
572

New Multilevel Parallel Preconditioning Strategies of Sparse Matrix for Speeding
up CAD System

Tianping Li1, Kai Wang2, E Li3 and Hui Liu4

1Shandong Normal University, Sdsdltp@163.com
2Lawrence Berkeley National Laboratory, Kaiwang@lbl.gov

3Shandong Normal University, Ljlchlekybs@126.com
4Shandong University of Finance and Economics, liuh_lh@sdufe.edu.cn

ABSTRACT

In the modeling and transformation research of 3D human body organs and tissues based on medical
images, according to 3D scene characteristics of huge amount volume in spatial data processing, the
parallel computing of large sparse matrices has important significance for performance calculation of
speeding up CAD system. In this paper, to avoid the parallel implementations difficulty encountered in
the independent set search strategy of CAD system, a new parallel multilevel MSP (Multistep Successive
Preconditioning strategies) pre-conditioner is presented. In each level, we use a diagonal value based
strategy to permute the matrix into a 2 by 2 block from. During the preconditioning phase, we do
forward and backward preconditioning to improve the performance of the pre-conditioner. In our
experiments, MMSP shows better algorithmic CPU time and scalability for solving an actual case of CAD
matrix with n = 1003 and nnz = 6940000, and the better convergence behavior of MMSP confirms
the scaling of performance. At the same time, compared with the linear CAD computing systems, our
forward and backward preconditioning strategy can solve the different sparse matrices with smaller
sparsity ratios and fewer CPU time.

Keywords: 3D spatial data processing, parallel preconditioning strategies, multilevel pre-conditioner

1. INTRODUCTION

With the rapid development of science, engineer-
ing and information technology, how to realize the
data processing, simulation and modeling of complex
3D human model by real-time computing have been
the critical scientific issues in our CAD system. In
above applications there are many partial differen-
tial equations (PDE), which will be transformed into
linear equations by discretization. At the same time,
because the deficiency of single processor computer,
research on parallel solution of large scale sparse
matrix for solving high performance distributed pro-
cessors and collaborative computing has become very
important. So in the CAD system, now people try
to deal with sparse linear systems by taking the
advantage of the sparse structure in the coefficient
matrices to avoid complexity of memory cost and
computational cost.

At present, Krylov subspace methods coupled
with a suitable preconditioner [9] is one of the
most effective methods for solving large sparse

matrix problems, as the quality of the preconditioner
influences and in most cases dictates the performance
of the Krylov subspace solver heavily, the design
of parallel preconditioner is the key problem in the
study [6,8,13], which focuses on finding a robust
preconditioner with rich parallelism both in construc-
tion (setup) phase and application (solution) phase.
The incomplete LU (ILU) factorizations [4,5,7,10] and
Sparse Approximate Inverse (SAI) [1,2,11,14] are two
classes of preconditioning techniques which can be
used for solving large sparse linear system. Compared
with ILU factorizations, SAI preconditioning tech-
niques have the property of possessing high degree
of parallelism and are shown to be efficient for certain
type of problems.

Then, a multistep successive preconditioning
strategy (MSP) was proposed in [12] to compute
robust preconditioners based on the sparse approx-
imate techniques. Instead of computing a costly high
accuracy sparse approximate inverse preconditioner
in one shot, the MSP strategy computes a sequence

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

mailto:Sdsdltp@163.com
mailto:Kaiwang@lbl.gov
mailto:Ljlchlekybs@126.com
mailto:liuh_lh@sdufe.edu.cn
http://www.cadanda.com


573

of low cost sparse matrices to achieve the effect of
a high accuracy preconditioner. The resulting pre-
conditioner has a smaller memory cost and is usu-
ally more robust and efficient than the standard SAI
preconditioners.

There are several construction techniques of con-
struct sparse approximate inverse preconditioners,
that can be roughly divided into three classes: (1)
based on Frobenius norm minimization, (2) based
on ILU factorization computing, (3) factored sparse
approximate inverses. Each of them contains a vari-
ety of different constructions and has its own merits
and drawbacks.

