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ABSTRACT

In recent years, structural optimization has changed the way we think of product development. Opti-
mizers allow to explore every possible product shape with the aim of maximizing performance,
minimizing cost and accounting for environmental factors from the early phases of the design pro-
cess. Material selection plays a big role, as one of the first and most binding choices of the product
development. Current material selection schemes are too generic and bound to a less shape-driven
design, which doesn’t take full advantage of the optimization potential. They were developed for con-
stant or self-similar shape products and allow for a substantial degree of subjectivity, when defining
weight values for non-constant shape models. This paper proposes a computer-aided material selec-
tion scheme for structurally optimized products. It aims at integrating a multi-criteria decision making
approach with the product awareness of a structural optimization, in order to systematically define
the ranking weight values. The procedure comprises four main steps: a) initial material screening, to
obtain a list of product and process compatible materials, b) statistical analysis of the design space
through a factorial DoE (Design of Experiment), to rank the effect of each material property on the
environmental impact, ¢) Multi Criteria Decision Making, to rank materials according to each material
property importance, d) structural optimization, to identify the best possible shape for the chosen
material.

The methodology has been tested on a simple case study concerning the design of an environ-
mentally friendly I-beam. The results confirm the feasibility of the proposed approach in improving
material selection when a relevant number of decision criteria is involved.

Keywords: material selection, eco-design, multi criteria decision making, structural optimization.

INTRODUCTION
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When developing a new product, or re-designing an
old one, the choice of material is generally one of the
most influential decisions. Material properties define
a product’s shape, its weight, and, most of all, its
performance. More recently, user-interaction aspects
such as appearance, perceptions and emotions are
also considered in material selection. However, mate-
rial influence is not limited to product characteristics.
With the growing interest in the environmental foot-
print of a product, the designer has to account for the
entire development, manufacture and disposal; all of
which are greatly affected by the material choice, not
only from an energy and cost point of view, but also
from an environmental prospective [21], [24].

Yet, too often materials are chosen by trial and
error or simply on the basis of what has been used
before. The growing number of available materials,
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the large number of factors that a designer must
take into account during the selection process, and
the complex relationships between the different selec-
tion parameters, often make the choice of material a
difficult task [11]. To help the designer, there are a
series of screening and ranking tools. Screening tools
narrow down the choices to a manageable number
for subsequent detailed evaluation [16], while ranking
methods allow the designer to rank materials from
best to worst. Another possible distinction is between
graphical approaches and computer-aided ones. The
traditional chart method [3] cannot guarantee that
the selected material is the best, because it limits the
decision in material selection to only two or three
criteria. As stated by [16], modern material selection
for complex systems cannot be handled graphically
and must be tackled with a computer-aided multi-
criteria decision making approach. These systems
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offer the designer an effective way to rank all possible
materials, but mostly rely on the designer knowledge
in defining the importance of each objective. These
problems of relative importance are old; engineers
have sought methods to overcome them for at least
a century. There are numerous schemes for assign-
ing weight values [18]; all require, in varying degrees,
judgment. The property judged to be most important
is given the largest weight; the second most impor-
tant, the second largest; and so on [2]. There’s no
systematic way of assigning weight values because
there’s little connection with the product itself and
only rudimentary ways of assessing how the mate-
rial is going to affect the product’s shape. Thus,
these methods work well for simple products with a
constant shape.

On the other hand, thanks to methodologies like
Eco-OptiCAD [22], the designer can structurally opti-
mize a product shape to minimize the final environ-
mental impact. Unlike the aforementioned material
selection schemes, which lack a direct connection
with the product, the optimization process is by
nature product dependent. In fact, it needs a start-
ing point; the reference product. However, material
selection can only be tackled by iteration [8] and can
sometimes reserve nasty surprises. A lighter prod-
uct made of a more efficient material might prove
to be much less environmentally friendly, due to the
material eco-properties. Thus, the approach has great
potential for comparing different shapes for a given
material, but relies on guessing when it comes to
choosing a new material.

To summarize, on the one hand there’s a plethora
of material ranking methods best suited to work with
fixed-shape products, on the other hand, there are a
set of structural optimization tools apt at evaluating
all the possible shapes for the designated material.

