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ABSTRACT

Curve extension is a useful function in CAD systems. Disk B-Spline curve has its distinct advantages
in representing a 2D region. This paper presents an algorithm for extending the disk B-Spline curve
with G2 continuity. A disk Bezier segment is used to construct the extending part and G2-continuity
can be used to describe the smoothness at the joint disk. Fairness of the extending disk Bezier curve
segment is achieved by minimizing energy objective functions for the center curve and the radius
function separately. New control disks are computed by unclamping algorithm to represent the whole
extended disk B-Spline curve. The experimental results demonstrate the effectiveness of our method.
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1. INTRODUCTION

Disk B-Spline curve (DBSC) has its distinct advantages
in representing a 2D region. It represents not only the
boundary but also every point in the region, allows
flexible manipulation like deformation and morph-
ing, and requires smaller datasets. In 2004 and 2005,
Wu and Seah et al. [17][12] first proposed the disk
B-Spline curve through extending disk Bezier curve
[4], for representing artistic brushstrokes and applica-
tions in 2D animation. In the representation, various
attributes such as scalar and vector fields can be
applied to the stroke and the intermediate anima-
tion frames can be automatically generated linearly or
non-linearly. Later, DBSC based brushstroke represen-
tation was applied to interactive 2D free-hand draw-
ings, which were able to achieve real-time and visual
effects for arts and industrial design applications
[13]. After that, the DBSC based stroke representation
started attracting attentions from other researchers.
Xie et al. [18][19] used the DBSC based representa-
tion in their interactive sketch-based system. Nijboer
et al. [9][10] referred to the DBSC based stroke repre-
sentation in the stroke representation of their sketch
system. Melikhov et al. [6][7] used DBSC in line draw-
ings. DBSC was also applied to in-betweening [1] and

auto-coloring [11] in 2D animation. Cheng et al. [2]
used DBSC in shape blending.

Curve extension is a general problem in curve
design. A given B-Spline curve may need to be
extended in order to meet some geometric shape
conditions or engineering requirements. A natural
problem is to extend the original B-Spline curve to
the given point, and to represent the extended curve
in B-Spline form. Shetty [14] proposed a practical
and straightforward method for extending rational
B-Spline curves without modifying the shape and
parameterization of the original curves. Hu et al. [3]
proposed a curve unclamping algorithm for B-Spline
extensions. The original curve and the extending seg-
ment satisfy C2-continuity at the joint point. However,
the extended curve is exclusive and in some cases
is not a desired result. Zhou et al. [21] used Bezier
curve to construct the B-Spline curve, extending seg-
ment with G2-continuity to describe the smoothness
at the joint point, and established objective functions
based on minimum energy and minimum curvature
variation to determine the degrees of freedom of the
extending curve.

As for disk B-Spline curve extension, Zhang et al.
[20] proposed a DBSC extension algorithm based on
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curve unclamping. With their method, the unclamping
knot vector of the extended DBSC is computed accord-
ing to the accumulated chord length method. The
original DBSC and the extending disk Bezier curve
segment are C2-continuous at the joint disk. But the
extended DBSC cannot be adjusted manually and is
not desired in some large torsion cases. Geometric
continuity plays an important role in depicting curves’
fairness and can supply additional degrees of free-
dom for adjustment. In this paper, we propose a G2-
continuity extension algorithm for DBSC. The shape
of the extended DBSC is determined by minimizing
strain energy of the disk curve. The unclamping knot
vector is determined by the degree of freedom at
which the minimal energy of the center curve of the
extending disk curve is achieved. New control disks
are computed to represent the whole extended DBSC.
Our method is important for DBSC modeling in 2D
animation and many other areas.

The rest of the paper is organized as follows. The
definition of disk B-Spline curve and the G2-continuity
conditions for DBSCs are described in section 2. Our
DBSC extension algorithm is presented in section
3. Some experimental examples and comparisons
are shown in section 4. We draw conclusions in
section 5.

2. G2-CONTINUITY CONDITIONS FOR DISK
B-SPLINE CURVES

2.1. Definition of Disk B-Spline Curve

A p-degree disk B-Spline curve is defined as:

〈D〉(t) =
∑n

i=0
Ni,p(t)〈Pi ; ri〉

where Pi is control point and ri is control radius.
〈Pi ; ri〉 is a disk in the plane defined as 〈P ; r〉 =
{x ∈ R2||x − P| ≤ r , P ∈ R2, r ∈ R+}. Ni,p(t) is the p-
degree B-Spline basis function defined over the knot
vector T = [t0, · · · , tp+1, · · · , tn, · · · , tn+p+1].