Considering the solution of sparse linear equa-
tions:

Ax = b (1)

where A is a large nonsingular sparse matrix of
dimension n, x is the vector of unknowns, and b is
the right-hand side vector.

Eq. (1) may be solved by a direct solver based on
a factorization of the sparse matrix A (Gauss elimi-
nations), which is known to be robust. However the
Gauss eliminations lack of inherent parallelism, and
their O(n2) complexity of memory cost and O(n3) com-
plexity of computational cost make them very expen-
sive for solving large problems. So we can choose one
of the following equivalent transformations:

MAx = Mb or AMy = b and x = My (2)

where M is a nonsingular matrix of order n that
approximation to A−1, M is called a sparse approx-
imate inverse of A[9]. Then MA or AM can be a
good approximation to the identity matrix I. In this
way, the solution of large scale sparse matrix prob-
lems can be computed by the matrix vector simply,
this process can be completed efficiently on parallel
computers.

In this paper, we investigate the use of the MSP
strategy to construct a multilevel sparse approximate
inverse preconditioner. Because the inherent paral-
lelism provided by the MSP algorithm, we do not
need to use an independent set search related strat-
egy to form the multilevel structure. Forward and
backward preconditioning strategy is used in the pre-
conditioner application (solution) phase to improve
the performance of the resulted multilevel precondi-
tioner. In addition, because the MSP algorithm cre-
ates a series of preconditioning matrices, we can
create different Schur complement matrices conve-
niently by taking out different number of these
matrices. Therefore, a two Schur complement strat-
egy with Schur complement preconditioning is pro-
posed to decrease the memory cost of the multilevel
preconditioner.

2. CONSTRUCTION OF MULTILEVEL
PRECONDITIONER BASED ON MSP STRATEGY

In this section, we will discuss the idea of using
the MSP strategy in the multilevel structure to con-
struct a multilevel sparse approximate inverse pre-
conditioner, for purpose of combining the strength
of the sparse approximate inverse and the multilevel
preconditioning to construct a hybrid preconditioner
with increased robustness and inherent parallelism.

2.1. Multistep Successive Preconditioning in MSP

As mentioned in section 1, the convergence rate of
a Krylov subspace solver applied directly to Eq. (1)
may be slow due to the potential ill-conditioning of
the matrix A, and Eq. (2) will be easier to solve. For
constructing a sparse approximate inverse, the basic
idea behind the multistep successive preconditioning
strategy is to find a multi-matrix form preconditioner
and to achieve high accuracy sparse inverse step by
step. In each step we compute a sparse approximate
inverse inexpensively then hope to build a high accu-
racy SAI preconditioner collectively, as the algorithm
of MSP strategy [12].

The static sparsity pattern strategy is more attrac-
tive to implement on distributed memory parallel
computers. A particularly useful and effective strat-
egy is to use the sparsited pattern of the matrix
A or A2, A3, . . . to achieve higher accuracy [3]. The
MSP strategy needs the SAI computed at each step
cheaply, so in Algorithm of MSP, we choose the spar-
sited pattern of Ai to be the sparsity pattern of the
preconditioning matrix Mi. This algorithm leads to
a sequence of matrices M1, M2, . . . , Ml computed
inexpensively according to the sparsity pattern of the
matrix Ai, and

MlMl−1 · · · M1 ≈ A−1 (3)

From the numerical results of [13] we can see that
in addition to robustness, the MSP algorithm outper-
forms standard SAI algorithm both in computational
and memory costs.

2.2. Multilevel Preconditioner Algorithm

The multilevel preconditioners may have a structure
shown in Fig. 1, which depicts a 4-level multilevel pre-
conditioner. Usually, the construction of a multilevel
preconditioner consists of two steps. First, at each
level the matrix is permuted into a 2 by 2 block form:

Aα ∼ PαAαPT
α =

(
Dα Fα

Eα Cα

)
(4)

where α is the level reference. For simplicity, we
denote both the permuted and unpermuted matrices
by Aα . Then the matrix can be decomposed into a

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


574

M4

M3

M1

M2

Fig. 1: Structure of 4-level multilevel preconditioning matrices.