This paper proposes a computer-aided material
selection methodology which aims at integrating a
multi-criteria decision making approach with the
product awareness of a structural optimization, in
order to systematically define the ranking weight val-
ues. This can be achieved by describing the design
space (the collection of all possible material-shape
combinations) through a statistical DoE (Design of
Experiment), in order to identify the relative envi-
ronmental importance of each material property. The
result is a product dependent set of weights that can
be used for multi-criteria ranking of the compatible
materials.

The procedure is based on a multi variable anal-
ysis, therefore it can be applied to any product that
can be parameterized through a set of material and
geometry variables. In its current form, it is not suited
for non-parametric models or free-form conceptual
design. Non-parametric models can be optimized
for eco-design with a topological or topographical
approach [22], however, material selection can only
be tackled iteratively.
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2. STATE OF THE ART

As mentioned, when tackling a difficult material
choice there are two phases: a screening phase, which
narrows down the choices to a manageable num-
ber, followed by a ranking of the filtered materials.
Among the available screening tools [1],[5],[10]-[12],
the Ashby charts are the most commonly used, for
both their ease of use and graphical presentation.
Ashby’s material selection charts [3], [4] are very use-
ful for initial screening of materials, especially if com-
bined with the CES (Cambridge Engineering Selector)
software [14]. This approach is particularly effective
with single objective designs where one constraint
clearly stands out above the others. A typical prob-
lem would be a light-stiff beam, where the objective
is to minimize weight for a prescribed stiffness. The
main limit of this method, however, is that it can
only work with few criteria before becoming too com-
plicated to read. Shape is also an issue; the basic
approach allows for constant or self-similar shapes
(such that all dimensions of the cross-section change
in proportion with the overall size). To account for
different shapes, a shape factor is needed. Shape fac-
tors are dimensionless numbers that characterize the
efficiency of use of the material in each mode of load-
ing (bending, compression, etc..). However, the shapes
into which a material can, in practice, be made are lim-
ited by manufacturing constraints and by the onset
of local buckling. Thus, more empirical and analytical
correlations must be included in the selection pro-
cess. This is a feasible approach for a simple system,
but becomes too approximate for a complex product.

Overall, the Ashby’s method shines for its simplic-
ity and graphical interpretation when tackling simple
problems that can be reduced to a single mode of
loading and a few decision criteria. For a true multi-
criteria selection, there is the need of MCDM (Multi
Criteria Decision Making) methods. After narrowing
down the field of possible materials through one or
more screening methods, ranking methods can be
used to find the most suited materials for the prod-
uct. MCDM methods can be divided in two main
groups: multiple objective decision making (MODM)
and multiple attribute decision making (MADM). They
range from simple additive weighting methods [19],
[13], to Genetic algorithms [17], Neural Networks
[12],[23],[25], and Fuzzy logic [15].

This paper won’t review the current multi crite-
ria ranking methods, but there is ample literature
on the subject [16]. Suffices to say that most of
these require the designer to assign a weight value
to each criteria and none provides a systematic and
reliable way of doing so. This may be due to the fact
that MCDM algorithms are meant to be as generally
applicable as possible. The same approach can tackle
both a complex mechanical system and a very sim-
ple decision like, “what smartphone should I buy?”.
This search for broad applicability brings with it an
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extraordinary detachment from the analyzed prob-
lem. The algorithm has all the criteria to make a
decision, but no way of knowing how they influence
the product characteristics. This knowledge must
come from the designer in the form of weight values
that assess each criteria importance. While it is often
impossible to establish a direct relationship between
decision criteria and product characteristics, this is
not the case with material selection for mechanical
applications. Thanks to CAE tools, a designer can
identify how each material property affects the final
product.

