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ABSTRACT

The problem of interpolating a quadrilateral free-form network with a quasi-developable patch is
investigated in this paper. The boundaries of the quadrilateral are assumed to be degree 3 Bezier
curves. The interpolated surface is a bi-cubic Gregory patch, which guarantees G1 Continuity. All
inner control points of the Gregory patch are determined by imposing G1 continuity constraint and
solving an optimization to maximize the surface developability. The optimization model minimizes
the value of the integral Gaussian curvature over the entire patch. Examples are provided to illustrate
the application of this approach in several industrial applications.
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1. INTRODUCTION

A surface is developable if it can be flattened onto
a plane without distortion, i.e., without any stretch-
ing or compression. Such a surface has zero Gaussian
curvature everywhere. Because of this characteristic,
developable surfaces are widely used in the engi-
neering fields such as ship-building [20] and garment
industries [8, 25, 26], and extensive research work has
been done in developable surface modeling.

Much work has been done on how to represent a
developable surface using polynomial patches. One
approach to achieve is to use developable or quasi-
developable polynomial patches to interpolate a set
of boundary curves [1–3, 5–7, 10, 11] with G0, G1

and G2 continuity. Another approach is to use piece-
wise linear approximations: the free from surface
is tessellated, typically using triangles, and an opti-
mization model is constructed to minimize some
form of distortion as the mesh in a 2-parameter
space [8, 19, 25, 26]. Since a developable surface can
be regarded as a one parameter family of straight
lines, it can be mapped to one space curve in the
dual space. Some researchers [4, 23, 24] convert the
modeling of developable surfaces by an equivalent
modeling of a curve in dual space. This conver-
sion can guarantee the final surface is developable;
unfortunately, the modeling process is not geomet-
rically intuitive, and hence impractical. A practical
approach is to sketch the curve-network and then

seek a developable surface to interpolate it. Computa-
tionally, there may be no solution for an interpolating
developable surface; hence some approximation is
utilized. In industries where materials such as metals,
fabrics or leather are used, this is equivalent to utiliz-
ing the available plastic deformation of the materials.
In such approximations, one possible objective func-
tion defines a surface that minimizes a measure based
on the Gaussian curvature.

In this work, a novel algorithm is proposed to
interpolate a quadrilateral curve network, denoted
as a curved grid. Using self-defined cross-derivative
functions, a bi-cubic quasi-developable Gregory patch
is derived to “tile” the given curved grid, with G1 con-
tinuity between neighboring grids along their shared
boundary. The use of Gregory patches allows us to
handle the vertex enclosure problem [21, 22]; further,
we can divide any curve-network with an arbitrary
number of boundary curves into a curve ribbon con-
sisting of a series of curved grids (see Fig. 1). Another
work interpolating a curve-network using Gregory
patches can be found in [9], and the curve-network
is automatically constructed from a solid which is
generated via a set of local modifications on a poly-
hedron. Different from the work [9], the factor of
developability is considered in our work. The measure
of developability we use is the integral of the Gaus-
sian curvature over the interpolating surface. After
devising an appropriate construction scheme and
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Fig. 1: Dividing a given network into a set of curved grids.

optimizing some free parameters based on the devel-
opability [5], a quasi-developable Gregory patch that
passes through each curved grid is designed. Finally
a visually smooth quasi-developable surface can be
designed to interpolate the given curve-network.

2. PRELIMINARIES

When interpolating a polynomial curve network with
G1 continuity, one encounters the vertex enclosure
problem (discussed in various related past works on
surface interpolation, such as [12–14, 18, 28]). Our
approach using Gregory patches are used to inter-
polate a given polynomial curve network. In this
paper, bi-cubic Gregory patches are chosen to be as
the tilting element, and for ease of computation, we
restrict our patches to degree three, which is the
minimum required to guarantee G1 continuity across
neighboring patches.

2.1. Bi-cubic Gregory Patch

The parametric form of a bi-cubic Gregory patch is
similar to the bi-cubic Bezier surface representation
except that the inner control points are related to the
parameters u and v.