2-level structure by a block LU factorization:

(
Dα Fα

Eα Cα

)
=

(
Iα 0

EαD−1
α Iα

) (
Dα Fα

0 Aα+1

)
(5)

where Iα is the generic identity matrix at level. Aα+1 =
Cα − EαD−1

α Fα is called the Schur complement, which
forms the reduced system. The whole process, per-
muting matrix and performing block LU factorization
can be repeated with respect to Aα+1 recursively,
therefore a multilevel structure is produced. The
recursion is stopped when the last reduced system
Ãτ is small enough so that an efficient solver can be
constructed for it.

The preconditioner application process consists
of a level by level forward elimination, the coarsest
level solution, and a level by level backward substitu-
tion. First suppose the right hand side vector b and
the solution vector x are partitioned according to the
permutation in Eq. (4). At each level we would have:

xα =
(

xα,1
xα,2

)
, bα =

(
bα,1
bα,2

)
(6)

The forward elimination is performed by solving a
temporary vector yα , i.e., for α = 0, 1, · · · , τ − 1 by
solving:

(
Iα 0

EαD−1
α Iα

)(
yα,1
yα,2

)
=

(
bα,1
bα,2

)
,

with

{
yα,1 = bα,1

yα,2 = bα,2 − EαD−1
α yα,1

(7)

The last reduced system may be solved to a cer-
tain accuracy by a Krylov subspace iteration to get
an approximate solution xτ . After that, a backward
substitution is performed to obtain the solution by
solving:

(
Dα Fα

0 Aα+1

)(
xα,1
xα,2

)
=

(
yα,1
yα,2

)
,

with

{
yα,1 = bα,1

yα,2 = bα,2 − EαD−1
α yα,1

(8)

where xα,2 is actually the coarser level solution.
In our algorithm matrix Mα that we compute is

a good approximation to D−1
α , so formula (5) will

equivalent to:

(
Dα Fα

Eα Cα

)
=

(
Iα 0

EαMα Iα

)(
Dα Fα

0 Aα+1

)
(9)

The approximate Schur complement matrix is com-
puted as Aα+1 = Cα − EαMαFα . Continue doing this for
Aα+1 at next level, a multilevel preconditioner based
on the SAI technique will be produced. Correspond-
ingly, the forward and backward substitutions in the
preconditioner application phase change to:

{
yα,1 = bα,1

yα,2 = bα,2 − EαMαyα,1
and

⎧⎨
⎩

xα,2 = A−1
α+1yα,2

xα,1 = Mα(yα,1 − Fαxα,2)

(10)

Thus we prefer an accurate sparse approximate
inverse of Dα during the computation of the multi-
level preconditioner, besides it should be computed
efficiently with respect to the costs of memory and
computation. Generally speaking this can be accom-
plished in at least two ways. One is to find a Dα during
the permutation with some special structures or prop-
erties so that the sparse inverse for Dα can be com-
puted cheaply and accurately. Another way to find a
good approximation for D−1

α cheaply is to improve the
performance of the approximation algorithm. Since
the MSP strategy is an improvement for the stan-
dard SAI algorithm and outperforms the standard SAI
algorithm both in robustness and efficiency, we use
the MSP algorithm to compute our multilevel sparse
approximate inverse preconditioner. At this time the
MSP algorithm will create a series of matrices:

MαlMαl−1 · · · Mα1 ≈ D−1
α (11)

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


575

where l is the number of steps. The Schur complement
matrix is:

Cα − EαMαlMαl−1 · · · Mα1Fα (12)

Obviously, the setup and solution phases will
change to the corresponding forms. Suppose the MSP
algorithm creates a series of matrices as in Eq. (11).
Obviously, if we use Eq. (12) as the Schur complement
matrix directly, Aα+1 may be a dense matrix accord-
ing to our previous discussion. Then we construct the
second Schur complement by only using the first sev-
eral steps of Eq. (11), say only Mα1, the second Schur
complement matrix is in the following form:

