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ABSTRACT

In this paper, we propose a method for generating visual interactive art with 3D geometric features
using Microsoft Kinect® sensor. Natural human movement and gesture recognition are used to cre-
ate and interact with various objects in 3D space for art design. The Kinect output coordinates are
recorded and transformed into a data structure that accurately represents the captured movement.
This method of representing human gestures in a data structure provides an iterative design process
that enables and preserves the sequence of human gestures either for future works or for applying
transformations on existing structures. The process consists of time-dependent depth data acquisition
and joint identification, followed by weighted undirected graph generation by means of a graph scan-
ning algorithm with visual conversion and post processing. The obtained results show that various art
forms can be created, ranging from 3D static designs to dynamic installations.
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1. INTRODUCTION

Microsoft Kinect was originally designed as a motion-
sensing device and developed as an Xbox[14] console
controller that facilitates interaction using gestures
and body motion. Yet its applicability goes beyond the
gaming domain. In this study, we propose a system
for generating visual interactive computer-aided art
with 3D geometric features using a depth acquisition
sensor, such as the Microsoft Kinect sensor. Natural
human movement and gesture recognition are used
to create and interact with various objects in the 3D
space for art design.

The research process of art design using Kinect
combines three disciplines to convey a new way of
creating an art design. The first discipline involves
the use of body gestures to perform and create a
“dance” or a language of movement. As in mod-
ern dance choreography [5], this dance conveys an
“idea” that transcends from the performer to the
audience. In [18] an international group of artists,
programmers and dance producers aligned complex
algorithmic procedures with choreographic creation
and invited the audience to share in the understand-
ing of movements and gestures. Jackson Pollock’s

[25] action painting or “gestural abstraction” style
involves spontaneously dribbling, splashing or smear-
ing of paint onto the canvas rather than carefully
applying it. These energetic techniques depend on
broad gestures directed by the artist’s sense of con-
trol interacting with chance or random occurrences.
The resulting work often emphasizes the physical act
of painting itself as an essential aspect of the finished
work. In [11] it was noted that “bodies perform images
as much as they perceive external images. In this dou-
ble sense, they are a living medium that transcends
the capacity of their prosthetic media.”

The second discipline involves the use of Kinect
depth sensor [15,16,20] to capture human gestures
by means of skeletal tracking, A human body is repre-
sented by a number of joints representing body parts,
with each joint represented by its 3D coordinates. The
goal is to determine all the 3D parameters of these
joints in real time to allow fluent interactivity and
thus to create a dance concept.

The third discipline is the use of graph theory to
construct a weighted graph to capture the essence of
the human gestures constructing the chorography of
the dance.
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Not only does this novel approach offer a system
that works interactively with the human dancer, i.e.,
the designer, to provide straightforward output of the
transformation of one media (human gestures) into
another (brush strokes, dripping paints, etc.). It also
provides a tool in which stages are defined and repre-
sented in data structures so that human gestures can
be manipulated and transformed for future use. This
approach offers a sequential art designing process,
each stage of which provides a different “layer” of
design that may be applied basically using the original
“dance.

2. RELATED WORK

The human gesture recognition system provided by
the Kinect for Windows Software Development Kit
(SDK) [12,14] is widely used as an efficient tool
for many fields. For example, Kinect is used in
robotics and control [6,17,21,22], where a Kinect-
based method allows a human operator to communi-
cate his motions to the robot manipulators to perform
tasks of picking up and placing parts in dynamic
and dangerous environments. A robot equipped with
Kinect can perform omnidirectional pattern recogni-
tion [23] and can measure the depth and direction of
a marker quite well by using the Log-ab controller.

Filipe et al [8] proposed a system to assist blind
people in navigating the world, thus replacing the
white cane. This system provides information about
the surrounding environment in real time, such as
no obstacles or obstacle ahead and reports on differ-
ent planes, such as stairs. Other uses include facial
feature recognition with human–computer interaction
for cognitive rehabilitation [9] and facial expression
tracking and representation by avatars [24].

Groentjes [10] uses Kinect with holography,
proposing a dynamic holographic image that can
be manipulated using gestures and captured move-
ments. Le et al. [15] used the skeletal information
provided by the SDK for human posture recognition
in the context of health monitoring. They developed a
joint database using Microsoft’s Skeletal API with pre-
recorded postures for matching the captured posture
with the images in the database.