As 〈D〉(t) = ∑n
i=0 Ni,p(t)〈Pi ; ri〉 = ∑n

i=0〈Ni,p(t)Pi ;
Ni,p(t)ri〉 = 〈∑n

i=0 Ni,p(t)Pi ;
∑n

i=0 Ni,p(t)ri
〉
, a DBSC can

be viewed as two parts: the center curve P(t) =∑n
i=0 Ni,p(t)Pi , which is a B-Spline curve and the

radius function r(t) = ∑n
i=0 Ni,p(t)ri , which is a B-

Spline scalar function. Therefore most of the prop-
erties and algorithms of DBSC can be obtained by
applying B-Spline curve and function to the two parts
of DBSC respectively [17].

2.2. G2-continuity Conditions

Suppose two DBSCs 〈D〉(t) = ∑n
i=0 Ni,p(t)〈Pi ; ri〉 and

〈D〉(t) = ∑n
i=0 Ni,p(t)〈Pi ; ri〉 with a joint disk in between.

According to the G2-continuity conditions for B-Spline

curves [15], the G2-continuity conditions at the joint
disk for the two DBSCs can be defined as follows:

⎧⎪⎨
⎪⎩

〈D〉(0) = 〈D〉(1)

〈D〉′(0) = α〈D〉′(1)

〈D〉′′
(0) = α2〈D〉′′

(1) + β〈D〉′(1)

(2.1)

where α > 0 and β is an arbitrary real number.
Eqn. (2.1) is the unified form of the G2-continuity

conditions for DBSCs. As the center curve describes
the skeleton of the DBSCs and the radius function
describes the width of the DBSCs, the center curve
and radius function are two independent attributes of
DBSCs. So we can discuss the G2-continuity conditions
for the center curve and the radius function of the
DBSCs separately, in order to acquire more fairness
of the DBSCs.

For the G2-continuity conditions of the center
curve, we have

⎧⎪⎨
⎪⎩

P̄(0) = P(1)

P̄ ′(0) = α1P ′(1)

P̄ ′′(0) = α1
2P ′′(1) + β1P ′(1)

(2.2)

where α1 > 0 and β1 is an arbitrary real number.
For the G2-continuity conditions of the radius

function, we acquire

⎧⎪⎨
⎪⎩

r̄(0) = r(1)

r̄ ′(0) = α2r ′(1)

r̄ ′′(0) = α2
2r ′′(1) + β2r ′(1)

(2.3)

where α2 > 0 and β2 is an arbitrary real number. Eqn.
(2.3) is the scalar form of the G2-continuity conditions
of the center curve in Eqn. (2.2).

3. DISK B-SPLINE CURVE EXTENSION WITH
G2-CONTINUITY

3.1. Extending Principle

Given a cubic disk B-Spline curve 〈D〉(t) =∑n
i=0 Ni,3(t)〈Pi ; ri〉 with clamped knot vector T =

[0, 0, 0, 0, t4, . . . tn, 1, 1, 1, 1]. 〈Q ; R〉 is the given extend-
ing disk at center Q with radius R. We construct
the extending curve segment in cubic disk Bezier
form 〈B〉(u) = ∑3

i=0 B3
i (u)〈Qi ; Ri〉 [4], where B3

i (u) is the
cubic Bernstein basis function over [0, 1]. A cubic disk
Bezier curve can also be regarded as two parts: the
center curve Q (u) = ∑3

i=0 B3
i (u)Qi , which is a cubic

Bezier curve; the radius function R(u) = ∑3
i=0 B3

i (u)Ri ,
which is a cubic Bezier scalar function.

The original DBSC 〈D〉(t) and the extending disk
Bezier curve 〈B〉(u) satisfy G2-continuity at the extend-
ing disk. Applying the G2-continuity conditions for
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DBSCs in Eqn. (2.1), we can get⎧⎪⎨
⎪⎩

〈B〉(0) = 〈D〉(1)

〈B〉′(0) = α〈D〉′(1)

〈B〉′′
(0) = α2〈D〉′′

(1) + β〈D〉′(1)

(3.1)

Here we discuss the G2-continuity conditions for
the center curve and the radius function separately.
As for the center curve, we acquire⎧⎪⎨

⎪⎩
Q (0) = P(1)

Q ′(0) = α1P ′(1)

Q ′′(0) = α1
2P ′′(1) + β1P ′(1)

(3.2)

where α1 > 0 and β1 is an arbitrary real number.
As for the radius function, we acquire⎧⎪⎨

⎪⎩
R(0) = r(1)

R′(0) = α2r ′(1)

R′′(0) = α2
2r ′′(1) + β2r ′(1)

(3.3)

where α2 > 0 and β2 is an arbitrary real number.
To obtain a simple solution, we make β1 = 0 and

β2 = 0, and leave degree of freedom α1 for center
curve adjustment and degree of freedom α2 for radius
function adjustment. Then we expand Eqn. (3.2) and
Eqn. (3.3). The control disks 〈Qi ; Ri〉(i = 0, 1, 2, 3) of
the extending disk Bezier curve segment 〈B〉(u) can be
expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q0 = Pn