Cα − EαMα1Fα (13)

Because Mα1 is usually very sparse according to
[13], the second Schur complement (13) may be sparse
(at least sparser than the first Schur complement
(12)) and can be computed cheaply. Then we use the
second Schur complement as the reduced system to
construct lower level preconditioner instead of the
first Schur complement. In the preconditioning phase,
we may use the first Schur complement as the original
matrix, the lower level preconditioner constructed by
the second Schur complement as the preconditioner
in a preconditioned GMRES iteration to improve the
solution accuracy, which is called Schur complement
preconditioning [15]. Note that we do not compute
the exact form of the first Schur complement matrix,
and it is stored in a multi-matrix form. During the
computations of Schur complement preconditioning,
we only do a series of matrix vector products and
then use one vector to minus another. We can see
if each of these matrices is sparse, the whole mem-
ory cost will not be too large. The whole algorithm of
preconditioning is as follows:

Algorithm 1 Preconditioner application algorithm

1: Function precondition-main (nlevel)
2: Begin
3: If (nlevel = thelastlevel)
4: Solve the last level
5: Else
6: Forward substitution
7: Precondition-main (nlevel + 1)
8: GMRES iteration with Schur complement
9: preconditioning

10: Backward substitution
11: End
12: End

2.3. Algorithm Implementation

The success of general sparse linear system solvers
depends on sophisticated implementations as heavily

as on the innovative underlying ideas, so the imple-
mentation issues need to be addressed to build effi-
cient software for distributed memory parallel com-
puters. To solve a sparse linear system on a parallel
computer, the coefficient matrix is first partitioned by
a graph partitioner and is distributed to different pro-
cessors uniformly. Suppose that initially the matrix is
distributed row by row in each processor as shown
in Fig. 2, where the coefficient matrix A is distributed
in 4 processors. The shaded parts Am, m = 1, . . . , 4, in
the figure form the block diagonal of A. From the view
of graph partition, Am can be called the local matrix
of the processor Pm. And the entries of Am are the
local elements of the processor Pm.

Fig. 2: Distribution of the matrix A in 4 processors.

3. EXPERIMENTAL RESULTS

We implement our parallel multilevel MSP (MMSP) pre-
conditioner, at each level, we use a diagonal value
based strategy to permute the matrix into a 2 by
2 block from. A static sparsity pattern based MSP
strategy is implemented to compute the approxima-
tion of the inverse of Dα . During the preconditioning
phase, we do forward and backward precondition-
ing to improve the performance of the precondi-
tioner. The last level reduced system is solved by
a GMRES iteration preconditioned by MSP strategy.
In this section, we conduct a few numerical experi-
ments to show the characteristics of MMSP, and we
also compare the performance of the MMSP precon-
ditioner with the MSP preconditioner to show the
improved robustness and efficiency due to the intro-
duction of multilevel structure. The computations are
carried out on a 64 processor (2.4 GHz) subcomplex
of an HP Z400 graphics workstation. Unless other-
wise indicated explicitly, 4 processors are used in our
numerical experiments. For all preconditioning iter-
ations, which include the outer (main) precondition-
ing iterations, forward and backward preconditioning
iterations, Schur complement preconditioning itera-
tions, and the coarsest level solver, we use a flexible

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


576

variant of restarted GMRES (FGMRES) in a parallel
version.

3.1. Convection-diffusion Problem Test

A 3D convection-diffusion problem (defined on a unit
cube):

uxx + uyy + uzz + 1000(p(x, y, z)ux + q(x, y, z)uy

+ r(x, y, z)uz) = 0 (14)

is used to generate some large sparse matrices to
test the scalability of MMSP. Here the convection
coefficients are chosen as:

p(x, y, z) = x(x − 1)(1 − 2y)(1 − 2z)

q(x, y, z) = y(y − 1)(1 − 2z)(1 − 2x)

r(x, y, z) = z(z − 1)(1 − 2x)(1 − 2y)

The Reynolds number for this problem is 1000.
Eq. (14) is discretized by using the standard 7-
point central difference scheme and the 19-point
fourth order compact difference scheme. The result-
ing matrices are referred to as the 7-point and 19-
point matrices respectively.