G(u, v) =
3∑

i=0

3∑
j=0

B3
i (u) B3

j (v)Pij(u, v) (0 ≤ u, v ≤ 1)

(1)

Where B3
i (u)and B3

j (v) are the Bernstein polynomial

of degree 3 and Pij are control points. From Fig. 2, we
need to determine 20 control points while there are
only 16 control points are needed. Actually, the eight
inner points (blue in Fig. 2) are blended into four. In
other words, we have Pij(u,v) = Pij0 = Pij1, except for
the inner control points, i.e., P11, P21,P12 and P22 ,
which can be evaluated as:

P11(u, v) = uP110 + vP111

u + v
(2)

P21(u, v) = (1 − u)P210 + vP211

1 − u + v
(3)

Fig. 2: The control points of bi-cubic Gregory patch.

P12(u, v) = uP120 + (1 − v)P121

u + 1 − v
(4)

P22(u, v) = (1 − u)P220 + (1 − v)P211

2 − u − v
(5)

The first and second cross-derivatives along the
boundary of the Gregory patch are equal to that of
the corresponding Bezier patch with the same bound-
ary curves. More explicitly, the first cross-derivatives
along the boundary G (u, 0), can be evaluated as:

∂G
∂v

(u, 0) = 3
3∑

i=0

B3
i (u)(P1i − P0i) (6)

Using the corresponding relationship between
Pij(u,v) in Eq.(1) and Pijk in Fig. 2 and the Eq.(6) can
be expanded as Eq.(7) below:

∂G
∂v

(u, 0) = 3[B3
0(u)(P100 − P000) + B3

1(u)(P111 − P010)

+ B3
2(u)(P121 − P020) + B3

3(u)(P130 − P030)]
(7)

All control points of Gregory patch coincide with
that of the given boundary curves. If the degree of
a boundary curve is less than 3, it is assumed to be
3 with the coefficients of higher order terms set to
0. If the twist at a corner has different values, e.g.,
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∂2G
∂u∂v

(0, 0) �= ∂2G
∂v∂u (0, 0), the resulting system is singu-

lar. This can be resolved in different ways [13]. In our
approach, we force the projection components of the
twist partial values on the given normal vector N at
corner to be equal. All eight internal control points are
unknown and need to be determined by G1 continuity
and developability condition.

2.2. Continuity Between Two Adjacent Gregory
Patches

In order to better understand G1 geometric con-
straint, one can imagine a virtual patch exists across
the shared boundary of two adjacent Gregory patches.
If these two patches have the same tangent plane
with the virtual patch respectively, they are joined
in a G1 continuity [16, 28]. In Fig. 3, R(u) is the
intersection line of these two neighboring patches
denoted as G and B. The virtual patch across R(u) is
denoted as V, which is G1 connected with both A and
B. The polynomial D (u) is the first cross-derivatives
of patch V along R(u). Gv(u,0) and Aw(u,0) are first
cross-derivatives of patch G and patch B along R(u)
,respectively. If patch V joins both patch G and B in
a G1 continuous manner, the following equations, i.e.,
Eq.(8) and Eq.(9) should hold as below:

Gv(u, 0) = a(u)D(u) + b(u)Ṙ(u) (8)

Bw(u, 0) = c(u)D(u) + d(u)Ṙ(u) (9)

where a(u), b(u), c(u) and d(u) are polynomials. Since
D(u) independently interpolates the derivatives at two

Fig. 3: The virtual patch between the two adjacent
patches.

end vertices of R(u), it should be of degree 3; as the
degrees of left sides in Eq.(8) and Eq.(9) are both 3,
therefore a(u), c(u) are constant, and b(u) and d(u) are
either linear or constant, since Ṙ(u) is of degree 2. In
our work, we let b(u) and d(u) to linear, thereby getting
two free parameters for optimizing the developability.
If Eqs. (8)-(9) hold, patch A and patch B are also G1

continuous.

3. METHODOLOGY

As mentioned before, we need to determine eight
unknown inner control points based on G1 geometric
condition, i.e., Eq.(8) and Eq.(9). Eq.(8) and Eq.(9) inde-
pendently specify the relationship between unknown
control points and G1 condition of two neighboring
patches G and B, respectively. Thus if we can deter-
mine the inner control points patch G using Eq.(8),
the control points for patch B can be determined
similarly.

