/j.compind.2009.02.005
http://dx.doi.org/10.1016/S0736-5845(97)00014-8
http://dx.doi.org/10.1016/S0736-5845(97)00014-8
http://dx.doi.org/10.1145/218013.218024
http://dx.doi.org/10.1145/566282.566288
http://dx.doi.org/10.1145/566282.566288
http://dx.doi.org/10.3722/cadaps.2013.727-744
http://dx.doi.org/10.3722/cadaps.2013.727-744
http://dx.doi.org/10.1007/s001700170165
http://dx.doi.org/10.1115/1.1582882
http://dx.doi.org/10.3722/cadaps.2010.387-404
http://dx.doi.org/10.3722/cadaps.2010.387-404
http://www.cadanda.com


638

[27] Red, E.; Jensen, C.; French, D.; Weerakoon,
P.: Multi-User Architectures for Computer-
Aided Engineering Collaboration, International
Conference on Concurrent Enterprising,
2011.

[28] Red, E.; French, D.; Jensen, G.; Walker,
S.; Madsen, P.: Emerging Design Methods
and Tools in Collaborative Product Develop-
ment, Journal of Computing and Informa-
tion Science in Engineering, 13(3), 2013, 1–13.
http://dx.doi.org/10.1115/1.4023917

[29] Red, E.; Jensen, C. G.; Weerakoon, P.; French, D.;
Benzley, S.; Merkley, K.: Architectural Limita-
tions in Multi-User Computer-Aided Engineer-
ing Applications, Computer and Information
Science, 6(4), 2013, 1–16. http://dx.doi.org/10.
5539/cis.v6n4p1

[30] Siemens Corp., Parasolid Documentation.
[31] Stork, A.; Jasnoch, U.: A Collaborative Engi-

neering Environment, Proceedings of the Team-
CAD97 Workshop on Collaborative Design,
1997, 25–33.

[32] Stork, A.; Lukas, U.; Schultz, R.: Enhanc-
ing a Commercial 3D CAD System by CSCW
Functionality for Enabling Co-operative Mod-
elling via WAN, Proceedings of the ASME
Design Engineering Technical Conferences,
1998.

[33] Tang, M.; Chou, S. C.; Dong, J. X.: Conflicts clas-
sification and solving for collaborative feature
modeling, Advanced Engineering Informat-
ics, 21(2), 2007, 211–219. http://dx.doi.org/
10.1016/j.aei.2006.05.006

[34] Wang, Y.; Nnaji, B.O.: Geometry-based seman-
tic id for persistent and interoperable reference
in feature-based parametric modeling, Com-
puter Aided Design, 37(10), 1081–1093, 2005.
http://dx.doi.org/10.1016/j.cad.2004.11.009

[35] Wu, J.; Zhang, T.; Zhang, X.; Zhou, J.: A face
based mechanism for naming, recording and
retrieving topological entities, Computer-Aided
Design, 33(10), 2001, 687–698. http://dx.doi.or
g/10.1016/S0010-4485(00)00099-3

[36] Xu, Y., Red, E., Jensen, C.: A Flexible
Context Architecture for a Multi-User GUI,
Computer-Aided Design & Applications, 8(4),
2011, 479–497. http://dx.doi.org/10.3722/cad
aps.2011.479-497

[37] Zhou, X. and J. Li: A Web-based synchronized
collaborative solid modeling system, Chinese
Journal of Computer Integrated Manufacturing
Systems, 2003, 960–965.

[38] Zhou, X.; Gao, S.; Li, J.; He, F.: Flexible concur-
rency control for synchronized collaborative
design, Proceedings of 2003 ASME DETC/CIE
Conference, 1, 2003, 591–598.

Computer-Aided Design & Applications, 12(5), 2015, 627–638, http://dx.doi.org/10.1080/16864360.2015.1014742
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1115/1.4023917
http://dx.doi.org/10.5539/cis.v6n4p1
http://dx.doi.org/10.5539/cis.v6n4p1
http://dx.doi.org/10.1016/j.aei.2006.05.006
http://dx.doi.org/10.1016/j.aei.2006.05.006
http://dx.doi.org/10.1016/j.cad.2004.11.009
http://dx.doi.org/10.1016/S0010-4485(00)00099-3
http://dx.doi.org/10.1016/S0010-4485(00)00099-3
http://dx.doi.org/10.3722/cadaps.2011.479-497
http://dx.doi.org/10.3722/cadaps.2011.479-497
http://www.cadanda.com

	1. INTRODUCTION
	1.1. Feature Creation Performance Problem
	1.2. Feature Edit Performance Problem
	1.3. Performance Enhancements

	2. Background
	2.1. Existing Collaborative CAD Implementations
	2.2. Persistent Naming

	3. Lazy Naming to Enhance Feature Creation Performance
	4. Data Cache and Normalization to Enhance Feature Edit Performance
	4.1. Client Entity Dictionary Cache
	4.2. Normalized Database Entity Dictionary
	4.3. Coordinating the Database and Client Entity Dictionaries

	5. Enhancement Implementations in NXConnect
	6. Results
	6.1. Feature Creation Enhancement Tests
	6.2. Feature Edit Enhancement Tests

	7. Conclusion
	References