We also use MMSP to solve the sparse matri-
ces listed in Tab. 1. The BARTHT1A matrix is from
2D, high Reynolds numbers airfoil problem with tur-
bulence modeling. It belongs to the SPARSKIT col-
lection. The FIDAP matrices were extracted from
the test problems provided in the FIDAP package.
They arise from coupled finite element discretization
of Navier-Stokes equations modeling incompressible
fluid flows. The UTM matrices are real unsymmetric
matrices arising from nuclear fusion plasma simula-
tions in a tokamak reactor. They are from TOKAMAK
set in SPARSKIT collection. The UTM matrices and
the other matrices are available from the well-known
Harwell-Boeing sparse matrix collection.

3.2. Properties of MMSP

We will present a few numerical results to demon-
strate some CPU cost properties of MMSP. The main
computational costs in MMSP are matrix-matrix prod-
uct and matrix-vector product operations. As it is well
known [13], these operations can be performed in par-
allel efficiently on most distributed memory parallel
architectures.

We use the 3D convection-diffusion problem to
test the implementation efficiency of our MMSP pre-
conditioner. The results in Fig. 3 are from solving
an actual case of CAD matrix with n = 1003 and
nnz = 6940000 using different number of processors.
Because the memory limitation of our parallel com-
puters, we can only test the problems starting from
4 processors. To be convenient, we set the speedup
in 4 processors case to be 4 (Fig. 3 a). In particu-
lar, we point out that it is not the same as the MSP
algorithm, in which the number of the MSP iterations

Matrices n nnz Description

BARTHT1A 14075 481125 14075 481125
Navier Stokes
flow at high
Reynolds
number

FIDAP012 3973 80151 3973 80151 Flow
in lid-driven
wedge

FIDAP024 2283 48733 Nonsymmetric
forward roll
coating

FIDAP028 2603 77653 Two merging
liquids with one
external interior
interface

FIDAP031 3909 115299 Dilute species
deposition on
a tilted heated
plate

FIDAP040 7740 456226 3D die-swell
(square die Re =
1, Ca = ∞)

FIDAPM03 2532 50380 Flow past a
cylinder in free
stream (Re = 40)

FIDAPM08 3876 103076 Developing flow,
vertical channel
(angle = 0, Ra =
1000)

FIDAPM09 4683 95053 Jet impingment
cooling

FIDAPM11 22294 623554 3D steady flow,
heat exchanger

FIDAPM13 3549 71975 Axisymmetric
poppet value

FIDAPM33 2353 23765 Radiation heat
transfer in a
square cavity

UTM1700A 1700 21313 Nuclear fusion
plasma
simulations

UTM1700B 1700 21509 Nuclear fusion
plasma
simulations

UTM3060 3060 42211 Nuclear fusion
plasma
simulations

WIGTO966 3864 238253 Euler equation
model

Tab. 1: Information about some sparse matrices
used in the experiments (n is the order of a matrix,
nnz is the number of nonzero entries).

is not influenced by the number of processors when
the whole problem size fixed. The number of iter-
ations for MMSP does not remain constant. That is
because the permutation of the matrix at each level
depends on the ordering of the unknowns. Different
number of processors have different ordering of the
unknowns even for the same problem. Fortunately,

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


577

(a) (b)

Fig. 3: Experiments of MMSP when solving a 7 point matrix with n = 1003, nnz = 6940000, (a): the speedup of
MMSP as a function of the number of processors. (b): the total CPU time versus the number of processors of MSP
and MMSP.

the number of iterations does not degrade too much
with the increase of the number of processors.