To bypass the problem of weight values assess-
ment, there are a few MCDM algorithms that require
no interaction with the user. Rather than using
weights to assign a relative importance to each cri-
teria, these algorithms rely on a maximin or maxi-
max approach. The maximin criterion, or pessimistic
approach, takes a pessimistic view, assuming that no
matter which alternative is selected, the worst situ-
ation for that alternative will prevail. Therefore, the
aim is to achieve the largest possible payoff by max-
imizing the minimum value. On the other hand the
maximax criterion, or optimistic approach, takes an
optimistic view of the situation, assuming exactly the
opposite and thus trying to maximize the maximum
payoff, by selecting the choice that maximizes the
highest value criteria. The most well-known criterion
is the Hurwicz criterion, suggested by Leonid Hurwicz
in 1951, which selects the minimum and the maxi-
mum payoff to each given action. The Hurwicz crite-
rion attempts to find a middle ground between the
extremes posed by the optimist and pessimist crite-
ria. Instead of assuming total optimism or pessimism,
Hurwicz incorporates a measure of both by assign-
ing a certain percentage weight to optimism and the
balance to pessimism [20]. While useful in tackling
decisions under uncertainty, these methods are even
less product dependent than weight based systems.
Their objective isn’t finding the best solution, but
rather minimizing the risk of a bad choice.

@) A (b)

D
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3. CASE STUDY

A simple case study will be presented alongside the
detailed description of the methodology. It permits
to demonstrate how the methodology works step by
step and facilitate its comprehension. The case study
concerns the design of an eco-friendly I-beam, man-
ufactured by hot-metal extrusion. The beam will be
fixed at one end and statically loaded at the oppo-
site one. It will be required to withstand such a load
without yielding and with a prescribed minimum stiff-
ness. Its length is constant, but its section may vary
freely, by modifying the geometric dimensions shown
in Fig. 1(a) (the beam height and length are constant).

The project objective will be to minimize the
environmental impact along the beam entire life
cycle. In order to simplify the environmental impact
analysis, we’ll consider use and end of life phases
impacts to be irrelevant, thus limiting the study to the
pre-manufacture and manufacture phases. Another
important approximation is considering the LCA (Life
Cycle Analysis) a function of the product mass and
material, exclusively. Therefore, the manufacturing
process energy will be calculated as a factor of the
processed mass and the relevant material properties
(e.g. specific heat for a heat treatment process). This
is a substantial approximation, as the manufactur-
ing process energy may be influenced by the product
shape. However, it is a necessary one, in order to have
a single objective.

Bearing this in mind, the I-beam life cycle can
be summarized in three main steps: raw material
extraction, pre-process heating, and hot-metal extru-
sion. The environmental impact of each phase will be
calculated as follows;

e Raw material extraction : m - ipre—man (1)

e Pre-process heating: m- Cp- (0.8 - Tr — Tamp)

- len/n (2)
e Hot-metal extrusion : m - iman 3)
(d)

Fig. 1: (a) geometric input variables, (b) meshed model, (c) stress distribution, (d) displacement distribution and

deformed shape.
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Where:

m is the product mass.

n is an efficiency factor.

Ipre — man and iman are material dependent indexes
for the equivalent CO, derived from the extrac-
tion and processing of one kilogram of material.

ien is an energy index for the equivalent CO» of one
Joule of used energy.

The project constraints are a minimum stiffness
value (the maximum displacement at the loaded end
of the beam), and a yield constraint. Stress and
displacement values were computed using Comsol
multi-physics software [7] (Fig. 1).

4. METHODOLOGY

From the analysis of the state of the art, it is clear
that to improve current material selection schemes,
the main goal should be a deeper analysis of the
design space (the collection of all possible material-
shape combinations). However, even with discrete
geometry dimensions, the design space is made of
countless combinations and it would be impossible
to study each one in detail. Thus, this paper proposes
a methodology based on a statistical approach, which
helps the designer in determining the importance of
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each material property on the overall environmental
impact of the product. These values can then be eas-
ily used as weights in a multi criteria decision-making
process, in order to obtain a ranked list of compatible
materials.

The methodology comprises four main steps
(Fig. 2).

o Initial material screening to obtain a list of prod-
uct and process compatible materials.

o Statistical analysis of the design space through
a factorial DoE (Design of Experiment) to rank
the effect of each material property on the
environmental impact.

e Multi criteria decision-making to rank materials
according to each material property importance.

e Structural optimization to identify the best pos-
sible shape for the chosen material.

The first three steps are devoted to the identification
of the best material, while the last one is a classical
optimization aimed at finding the best product shape
for the chosen material. To support each step, the
methodology integrates CAE tools and a DOE system.
Figure 2 shows, by means of an IDEFO diagram [6], the
aforementioned activities and flows of information
and data.