Virtual character armatures were interactively con-
trolled in real-time by tracking body poses [19] using
their own body poses and not the key framing
approach, thus yielding realistic and smooth anima-
tions. The INTEGRARTE project [2] provides a body
experience through movement visualizations and
sounds to create brushstrokes, circles and echoes.
Their system provides interactive real time artwork
that offers the participant a complete artistic experi-
ence but cannot be saved or manipulated

Chattopadhyay et al. [3] studied human-motion-
initiated music generation. Each joint was assigned
its own customizable sound source to create musi-
cal notes in real time. Body movements in were

defined by velocity, acceleration and position change
and every movement generated musical notes with
respect to its features.

3. PROPOSED APPROACH

The proposed approach is based on the notion of
transforming a set of movements constrained by
time to create a 3D art form that translates one
visual media (such as natural human movements) into
another (for example: illustration or drawing). This
transformation process, depicted in Fig. 1, consists
of the following stages: (i) data acquisition and win-
dowing, (ii) data stream to graph transformation, (iii)
graph traversal, (iv) visual transformation, and (v)
post processing.

Skeleton
Recognition

Data stream to 
graph 

Transformation

Graph Traversal 
Algorithm (DLS)

Visual Art 
Transformation

High Order 
transformations on 
the final structure

Skeleton vertices
for time t to t+T 

Graph G for time t to 
t+T

DLS Path

Rendered 3D Image

Final work

Depth Camera 

Data Base

Fig. 1: The process of translating human gestures to
CAD art.

3.1. 3D Sensor Data Acquisition

The Kinect sensor was introduced in November 2010
by Microsoft for the Xbox 360 video game system.
The device was designed to be positioned above or
below a video display and to track player body and
hand movements in 3D space [14,15], thus allowing
a new type of interaction with the Microsoft game
console using natural body movements (i.e., human
gestures). The Kinect sensor contains a color sensor
(an RGB camera), a depth sensor (consisting of an IR
light source emitter and IR depth sensor), and a tilt
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Fig. 2: Pipeline of skeleton data acquisition stage for a single image [24].

motor. In this study we used only the depth sensor
abilities in order to acquire the human body parts
(skeleton) stream.

Figure 2 describes the process of skeletal data
acquisition, which consists of two stages. The first
stage involves depth space data acquisition (first
image in Fig. 2). At each frame, the depth sensor
captures a gray scale image of everything visible in
the sensor view field, where each pixel contains the
Cartesian distance from the camera plane to the near-
est object. The second stage comprises the skeleton
space (see last three images in Fig. 2). Each frame cap-
tured by the depth sensor is processed by the Kinect
runtime into skeleton data containing the 3D position
of a skeleton and each of the skeleton joints (stored as
x, y, z coordinates). This conversion to skeletal space
from depth images is accomplished by means of
supervised learning, which requires a large amount of
marker-based motion-capture data for training. Thus
the detection pipeline involves three major steps.
In the first step (inferred body in Fig. 2), the clos-
est known body parts are roughly estimated. In the
second step, the joints are estimated based on the
previous step of body parts detection (hypothesized
joints in Fig. 2). In the last step (tracked skeleton in
Fig. 2), the marked skeletal parts from the previous
step are fine-tuned using physiological data knowl-
edge regarding the location of the human joints and
then joined into a single skeleton.

3.2. Depth Data to Graph Transformation

The motivation for representing the data in a graph
is twofold: first, to maintain and capture the essence
of the set of movements provided by human ges-
tures, and second, to save the set of movements for
future work. Representing the set of movements over
a time span will result in a complex graph and will
enable several search methodologies to translate it

to an art form. This graph representation provides
the ability to apply transformations on the original
graph, and creating different designs (applying differ-
ent geometrical features, brushes etc.,) for a fixed set
of movements, as detailed in the following section.