3.1. Determine D(u)

The mixed partial derivative of G(u, v), Ḋ(u), is one
parameter used in calculating the Gaussian curvature
of boundary of G; therefore we cannot set Ḋ(u)to zero
as a constraint in our optimizing model. Further, since
the degree of the left side of Eq.(8) is 3, we let the
degree of D(u) as 3, i.e., D(u) = ∑3

i=0 B3
i (u)Di . Thus,

we have D(0) = D0, D(1) = D3, Ḋ(0) = 3(D1 − D0) and
Ḋ(1) = 3(D3 − D2). If we can determine D(0), D(1) and
their first derivative values, i.e., Ḋ(0) and Ḋ(1), D(u)
will be fully determined. We first consider Ḋ(0).

In Fig. 4, R1 and R2 are the two boundary curves
of patch G and Ḋis the twist, i.e., the mixed partial
derivative of G(u, v) at the corner in the direction u. X
and Y are the principal vectors of G, and �Xand �Yare
their corresponding unit vectors, which define two
orthogonal direction and N1 is the unit normal vector

at the corner, which is calculated asN1 = Ṙ1(0)×Ṙ2(0)

||Ṙ1(0)×Ṙ2(0)|| .
The Gaussian curvature is given by:

K = LN − M2

EG − F2
(10)

Where, E, F, G are the coefficients of the first fun-
damental form and L, M, N are those of the second
fundamental form. After direct evaluation by Eq.(10),
the Gaussian curvature of the corner P000 can be
evaluated as Eq. (11).

K(0) = 〈R̈1(0), N1〉〈R̈2(0), N1〉 − T2

Ṙ2
1(0)Ṙ2

2(0) − 〈Ṙ1(0), Ṙ2(0)〉2
(11)

Where < , > denotes the vector dot product,
T = 〈Ḋ(0), N1〉, which equals to the twist of G(0,0).
Since the interpolating patch is preferred to be
developable, K(0) is preferred to be as close to
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Fig. 4: The involved vectors at the corner P000 of
patch G.

zero as possible. 〈R̈1(0), N1〉〈R̈2(0), N1〉 > 0, we let T =√
〈R̈1(0), N1〉〈R̈2(0), N1〉 , otherwise let T = 0.

So far only the component of Ḋ(0) along the direc-
tion of N1, i.e., 〈Ḋ(0), N1〉 is evaluated. We need to
calculate the component projected onto the tangent
plane. Thus, we first evaluate two principal directions
�Xand �Y (where �X · �Y = 0), and construct a frame, to
write Ḋ(0) in terms of N1, �X and �Y .

We can easily calculate the mean curvature H (0) as
below:

H (0) = 1
2

〈R̈2(0), N1〉Ṙ2
1(0) − 2T 〈Ṙ1(0), Ṙ2(0)〉

+〈R̈1(0), N1〉Ṙ2
2(0)

Ṙ2
1(0)Ṙ2

2(0) − 〈Ṙ1(0), Ṙ2(0)〉2
(12)

Denote two principal normal curvature as Kmax
and Kmin and their corresponding vectors as K and
L, respectively. Based on the definition of Gaussian
curvature and Mean curvature, we obtain:{

K(0) = KmaxKmin

H (0) = Kmax+Kmin
2

(13)

Kmax, Kmin and the principal direction X and Y can be
calculated from Eqs.(11) –(13) as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = (T − KmaxF)Ṙ1(0) − (〈R̈1(0), N1〉
−Kmax〈Ṙ1(0), Ṙ2(0)〉)Ṙ2(0)

Y = (T − KminF)Ṙ1(0) − (〈R̈1(0), N1〉
−Kmin〈Ṙ1(0), Ṙ2(0)〉)Ṙ2(0)

(14)

Note that Kmin may be not zero when curves
R1 and R2 do not bend toward the same direction.
The corresponding unit vector �Xand �Y can be easily
obtained by normalizing the vectors X and Y ; �X , �Y
and N1 define a local frame, denoted by �X �YN1 with
the origin at point P000. The component of Ḋ0 along
the direction N1 is equal to T = 〈Ḋ(0), N1〉, and the

other two component values along the �X and �Y axes
are denoted as x and y, respectively; both of these
must be specified. Since Ḋ0 = 3(D1 − D0), we obtain:

D1 = D0 + 〈Ḋ0, N1〉
3

N1 + x �X + y �Y (15)

The optimum values of x and y can be evaluated
by minimizing the value of [(D1 − D0) − 1

3 (D3 − D0)]2

such that D(u) can be more smoothly distributed,
which yields:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = D0 + 〈Ḋ0, N1〉
3

N1 +
〈
D3 − D0

3
, �X

〉
�X

+
〈
D3 − D0

3
, �Y

〉
�Y

D2 = D3 − 〈Ḋ3, N2〉
3

N2 +
〈
D3 − D0

3
, �X2

〉
�X2

+
〈
D3 − D0

3
, �Y2

〉
�Y2

(16)

Where �X2
�Y2N2 is a local frame at the corner P030.