In the following, each phase is described in detail,
followed by the case study application.

Company
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Product reqs
INITIAL M FaHsl
ateria
Process reqs MATERIAL properties
SCREENING values
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g i </ "
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model of product STATISTICAL of input
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DESIGN SPACE
Structural loads 22 = )
& constraints / N ( )
—>| MuLTI CRITERIA
MATERIAL Best
RANKING material
List of A3
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materials o[
Z Best shape
«| STRUCTURAL
L
OPTIMIZATION
~
-
N A4
/4
Material Manufacturing DoE CAE MCDM Optimization
database process tool tools algorithm algorithm
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Fig. 2: Methodology workflow.
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4.1. Initial Material Screening

This step guides the designer in creating a list of
compatible materials, along with all relevant mate-
rial properties values that will be used for the sta-
tistical analysis. Materials will be screened accord-
ing to product requirements, manufacturing process
requirements, and company specific constraints. To
create this list, we first need to identify the material
properties that influence the objective and those that
represent a rigid constraint (a lower or upper limit
which must be met). Only the latter can be used for
screening.

When describing the design space with a factorial
DoE of material properties and geometric dimensions,
what mostly contributes to the DoE size is the num-
ber of input variables. To limit the analysis time and
improve the statistical results, the designer should
always identify what material properties should be
included in the criteria for the decision making pro-
cess, what properties can be defined as rigid con-
straints and what properties are irrelevant. As a rule
of thumb, rigid constraints can be defined as true or
false, while criteria variables as better or worse. The
distinction is essential; the first will be used to screen
a material database and create a starting list of com-
patible materials, while the latter will be the criteria
by which to compare said materials. Examples of rigid
constraints might be the maximum service temper-
ature of a material, the compatibility with a chosen
manufacturing process or the need to be fireproof.
It’s a requirement that must be met, but which does
not need to be maximized or minimized. On the other
hand, if the product needs to be light, the material
density will be a deciding criterion for material selec-
tion and should be included in the analysis. It won’t
affect the span of the starting material list, as there’s
no constraint on its value. Clearly, the distinction
of material properties between rigid constraints or a
ranking criteria is product dependent. While fire resis-
tance might be a requirement for a stove, it probably
becomes an attribute to be maximized in a fire jacket.

Finally, a material property might define a rigid
constraint, but become a ranking criterion if the con-
straint is also shape dependent. This is often the
case of material yield strength. Resistance under load-
ing is a requirement that depends both on geometry
and the material yield strength. For a given geometry,
yield strength may be used to filter all the materi-
als that wouldn’t withstand the resulting stress value,
however when the geometry is also a variable, yield
strength becomes a ranking criterion (materials with
a higher elastic limit will be compatible with thinner
shapes).

Rigid constraints used in the initial material
screening can be divided into product requirements
(i.e. prescribed maximum level of toxicity) and manu-
facturing process requirements (compliance with the
selected manufacturing process). In addition, there
might be company specific constraints (i.e. supplier’s
availability, company know-how) that can further
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limit the range of compatible materials. To support
this phase, a comprehensive database of materials
and manufacturing processes is used. The designer
will be able to filter materials by properties values
and by manufacturing process, obtaining a list of all
the compatible materials. It is worth to note that the
DoE size, and consequently the analysis times, isn’t
affected by the size of the materials list.

Application to case study

With regards to the I-beam, the CES software [3],
[14] materials and processes database was used for
a preliminary material screening. The I-beam is a
simple product, mostly shape driven. Therefore, it
isn’t rich in non-shape dependent constraints that
can be used to filter materials. Product requirements
(stiffness and strength) are shape dependent, thus
cannot be used for screening purposes, and there are
no company specific constraints. The main screening
constraint is the compatibility with the selected man-
ufacturing process, hot-metal extrusion. Therefore,
the compatible materials list will be limited to met-
als that can be extruded (about 800 materials ranging
from Beryllium and Magnesium to all kinds of steel
and aluminum alloys).