In Fig. 3b, the algorithmic scalability of MMSP is
tested by solving a series of 19-point matrices. We
try to keep the number of unknowns in each pro-
cessor approximately 253. Therefore when we change
the number of processors, the whole problem size
increases at the same time. To be comparable, we can
see that MMSP shows better algorithmic scalability
and efficiency than the MSP algorithm.

We already know that a larger number of steps in
MSP will create a preconditioner which converges fast
[13]. For the FIDAPM09 matrix, MMSP cannot make it
converge using only 1 and 2 steps, in 3 steps case, the
preconditioned system converges in 248 iterations.
For the FIDAPM33 matrix, MMSP can solve the matrix
using 2 and 3 steps, and fails in the 1 step case. Just
as we expected, using a larger number of steps leads
to a better convergence results.

Then Fig. 4 depicts the relationships of the con-
vergence behavior and the CPU time with respect
to different number of forward and backward pre-
conditioning iterations for solving the UTM1700B
matrix. Here, the forward and backward precondi-
tioning iteration uses FGMRES(50) algorithm to do
certain number of iterations to reduce the 2-norm
of the relative residual. The number of iterations is
an input parameter. From Fig. 4 we can see that
when we increase the number of forward and back-
ward preconditioning iterations from 0 to 5, the
number of iterations for solving the preconditioned
systems decreases from more than 2000 to around
200 repaidly. And the total CPU time decreases from
more than 20 seconds to around 3 seconds at the

same time. However, further increasing the number
of forward and backward preconditioning iterations
from 5 to 60 does not bring very big difference
for the convergence of the system, the number of
iterations only decreases to around 100, which can-
not compensate for the CPU time which increases
from 3 to 11 seconds. Therefore, we conclude that
the forward and backward preconditioning iteration
can improve the convergence of the preconditioning
system.

But a large number of forward and backward pre-
conditioning iterations will bring a high CPU time
cost. Notice that in the experiments in Fig. 4, the
best choice is to perform 5 forward and backward
iterations. In the following test, we always use 5 for-
ward and backward preconditioning iterations. We
note that how to choose this parameter should be
problem dependent, and the choice of 5 may not be
the best for all problems.

3.3. Comparison of MSP and MMSP

Here we do some comparison between the MSP pre-
conditioner and the MMSP preconditioner. Tab. 2
gives a few experiment results for using MSP and
MMSP to solve a few different matrices. For MSP, we
adjust the parameter � and number of steps and try
to give the best performance results for solving these
matrices. For all results of MMSP we fix the reduce
ratio to be 0.67, � to be 0.05, the number of steps
at each level to be 2 and the number of forward
and backward iterations to be 5. The number in the
parentheses of MSP is the number of steps, and the

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


578

Fig. 4: Convergence behavior of MMSP and MSP for solving the FIDAP028 matrix. (MMSP step = 2, = 0.05, density
= 2.83, level = 7) (MSP step = 3, � = 0.005, density = 5.34).

Matrices preconditioner � density iter setup solve total

FIDAP024 MSP(3) 0.01 4.87 188 14.4 1.8 16.2
MMSP(7) 0.05 3.05 39 0.8 0.6 1.4

FIDAPM08 MSP(3) 0.01 3.28 729 48.3 3.4 51.7
MMSP(8) 0.05 3.02 192 1.1 4.5 5.6

FIDAP012 MSP(-) - - - - - -
MMSP(8) 0.05 3.38 57 1.1 1.2 2.3

FIDAP040 MSP(-) - - - - - -
MMSP(8) 0.05 3.46 39 4.3 4.0 8.3

FIDAPM03 MSP(-) - - - - - -
MMSP(7) 0.05 3.35 62 0.8 1.0 1.8

FIDAPM11 MSP(-) - - - - - -
MMSP(9) 0.05 6.81 200 16.3 85.1 101.4

FIDAPM13 MSP(-) - - - - - -
MMSP(8) 0.05 3.58 86 1.1 1.7 2.8

UTM1700A MSP(-) - - - - - -
MMSP(7) 0.05 3.45 145 0.7 1.9 2.6

UTM3060 MSP(-) - - - - - -
MMSP(8) 0.05 4.02 474 1.0 7.9 8.9

Tab. 2: Comparison of MSP and MMSP for solving a few matrices.

number in the parentheses of MMSP is the number of
constructed levels.