From Eq. (16), we can see that D1 and D2 are related
to D0 and D3. We now evaluate D0; D3 can be similarly
determined. Let u = 0, 1, and rewrite Eq. (8) in terms
of the derivative of R1 and R2, we obtain:

{
Ṙ2(0) = a(0)D0 + b(0)Ṙ1(0)

Ṙ2(1) = a(1)D3 + b(1)Ṙ1(1)
(17)

As the left side of Eq.(8) and D(u) are both of
degree 3, a(0) = a(1) = a, and without loss of gen-
erality, we let a = 1. D0 , Ṙ2(0) and Ṙ1(0)should be all
on the tangent plane spanned by unit vector �Xand �Y .
We represent them in terms of �Xand �Y as below:

⎧⎪⎨
⎪⎩

D0 = x0
�X + y0

�Y
Ṙ1(0) = m1

�X + n1
�Y

Ṙ2(0) = m2
�X + n2

�Y
(18)

Substituting Eq. (17) into Eq. (18), we obtain:

{
x0 = (b(0)m1 − m2)

y0 = (b(0)n1 − n2)
(19)

Thus D1 is related to the parameter b (0) and
denoted it as b0, similarly D2 is related to the param-
eter b(1) denoted as b1. So far we have determined Di
as a bivariate function in terms of b0 and b1 expressed
as:

D(u) = f0(b0)B3
0(u) + f1(b0, b1)B3

1(u) + f2(b0, b1)B3
2(u)

+ f3(b1)B3
3(u) (20)

where f i is linear function with respect to b0 and b1.
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3.2. Determining the Eight Interior Control Points

Substituting the value of D(u) in Eq. (20) back to Eq. (8)
and rearranging gives:

3
2∑

i=0

B3
i (u)(P1i − P0i) =

3∑
i=0

fiB
3
i (u) + 3(b0 + u(b1 − b0))

×
2∑

i=0

B2
i (u)(Qi+1 − Qi) (21)

where Qi are control points of the curve R1. Using
Eq. (7) and Eq. (21), we can represent two unknown
inner control points, P111 and P121, as a linear func-
tion of b0 and b1, i.e., P111(b0, b1) and P121(b0, b1).
Similarly, the remaining six unknown control points,
i.e., P110, P210, P211, P221, P220, P120, can also be repre-
sented as linear functions of three pairs of parame-
ters, (r0, r1), (s0, s1) and (t0, t1).

We wish to achieve a (near)-developable sur-
face; to do so, we shall adopt an objective func-
tion that minimizes the Gaussian curvature aggre-
gated over the surface. We denote this criterion as
g(b0, b1, r0, r1, s0, s1, t0, t1) and define it as:

g(b0, b1, r0, r1, s0, s1, t0, t1) =
∫∫

G
|K|dudv (22)

where K is Gaussian curvature at the point G(u, v),
represented parametrically via Eq. (10). If the curved
grid is relatively small and smooth, then we may
assume that the sign of the Gaussian curvature does
not change across the entire surface. In this case,
the computation can be simplified by employing the

Gauss–Bonnet theorem:

∫∫
G

|K|dudv = |2π −
4∑

i=1

∮
kg(u)dL −

4∑
i=0

αi | (23)