Having defined the compatible materials list, we
need to identify which material properties influence
the product environmental impact. These will be used
as ranking criteria. For the I-beam in question, the
environmental impact is a product of mass and a set
of material properties, as seen in Eqn. (1-3). Clearly,
these material properties will be ranking criteria, but
we must also include any material property affect-
ing the product’s mass; i.e. density, yield strength,
Young’s module, and Poisson’s ratio.

A total of eight material input variables and four
geometric ones have been identified (Tab. 1), along
with their respective lower and upper bounds.

4.2. Statistical Analysis of the Design Space

This step is the core of the proposed procedure. It
aims at describing and analyzing the design space

Geometric dimensions Material properties

Upper flange width
Lower flange width
Vertical web thickness
Flange thickness

Density

Yield strength

Young’s module

Poisson’s ratio

Pre-manufacturing impact
index

Manufacturing impact
index

Melting point

Specific heat

Tab. 1: Input variables affecting the I-beam environ-
mental impact.
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through a statistical DoE approach, in order to rank
the effect of each independent variable on a given
dependent variable (objective). This phase has been
divided into three sub-steps (Fig. 3): the creation of a
statistical DoE, CAE analysis, and statistical analysis.

4.2.1. DoE creation

A statistical DoE is a collection of input and output
data designed for statistical analysis. To create such
a DoE, the designer will input both geometric val-
ues and material properties values taken from the
aforementioned list of compatible materials. The DoE
algorithm will then automatically generate the cor-
rect set of variables combinations, to provide a stable
foundation for the statistical analysis. The output of
each combination will be computed in the next step
(CAE analysis) and then added to the DoE.

When working with a very large, possibly infinite,
sample pool (in this case, all the shape-material com-
binations), a DoE is the most logical approach. There
are different DoE schemes for statistical analysis. All
share a common goal: describing a very large sam-
ple pool by using a limited set of values. One of the
simplest and most reliable forms, suitable for linear
problems, is a 2-level factorial DoE which takes each
variable lowest and highest value to create a set of 21
combinations (n being the number of input variables).
A factorial DoE guarantees no correlation between
input variables, which is essential for reliable statisti-
cal results. A random DoE, on the other hand, always
introduces a minor correlation between the inputs,
making it a poor choice for a statistical analysis. How-
ever, a factorial DoE size grows exponentially with
the number of input variables and can soon become

unmanageable for complex systems. If this is the case,
a prior sensitivity analysis might be required to iden-
tify the important system parameters and reduce the
number of inputs.

While geometry variables are usually not corre-
lated (you can change each one without affecting the
others) and have a prescribed upper and lower bound,
material properties are not independent variables, but
come as sets; one for each material. Therefore, we
must supersede the starting material list and use each
property as an independent input, with its upper and
lower bound defined by the lowest and highest value
found in the starting material list.

The resulting DoE will be a set of combinations
of the extreme values of both geometry dimensions
and material properties. These represent the available
range of variation of each input variable. Of course,
geometry variables may freely use the entire range
of variation during a structural optimization, while
material properties come as rigid sets. In other words,
there will be a shape with each dimension at its upper
bound, but there’s no one single material that can max
out every material property of interest. That is pre-
cisely the reason why shape will be optimized while
the material will be selected a priori with a multi cri-
teria ranking. However, at the current stage we only
seek to determine each variable effect on the objective
and we may treat material properties as independent
variables. Thus, the starting material list is used to
determine each material property bounds, but won’t
be part of the statistical analysis.

Application to case study

As mentioned above, for the I-beam under analysis
we have 12 input variables. Eight of these are mate-
rial properties, while the remaining four are geometric
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dimensions, which describe the shape of the mate-
rial. To create a 2-level factorial DoE, we take only
the lowest and highest value of each input variable
and generate all the combinations. Geometric dimen-
sions will be limited by the overall volume limit of
the product. This I-beam has a fixed length and can
only vary in section geometry. Thus, each dimension
lower and upper bound will be defined by the space
that can be occupied at any one time by the beam
and by overlapping effects within the beam section.
Material properties don’t have bounds per se, but they
have an upper and lower value within the material
list. Thus, we’ll take the lowest and highest value of
each property according to the materials selected in
the previous step. If we think of the DoE as a table,
each row will have a different combination of the 12
input data, for a total of 4096 (2!2) combinations.