In Tab. 2 nine matrices are tested by MSP and
MMSP respectively, two of them can be solved by
the MSP preconditioner, however the MMSP pre-
conditioner can solve them with smaller sparsity
ratios and only 10 percent of the CPU time. MSP
fails solving remaining seven matrices, which can be
solved by MMSP very efficiently. Furthermore, MMSP
shows better algorithmic scalability than the MSP
algorithm.

4. CONCLUSION

We have developed a multilevel sparse approximate
inverse pre-conditioner based on the MSP strategies
for solving general sparse matrices in 3D human
body organs and tissues research. A prototype imple-
mentation is tested to show the robustness and
computational efficiency of this class of multilevel
pre-conditioners.

From the numerical results presented, we can see
that forward and backward preconditioning is an

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


579

important strategy for the convergence performance
of the multilevel MSP pre-conditioner. A number
of forward and backward preconditioning iterations
help the convergence of the multilevel MSP pre-
conditioner and a carefully chosen number of iter-
ations will make the multilevel MSP pre-conditioner
converge fast. Compared with the linear CAD com-
puting systems, our strategy can solve the different
sparse matrices with smaller sparsity ratios and fewer
CPU time.

In addition, the number of levels also influences
the convergence and memory cost of the multilevel
MSP pre-conditioner. A large number of levels will
produce a good pre-conditioner with a high memory
cost. A small number of levels will create a cheap pre-
conditioner with low memory cost. The same thing
happens when refer to the number of MSP steps used
at each level of the multilevel MSP pre-conditioner.
Fortunately, because the MSP algorithm creates a
series of preconditioning matrices, we can use a two
Schur complement strategy to decrease the memory
cost, even sometimes the computational cost for the
preconditioning phase may increase.

ACKNOWLEDGEMENTS

This work is supposed by National Natural Sci-
ence Foundation (No. 61173174, 61272245), the Post-
doctoral Granted Financial Support of Shandong
Province (No. BS2011DX025). The authors also grate-
fully acknowledge the helpful comments and sug-
gestions of the reviewers, which have improved the
presentation.

REFERENCES

[1] Benzi, M.; Tuma, M.: A sparse approxi-
mate inverse preconditioner for nonsymmet-
ric linear systems, SIAM Journal on Scien-
tific Computing, 19(3), 1998, 968–994. http://
dx.doi.org/10.1137/S1064827595294691

[2] Boollhofer, M.; Mehrmann, V.: Algebraic multi-
level methods and sparse approximate inverses,
SIAM J. Matrix Anal. Appl., 24(1), 2002, 191–
218. http://dx.doi.org/10.1137/S08954798993
64441

[3] Chow, E.: A priori sparsity patterns for par-
allel sparse approximate inverse precondition-
ers, SIAM J. Sci. Comput., 21(5), 2000, 1804–
1822. http://dx.doi.org/10.1137/S1064827598
33913X

[4] Huang, Z.-H.; Shi, P.-L.: Notes on Convergence
of an Algebraic Multi-grid Method, Applied

Mathematics Letters, 20(3), 2007, 335–340.
http://dx.doi.org/10.1016/j.aml.2006.05.002

[5] Huang, Z.-H.; Wang, D.-S.: Chin Parallel Numeri-
cal Simulations for Quantized Vortices in Bose-
Einstein Condensates, Chinese Physics, 16(1),
2007, 32–37. http://dx.doi.org/10.1088/1009-
1963/16/1/005

[6] Liu, Y.-Q.; Yin, K.-X.; Wu, E.-H.: Fast GMRES-GPU
Solver for Large Scale Sparse Linear Systems,
Journal of Computer-Aided Design & Computer
Graphics, 23(4), 2011, 553–560.