Given 20 possible joints of the human skeleton
using the Kinect’s SDK as input, we define a graph
in the following form. Let G = (V,E) be a graph
with n vertices, such that V = {vi |vi ∈ R3, i = 1, . . . , n}
denotes the set of vertices (joints) and E =
{eij = (vi , vj |vi , vj ∈ V , i �= j} represents the edges. Each
joint is represented by (xi , yi , zi , ti), where x,y,z are
the location coordinates of the joint and t is the
time that indicates the human gesture sequence. At
each joint (xi , yi , zi) at time t = 0, a weight function w′
is valued randomly between 1.. i. w’ represents one
of the predefined shapes that we chose. Each graph
traversal (up to number of shapes) sums those val-
ues to decide upon the shape and is assigned once
per design. The value is decided randomly in order to
create variety and eliminate preferable of any shape
in the design creationWe calculate the following two
weight functions w1 and w2, to serve as weights
on the graph edges, providing additional information
regarding total and relative distances.

w1 =
√

�x2 + �y2 (3.1)

w2 = (xi − xi+1, yi − yi+1) (3.2)

These values will be used to evaluate the human
gestures in the following stage.

The Kinect device produces information in sequen-
tial order of 30 fps, and the number of joints being
tracked ranges between 10 and 20. This yields a com-
plex problem of representing an enormous number of
joint coordinate values over a time span. The options
for feasibly tracking the joints are as follows: reduc-
ing the number of joints to be tracked by the Kinect,
or reducing the number of frames per second.
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In our study we chose to reduce the number of
joints to 13 out of a possible 20. We found this
most beneficial for tracking the movement of skele-
tal joints coordinates when extracted from a recorded
video sample. The joints coordinates were expressed
in meters in space [20] and were converted to millime-
ters. During the time spans of human movement, the
data is stored in an array of skeletal joints, along with
the weight function values (w1, wx

2, wy
2 ), calculated by

Eqn. (3.1) and Eqn. (3.2). Tab. 1 shows an example of
the raw and calculated data.

Thirty frames are added to the raw data file each
second. Each frame contains all 13 joints along with
the relevant coordinates and calculated weights. Each
frame represents a different depth layer, resulting
in 30 different layers of depth. We calculate the
following equation:

joint_number + (13 ∗ d) (3.3)

where d denotes the depth factor, thus providing a
sequence of indexes for the resulting depth factor of
each joint. In Tab. 1, each row indicates a time stamp,
and every six columns, starting from the second col-
umn, indicate the weight function values (w1, wx

2, wy
2 )

and the axis (x, y and z) of what is depicted in the first
row above the joint. The table depicts only an example
of two joints, the head and the shoulder center. The
weight function W 1 is the direction vector, while W2.x

and W2.y coincides the distance and is time depen-
dent. Translating the above to motion measurements
yields, w1 is the parameter controlling the direction
and movement of each shape. W 2, (W2.x and W2.y) is a
position measurement of each limb or body part along
the time axis. Based on the data in Tab 1, we calculate
the distances and change in direction of each one of
the joints.

Figure 3 is an illustration of the graph constructed
from the data in Tab. 1, where the nodes represent
the joints and the edges are weighted by both Eqn.
(3.1) and Eqn. (3.2).

Fig. 3: Illustration of the graph G(V,E).

The graph representation tends to grow over time.
Moreover, traversing the graph and retrieving infor-
mation is based on the definition of the data struc-
ture.

An adjacency matrix was chosen to represent the
graph, due to query time complexity of O(1). Fig. 4 is
an illustration of how an adjacency unfolded matrix
is defined. The basic idea is to record and save all
body joints coordinates and multiply them by the
depth factor 30 times in each timestamp. This process
results a huge matrix 13*30*t in size. For exam-
ple, a 10 second timestamp, results a matrix of size
(13*[30*10])*(13*[30*10]) = 3900 × 3900.