4.2.2. CAE analysis

At this stage, the designer has a DoE set of 29
combinations of input variables, made of geometric
dimensions and material properties. Each combina-
tion yields a different objective value, which may be a
simple function of the above, a result of CAE analysis,
or a combination of the two. If the latter is the case,
the designer can limit the number of CAE analysis to a
subset of combinations of only the variables affecting
the CAE output. These results will then be multiplied
over the remaining combinations. The chosen CAE
software will also be used during the optimization
phase. Its role is purely as a solver, used to compute
the objective value for each DoE input set.

If the output is a result of a CAE analysis, the
designer will also need to set up a parametric model
of the product as well as the relevant structural loads
and constraints, and, depending on the DoE size, a
routine to automate the process (a simple eight vari-
ables problem requires 256 analysis). The output of
each DoE combination is then added to the DoE itself.

Application to case study

For the I-beam, we now have a DoE of the input
variables with 4096 combinations. For each of these
we have to compute the resulting stresses and dis-
placement values (shape-dependent product require-
ments), and the overall environmental impact. While
stress and displacement will be computed with a FEM
analysis, the environmental impact is a simple prod-
uct of geometry and material properties (Eqn. 1-3).
Computing the stress and displacement values of
each DoE entry would be a considerable effort; how-
ever, most of the selected material variables have
no influence on either stress or displacement. FEM
analysis may be limited to a subset of the com-
plete DoE, made of only those variables that affect
the analysis output. In this case: geometry variables,
Young’s module and Poisson’s ratio. Thus, only 64
FEM analyses are needed (the number of possible
combinations of the six variables affecting stress and
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displacement). The stress and displacement results
can then be copied 64 times over the remaining DoE
entries, where only the variables not affecting the FEM
analysis will change value. The results have been com-
puted with an automated routine, by using Esteco’s
ModeFRONTIER optimization software [9]. Every out-
put was then added to the corresponding DoE entry,
thus, each DoE row will now have 12 input and 3
output variables; the objective (environmental impact)
and the constraints (stress and displacement).

4.2.3. Statistical analysis

The starting DoE now contains both input variables
(geometric dimensions and material properties) and
the analysis output (i.e. the beam mass and stiffness,
in the previous example). This step aims at determin-
ing the main effect of each input on the proposed
objective.

We recall the definition of main effect. It is the
effect of an independent variable on a dependent
variable, averaging across the levels of any other inde-
pendent variable. It is relatively easy to estimate the
main effect for a factor. To compute the main effect of
a factor Ay subtract the average response of all exper-
imental runs for which A was at its low (or first) level
from the average response of all experimental runs
for which A was at its high (or second) level. Clearly,
a 2-level factorial DoE makes the job even simpler, by
splitting each variable between its upper and lower
bound.

It is clear that the main effect is determined by
both range of variation and the influence of the vari-
able. For instance, the material density clearly has a
direct influence on the mass (double the density, dou-
ble the mass), but its effect might result null or very
small if the upper and lower bounds are identical or
very close. The bounds, in turn, are influenced by
the starting material list; thus, if we were to choose
between different aluminum alloys, all with similar
density, the density would have a small effect on the
mass.

Application to case study

We now wish to determine the main effects for the
I-beam under analysis. It might seem that there are
too many output variables, when in reality we only
wish to determine the main effects on the objective.
However, If we were to determine the main effects on
the beam’s environmental impact for the entire DoE
set, we would find that the Young’s module, the Pois-
son’s ratio, and the yield strength all have zero effect.
This is pretty obvious; the beam’s impact is directly
influenced by mass, which in turn is a product of vol-
ume and density alone. However, we must account for
the fact that, in order to meet the required stiffness, a
low Young’s module value will limit the final product
to a bulky shape, thus influencing the product mass. A
similar problem arises whenever there’s a constraint
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Fig. 4: Main effects of material properties on the environmental Impact of the I-beam.

dependent on both shape and material. The yield con-
straint depends on the stress (a function of the shape)
being lower than the material yield strength. In order
to calculate the effect of a material property which
doesn’t affect the objective directly, but rather limits
its value range by imposing a constraint, the designer
will choose a subset of DoE entries based on the com-
pliance with the aforementioned constraint. For the
beam, the effect of the Young’s module on the envi-
ronmental impact will be computed on the set of DoE
entries which pass the stiffness constraint.