Where kg is geodesic curvature along given bound-
ary curves, and αidenotes the external angles between
the tangent vectors at four corners. We can solve
the values of (b0, b1, r0, r1, s0, s1, t0, t1) that minimize
our objective function, g(.), by using the appropriate
numerical approach; The solution is then used to cal-
culate the interior control points using Eq. (21). We
note that all initial inner control points are calcu-
lated using the method in [14], and the initial values
of (b0, b1, r0, r1, s0, s1, t0, t1) are correspondingly cal-
culated easily by Eq. (21). In our case, we employ
BFGS-quasi-Newton’s method [15] which converges to
a stationary point, i.e., a local minimum in general.
Better solutions, possibly closer to the global opti-
mum may be obtained by employing this within some
randomized search algorithm (e.g. simulated anneal-
ing) [17, 27]. In our algorithm, the gradient vector
is numerically calculated and the Hessian matrix is
efficiently approximated. The ARPREC Library is used
to solve this optimization problem due to its tested
robustness against numerical instability.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed algorithm has been implemented using
C + + and tested on a PC with Intel i5-760 3G Hz,
2GB DDR2. To verify the algorithm, the benchmark
is the method in [14], which constructs a G1 bi-cubic
Gregory patch without considering the developability
constraint. In [14], G1 continuity constraints are given
and inner control points are initially estimated using a

(a) (b)

(c)

Fig. 5: (a) A curve network with four curved grids, each of which consists four planar curves of degree 3; (b) the
result by [14];(c) the result by the proposed algorithm.
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(a) (b)

(c)

Fig. 6: (a) A curve network with 24 curved grids, each of which consists four planar curves of degree 3; (b) the
result by [14]; (c) the result by the proposed algorithm.

heuristic scheme. Next, these control points are con-
structed in a manner which satisfies G1 conditions;
finally the solution is optimized by minimizing the
difference between the final positions and their cor-
responding initial estimated positions. This method
only focuses on G1 continuity and does not consider
how to devise the first order and second order deriva-
tive fields along boundary curves, which will in turn
used to determine all inner control points. In our
paper, the derivatives along the boundary curves are
computed to minimize the Gaussian curvatures at
four corner points; so in principle, our method will
improves on [14] if developability of the interpolat-
ing surface is desirable. A visual comparison of some
examples constructed by out method and by using
the approach in [14] is presented via Zebra maps and
Gaussian maps in Figure 5. In the Gaussian map, blue
color indicates (nearly) zero Gaussian curvature, while
green/red regions have respectively negative/positive
Gaussian curvature.

The first example is a simple one with four curved
grids (see Fig. 5(a)), each of which consists of four
3-degree-planar curves and located symmetrically.
The results by [14] and our methods are shown in
Fig. 5(b) and Fig. 5(c), respectively. Their correspond-
ing shaded view, zebra-pattern rendering and the
distribution map of Gaussian curvature are shown
from the left to the right in Fig. 5(b) and Fig 5(c). From
the reflection model of Fig. 5(c), we can see the result-
ing patch is G1 continuous and the distribution of the
Gaussian curvature is much better (from a point of
view of developability) than that in Fig. 5(b). We also
see that the Gaussian curvature at all the corners is
zero, which means the surface is locally planar in the
neighborhood of these points.

The second example is a car hood formed using
sheet-metal. The shape is preferred to be as devel-
opable as possible so that the internal stresses
are minimized. In this example, ribbon curves are

constructed first, making 24 curved grids as shown
in Fig. 6(a). The results by using the benchmark and
by our algorithm are shown respectively in Fig. 6(b)
and Fig. 6(c). Again, these rendered views clearly indi-
cate the effectiveness of our method in producing a
more developable surface.

5. CONCLUSIONS

In this paper, a novel algorithm is proposed to con-
struct a degree-3 Gregory patch interpolating a curved
grid consisting of four Bezier curves of degree 3. In
this algorithm, the first cross derivatives along bound-
ary curves are optimally specified by imposing a
developability constraint and all inner unknown con-
trol points are evaluated by ensuring G1 continuity.
The developability constraint used in our implemen-
tation minimizes the integral of the magnitude of the
Gaussian curvature over the whole patch; other sim-
ilar criteria can be easily adopted into our approach.
Test examples showed that the proposed algorithm
can be applied to many industries in which devel-
opability is desirable. Our approach can be further
improved in future work, to address some limitations,
which include the following.

The construction of Gregory patch only guaran-
tees G1 continuity, but there are many applications
where G2 or even higher order continuity is desirable.
Further, the surface is constructed by optimizing the
integral Gaussian curvature over the entire Gregory
patch. It is not clear that this objective is a reasonable
metric in all applications, since even a global opti-
mum under this criterion may have some local regions
with excessively high Gaussian curvature. One way to
address this may be to use a constraint that limits the
maximum local Gaussian curvature to within a preset
value.
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