3.3. Graph Transformation to Visual Features

The graph constructed in the previous stage serves
as base for the art design and requires that the

Time X Y Z W1 W2.x W2.y

Head
12:54:17:311 3.136883 62.08597 158.1259 7.336379 − 0.73252 0.0404
12:54:17:357 2.404358 62.12637 157.8679 24.86858 − 2.46644 0.318021
12:54:17:373 − 0.06208 62.44439 156.9579 48.90922 − 4.89018 0.085044
12:54:17:420 − 4.95227 62.52943 153.1063 11.32383 0.919348 0.661129
12:54:17:435 − 4.03292 63.19056 153.6269 26.62431 − 2.46425 1.007968
12:54:17:482 − 6.49717 64.19853 153.4303 57.06237 − 5.68975 − 0.43343

Shoulder Center
12:54:17:311 − 4.54363 45.39131 163.6053 8.298117 − 0.81381 0.162187
12:54:17:357 − 5.35744 45.55349 163.1052 25.23027 − 2.413 0.736946
12:54:17:373 − 7.77044 46.29044 161.5696 16.37976 − 1.54939 0.531375
12:54:17:420 − 9.31983 46.82182 160.3314 24.18519 − 2.31929 0.685653
12:54:17:435 − 11.6391 47.50747 158.7537 21.41993 − 2.12138 0.296429
12:54:17:482 − 13.7605 47.8039 157.2459 20.32721 − 2.02824 − 0.13494

Tab. 1: Example of raw data (head and shoulder).
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colors and shapes be defined. The graph (saved in
the system) provides the ability to manipulate using
various transformations. Art design can be influenced
by style and artistry if expressed by a combination of
transformations.

3.3.1. Depth Limited Search algorithm (DLS)

The DLS algorithm is used in our approach for retriev-
ing the relevant information from the graph con-
structed in Section 3.2. Although DLS is a search
algorithm used for traversing the graph, we use dif-
ferent versions of the DLS for each weight function:
w1, w2, w′. The most general DLS algorithm is used for
traversing the weight function w2 and is explained in
detail as follows:

1. Choose a random joint from the array by draw-
ing an index. The joint can be any joint at
any depth, Joint{i, d}, where i = the sequence
number of the joint (1, . . . ,13) and d = the
depth.

2. Choose each of the adjacent joints from the
adjacency matrix, and place those joint val-
ues in a temporary stack. Each joint has at
least one adjacent joint for assuring the search
progress. Moreover, the selected joint has val-
ues for different depths d + 1 and d − 1.

3. Choose one joint from the stack group to
continue.

4. If the search reaches the predefined limit,
which is the number of passes from joint to
joint, then stop and return a Point3D object,
which holds three final weight function values
for each axis x, y and z. Otherwise, repeat from
step 2. Only traversing from edges between
depth layers, from joint at d to joint at d + 1 or

Fig. 4: Adjacency unfolded matrix.

d − 1, contributes to the DLS search algorithm
limit count.

The version of the DLS algorithm for weight func-
tion w1 retrieves w1 and w1

1, w2
1 and w3

1 during the
same single run as the weight functions calculated
for each axis x, y and z separately. This is achieved
by dividing the DLS run into three steps, constrained
by the predefined limit of the search. Each part sums
distinct w1 values.

For example, if the DLS limit is twelve, the search
algorithm must traverse precisely twelve edges until it
stops. By dividing the same DLS run into three steps,
the algorithm will sum the w1

1 result after traversing
the first four edges as the first step. The second sum
w2

1 will result after traversing the next four edges as

the second step, and the last sum w3
1 will result after

traversing the last four edges as the third and last
step. Hence, one complete run will produce three dis-
tinct values w1

1, w2
1 and w3

1 of the weight function. The
weight function w′ is calculated and retrieved in the
first depth layer.

The DLS algorithm was chosen because it achieves
sufficient results in two ways. First, even when a
specific starting joint is chosen (random process),
the search algorithm prevents repeatability. Second,
run time is minimal, resulting in efficient response
time.

3.3.2. Translation to art design features

Given the graph as input, translation to art design
features consists of the following:

1. Defining shapes and colors
Five basic shapes were chosen for the design: pyra-

mid, cube, cylinder, sphere and cone. These particular
shapes were chosen because they are suitable for
representing geometric abstract art and can be eas-
ily used with CSG or B-rep for combined shapes.
The shapes were created using the 3D graphics [1,4]
infrastructure based on DirectX [16,7] functionality,
which WPF (Windows Presentation Foundation) sup-
ports.

The choice of the number of 3D shapes and of the
background is predefined by the user, as depicted in
Fig. 5. The user sets the time during which the system
represents the human gestures. We have found this
useful for achieving a specific design of style. Choos-
ing a random number of shapes is straightforward,
but experience using the system indicates that users
prefer the predefined option.