This leads to a non-symmetrical split between the
variable lower and upper value responses and to a cer-
tain degree of correlation between the input variables.
Such correlation however should involve only geome-
try variables and should remain close to zero for the
other material properties. It is wise to check the cor-
relation matrix; a stringent constraint might lead to
high correlation and inaccurate results.

Figure 4 shows the relative main effects of the
input variables on the environmental impact of the
product. The effect of geometry variables has been
left out, as it’s of no interest toward material selec-
tion. Furthermore It is clear that the material thermal
properties and Poisson’s ratio have little effect on the
objective. These variables will be neglected during the
ranking procedure.

4.3. Multi Criteria Material Ranking

The starting material list can now be ranked by giv-
ing the correct emphasis to each material property of
interest. Thus, the best material for the current prod-
uct can be identified using a MCDM algorithm. Having
computed the main effects of the material proper-
ties, it’s a simple matter of dividing each one by their
sum to find the relative effects. These, in turn, can
be used as weights for the ranking process, giving
more importance to material properties that have a
big effect on the product objective. The result will be
a ranking of the starting materials, obtained by apply-
ing one of the many commercially available weight
based MCDM algorithms, with the weight factors of
Figure 4.

Material Mean ranking
Aluminum 0,746
Low alloy-steel 0,714
Magnesium 0,686
Stainless-steel 0,679
Fe-super-alloys 0,677
Carbon-Steel 0,661
Nickel 0,621
Copper 0,593
Brass 0,525
Beryllium 0,490
Cobalt alloys 0,319

Tab. 2: Mean rank value of pri-
mary material families.

Clearly, the ranking has a statistical basis; there-
fore, the best material is the most probable to yield
the optimal result.

Application to case study

For the I-beam, we chose a genetic ranking algorithm.
The ranking criteria are the selected material prop-
erties of Fig. 4, each with its relative weight. The
material list obtained during the screening phase can
now be ranked, from best material to worst. Table
2 shows the mean rank values of the main material
families. Clearly, these have little meaning and the
list should be viewed in its entirety (some high yield
stainless steels outrank even low alloy steels); how-
ever, the table gives an overall idea of the ranking
outcome.

4.4. Structural Optimization

The last step is a conventional optimization proce-
dure to find the best shape for the best ranking mate-
rial of the previous phase. Clearly, for the material
choice to be valid, the model, loads and constraints
must be the same as used in the DoE output evalua-
tion. Furthermore, the geometric dimensions bounds
should also remain untouched.
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Application to case study

For the I-beam, we’ll find the optimized shape and
determine the environmental impact for a few mate-
rials, in order to validate the ranking results. Each
optimization was performed with a MOGAII genetic
algorithm of 56 generations.

For the sake of argument, let’s suppose that the
original product is made of Carbon steel (AIST 1030)
and that its shape was structurally optimized to
achieve the lowest possible weight (25.5 kg), thus the
lowest environmental impact for the chosen mate-
rial (132 kg of carbon dioxide). Carbon steel is a very
sensible choice; it has pretty good mechanical char-
acteristics and one of the lowest extraction indexes
(ipre— man) Of the listed materials. We now wish to
change the material to improve its eco-sustainability.
By applying the proposed procedure, Aluminum and
Low alloy steel stand out as the best options. Low
alloy steel is a logical choice. It has an even lower
extraction index than Carbon steel, a slightly higher
processing index (iman), and much better mechanical
properties (a yield strength of 2000 MPa) for the same
material density. We chose AISI 9255 from the many
alloys available. Its optimization yields a mass of 14.2
kg and a production of 114 kg of carbon dioxide.
Clearly this was a good choice, but also a logical one,
as there were few drawbacks. The same can’t be said
of Aluminum, the best ranking material. Its extraction
index is four times that of carbon steel; it’s about as
impacting to process as low alloy steel; and has com-
paratively low values of yield strength and Young’s
module. It has a very low density, but there’s no way
of knowing if the decrease in weight will be enough to
outrank Low alloy steel. Choosing Aluminum, then, is
a difficult decision, without a systematic approach as
the one we propose. An optimization of the best rank-
ing material (Aluminum 7249) yields a mass of 7,3
and a production of 100 kg of carbon dioxide. Clearly,
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the Aluminum beam is not only the lightest of the
three, as expected, but it is also the lowest impact-
ing material-shape combination. Therefore, despite its
poor environmental indexes, its low density allows
for a significant decrease in mass and a resulting
decrease of the overall impact.