[7] Nakajima, K.; Okuda, H.: Parallel iterative
solvers with localized ILU preconditioning for
unstructured grids on workstation clusters,
International Journal of Computational Fluid
Dynamics, 12, 1999, 315–322. http://dx.doi.
org/10.1080/10618569908940835

[8] Quan, Z.; Xiang, S.-H.: A GMRES based poly-
nomial preconditioning algorithm, Mathematic
Numerica Sinica, 28(4), 2006, 365–376.

[9] Saad, Y.: Iterative Methods for Sparse Linter
Systems, PWS Publishing, New York, 1996.

[10] Saad, Y.; Zhang, J.: Enhanced multi-level block
ILU preconditioning strategies for general
sparse linear systems. Journal of Computa-
tional and Applied Mathematics, 130, 2001, 99–
118. http://dx.doi.org/10.1016/S0377-0427(99)
00388-X

[11] Wang, K.; Wang, R.: Nonsingularity Study of SAI
Preconditioners for M-matrices, The 2009 Inter-
national Conference on Scientific Computing,
2009, 89–95.

[12] Wang, K.; Zhang, J.: MSP: a class of par-
allel multistep successive sparse approxi-
mate inverse preconditioning strategies, SIAM
J. Sci. Comput., 24(4), 2003, 1141–1156. http://
dx.doi.org/10.1137/S1064827502400832

[13] Zhang, J.: Preconditioned Krylov subspace
methods for solving non-symmetric matrices
from CFD applications, Computer Methods in
Applied Mechanics Engineering, 189(3), 2000,
825–840. http://dx.doi.org/10.1016/S0045-78
25(99)00345-X

[14] Zhang, J.: A sparse approximate inverse
technique for parallel preconditioning of
general sparse matrices, Applied Mathemat-
ics and Computation, 130(1), 2002, 63–85.
http://dx.doi.org/10.1016/S0096-3003(01)000
69-8

[15] Zhang, J.: On preconditioning Schur comple-
ment and Schur complement precondition-
ing, Electron. Trans. Numer. Anal., 10, 2000,
115–130.

Computer-Aided Design & Applications, 12(5), 2015, 572–579, http://dx.doi.org/10.1080/16864360.2015.1014735
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1137/S1064827595294691
http://dx.doi.org/10.1137/S1064827595294691
http://dx.doi.org/10.1137/S0895479899364441
http://dx.doi.org/10.1137/S0895479899364441
http://dx.doi.org/10.1137/S106482759833913X
http://dx.doi.org/10.1137/S106482759833913X
http://dx.doi.org/10.1016/j.aml.2006.05.002
http://dx.doi.org/10.1088/1009-1963/16/1/005
http://dx.doi.org/10.1088/1009-1963/16/1/005
http://dx.doi.org/10.1080/10618569908940835
http://dx.doi.org/10.1080/10618569908940835
http://dx.doi.org/10.1016/S0377-0427(99)00388-X
http://dx.doi.org/10.1016/S0377-0427(99)00388-X
http://dx.doi.org/10.1137/S1064827502400832
http://dx.doi.org/10.1137/S1064827502400832
http://dx.doi.org/10.1016/S0045-7825(99)00345-X
http://dx.doi.org/10.1016/S0045-7825(99)00345-X
http://dx.doi.org/10.1016/S0096-3003(01)00069-8
http://dx.doi.org/10.1016/S0096-3003(01)00069-8
http://www.cadanda.com

	1. INTRODUCTION
	2. Construction of multilevel preconditioner based on MSP strategy
	2.1. Multistep Successive Preconditioning in MSP
	2.2. Multilevel Preconditioner Algorithm
	2.3. Algorithm Implementation

	3. Experimental Results
	3.1. Convection-diffusion Problem Test
	3.2. Properties of MMSP
	3.3. Comparison of MSP and MMSP

	4. Conclusion
	Acknowledgements
	References