For each shape, a joint is chosen for defining the
starting node for the DLS algorithm. The starting joint
will also define the initial color of the shape. The color
is defined by the joint’s coordinates (xi , yi , zi) to the
corresponding RGB respectively. Each search will sum
the weight w′ on the edges, which corresponds to a
predefined shape.
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Fig. 5: Snapshot of the system with options defined by the designer.

2. Defining the movement and the scaling of the
shapes:

a. Randomly choose a joint to start the DLS
algorithm, to result in the value of w2.

b. The movement of each shape will be defined
by direction vector w2, which also defines the
speed.

c. Choose another joint randomly to start the DLS
algorithm, which calculates w1.

d. Each shape will be transformed by applying the
following scale matrix:

s =

⎡
⎢⎣

w[i]
1 0 0

0 w[i+1]
1 0

0 0 w[i+2]
1

⎤
⎥⎦ where i is the edge number

(3.4)

The final stage is the output of a 3D design. In this
stage, after the graph and the visual transformation
are applied, an art design will be created. This design
can be saved along with the graph to allow further
interaction and modification of the design.

4. RESULTS

The software developed for 3D art design is in its
first stage of development, and therefore basic shapes
have been implemented. Any OpenGL complex fig-
ures can be added to the software and used for
creating numerous compositions. Each of the human
gesture movements is saved in the system as a graph
capturing the composite human gesture we refer to
as “dance” and serves as the basis for several differ-
ent art forms for a certain dance. Each dance may be
expressed as different output, producing various art
designs for each dance.

The process of transforming a dance into an
art design is not interactive. The human performs

a set of human gestures. These are saved in a
graph, and the output is the result of the translation
process.

Figure 6 shows a snapshot of a single moment of a
dance (a), with the parts of the joints depicted on the
human body by red circles. The edges are depicted
by red lines (b). As the human body is a rigid body,
the connections between joints do not change over
time.

Figure 7 depicts four snapshots of an art design
produced from eight basic shapes from a human ges-
ture dance of 6 seconds. The first composition art
design output, depicted in 7(a), is the basic translation
of the graph constructed from the dance. Fig. 7(b-d)
shows the designs created by manipulating the graph
using the human gestures again to apply transforma-
tions on the first basic graph.

Figure 8 is an attempt to transform Thirteen-
Rectangles-1930 [13], an existing 2D abstract art piece
by Wassily Kandinsky which serves as the inspira-
tion for a 3D interactive art design. Fig. 8(b) shows
the original work, while Fig. 8(a) is the output of
the dance performed (by the user) to capture the
essence and composition for translating from one
media to another. In this example the artistic work
is done from the art design to the human gestures
made for creating it. Our system facilitated the abil-
ity to use an existing art work and convert it to a
3D dynamic art design, manipulated and performed
by human gestures. Moreover, the system enabled
designing a new art composition based on the dance
and transformation implementations.

Figure 9(a) is an example of a static art design
translation for human gestures, and Fig. 9(b) is an
illustration of a possible installation (3D defined art
design in 3D space) for dynamic 3D art design using
our system. This option of art designs could be done
and performed by a group of humans, producing a
mixture of dances and designs
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(a) (b)

Fig. 6: Human gesture: (a) joints depicted by red circles and (b) edges depicted by red lines.

(a) (b)

(c) (d)

Fig. 7: (a) basic art design; (b-d) 3D transformations made by hand gestures.
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(a) (b)

Fig. 8: (a) Our system art design snapshot, (b) original piece by Wassily-Kandinsky.

(a) (b)

Fig. 9: (a) Snapshot of an art design; (b) installation of 3D dynamic art design.

5. CONCLUSIONS

The 3D art design system proposed in this paper
generates an abstract and unique geometrical design
based on natural human gestures and movements.
Shapes, colors, placements and speed are defined,
captured and translated into art forms. Because each
individual is unique and each movement is different
and cannot be replicated precisely, the process will
yield a new unique design each time and save the com-
bination of motions in a weighted graph. This process
of representing human gestures in a data structure
provides an iterative design process. Interestingly,
though the design process is fully computerized, the

generated structures are personal, natural and very
similar to those of humans.
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