Finally, we could argue that the lightest I-beam
seems to be the greenest one; however, the low-
est mass (6 kg) is achieved with Beryllium, which
produces 2887 kg of carbon dioxide.

A summary of the aforementioned results is pre-
sented in Figure 5.

4.5. Discussion

The case study has proven the procedure feasibil-
ity in defining objective weight values for the rank-
ing process and determining the best material-shape
combination. Results show that the selection scheme
allows the designer to evaluate material choices where
a complex trade-off is involved. For the I-beam, Alu-
minum has proven to be the best choice, thanks to it’s
low density, despite its poor environmental indexes.

The methodology is still in its infancy. Its main
drawback is the fact that the ranking results depend
on the specific list: removing one alternative from
the selection can reverse the ranking of those that
remain. This is a flaw already present in MCDM algo-
rithms, but it is accentuated by the statistical analysis,
which is also dependent on the starting material list.
Even if the weight factors could be chosen with accu-
racy, the outcome depends on the population from
which the choice comes. Some weight based methods
are more sensitive to irrelevant alternatives than oth-
ers [2]. Thus, future development should be aimed at
finding or developing a MCDM algorithm to limit this
intrinsic flaw.

Material Carbon Steel
Mass 255
KgCO2eqg. 132

Low Alloy Steel Aluminum
14.2 7.3
114 100
-14% -24%

Fig. 5: Case study results.
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Most of the procedure steps have been integrated,
allowing for a fairly automated approach. However,
setting up the procedure itself is still very time-
consuming and requires an expert user in both CAE
modeling and data management. The latter, in par-
ticular, requires a considerable effort. The lack of
dedicated material databases means that the user
will have to acquire and structure all relevant mate-
rial properties. This might be manageable for a few
materials, but becomes a daunting task when working
with hundreds. We're currently developing a dedi-
cated materials and process database, that will be
integrated in the future to streamline the data col-
lection phase. Eventually, the procedure should be
integrated in a CAD environment, where FEM analysis
and material databases are today well integrated.

5. CONCLUSIONS

Modern material selection can only be approached
with a multi-criteria decision making method. This
is due to the growing figure of available materials
and the large number of factors that the designer
must take into account. A very simple product, like
an I-beam, can easily have 5 or more criteria for
material selection. The traditional approach is that
of assigning weight factors to each relevant material
property, in order to rank materials by giving the cor-
rect emphasis to each decision criteria. The upside:
experienced engineers can be good at assessing rel-
ative weights. The downside: the method relies on
judgment. In assessing weights, judgments can differ.

The absence of an effective way to systematically
define weight factors is mainly caused by lack of
product awareness. While it is often impossible to
establish a direct relationship between decision cri-
teria and product characteristics, this is not the case
with material selection for mechanical applications.
Thanks to CAE tools, the designer can identify how
input variables affect the final product, thus giving the
correct emphasis to each material property.

This paper has proposed a computer-aided mate-
rial selection methodology based on the integration of
a multi-criteria decision making approach with struc-
tural optimization, in order to systematically define
the ranking weight values. This has been achieved
by describing the design space through a statistical
DoE (Design of Experiment), in order to identify the
relative environmental importance of each material
property. The result has been a product dependent
set of weights that can be used for multi-criteria rank-
ing of the compatible materials. Any weight based
ranking algorithm will work with the proposed pro-
cedure. Its own drawbacks and deficiencies, however,
still apply.

The environmental aspect of a product is an exem-
plary application: it shows the full influence of mate-
rial properties not only on product performance, but
also on the entire life cycle, and it inevitably involves
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a trade-off between the different life cycle phases, in
order to minimize the overall impact. However, the
proposed approach can be applied to any number of
objectives: costs, performance, etc.
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