Q1 = Pn + α1
Pn−Pn−1
tn+3−tn

Q2 = Pn

+2α1
Pn−Pn−1
tn+3−tn

+ α2
1(

Pn−Pn−1
(tn+3−tn)(tn+2−tn)

− Pn−1−Pn−2
(tn+2−tn−1)(tn+2−tn)

)

Q3 = Q
(3.4)⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R0 = rn

R1 = rn + α2
rn−rn−1
tn+3−tn

R2 = rn + 2α2
rn−rn−1
tn+3−tn

+α2
2(

rn−rn−1
(tn+3−tn)(tn+2−tn)

− rn−1−rn−2
(tn+2−tn−1)(tn+2−tn)

)

R3 = R

Through minimizing energy objective functions
for the center curve and the radius function sepa-
rately, the degrees of freedom α1 and α2 for the two
parts can be determined. The extending disk Bezier
curve can be expressed. Then the unclamping knot
vector of the extended DBSC can be specified. After
reparameterization, the original DBSC and the extend-
ing disk Bezier curve satisfy C2-continuity at the joint
disk. New control disks are computed by unclamping
algorithm to represent the whole extended DBSC.

3.2. Center Curve Fairness by Minimal Energy

In the extending principle to determine the center
curve, we have one degree of freedom α1 for adjust-
ment. We can achieve more fairness of the extending

disk Bezier curve 〈B〉(u) through minimizing energy
objective function of the center Bezier curve to deter-
mine the degree of freedom α1. Here we choose the
exact energy variation [21] as the objective function
of the center curve.

Ecurve =
∫

k2(s)ds (3.5)

where ds is differential of curve arc length and k(s) is
curvature defined as k(s) = ‖Q ′(u) × Q ′′(u)‖/ ‖Q ′(u)‖3.
Q (u) = ∑3

i=0 B3
i (u)Qi is the center curve function of

the extending disk Bezier curve.

Ecurve =
∫

k2(s)ds =
∫ 1

0

(x′′(t)y ′(t) − x′(t)y ′(t))2(√
(x′(t))2 + (y ′(t))2

)5
dt

(3.6)
Solving Eqn. (3.6) is a strong non-linear problem.

Eqn. (3.6) can be decomposed into sum of square form
by composite trapezoidal rule:∫ tn

t0

f (t)dt = tn − t0
n

(∑n−1

k=1
f

(
t0 + k

tn − t0
n

)
+ f (t0)

2

+ f (tn)

2

)
(3.7)

where n is the number of subintervals.
Let h1 = (x′′(t)y ′(t) − x′(t)y ′(t))2 and h2 =(√
(x′(t))2 + (y ′(t))2

)5

. Denote g(t) =
√

h1/h2. Based

on the discrete integral of Eqn. (3.7), objective func-
tion Eqn. (3.6) can be rewritten as:

E(α1) = 1
n

⎛
⎝(

g(0)√
2

)2

+
(

g(1)√
2

)2

+
n−1∑
k=1

g2
(

k
n

)⎞
⎠ (3.8)

Let

A(α1) =
(

g(0)√
2

,
g(1)√

2
, g

(
1
n

)
, · · · , g

(
n − 1

n

))
(3.9)

Then minimizing objective function Eqn. (3.6) is
equivalent to minimizing Eqn. (3.9), which is a non-
linear least-squares problem and can be solved by
Gauss-Newton method [21]. The algorithm below
gives the iterated process.

Step 1: Choose an initial value α0 > 0.
Step 2: Eqn. (3.9) is approximated using the first

order Taylor series expansion:

A(α1) ≈ A(α0) + A′(α0)(α1 − α0).

Step 3: Let M (α0) = A′(α0), b(α0) = A′(α0)α0 −
A(α0). Calculate α1 = (MT (α0)M (α0))−1MT (α0)b(α0).

Step 4: If |α1 − α0| ≤ ε, stop the iteration and out-
put α1; else α0 = α1 and go to Step 2, repeat the
process. Here ε is a given threshold value.

Given a proper α0, the Gauss-Newton algorithm is
convergent. So we can determine the optimal degree
of freedom α1 and thus the center curve of the
extending disk Bezier curve.
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3.3. Radius Function Fairness by Minimal Energy

In the extending principle to determine the radius
function, we have one degree of freedom α2 for
adjustment. We can achieve more fairness of the
extending disk Bezier curve 〈B〉(u) through minimiz-
ing energy objective function of the radius function
to determine the degree of freedom α2.

3.3.1. The constraints of the degree of freedom α2

Obviously we have to make sure that the radii of the
control disks in 〈B〉(u) are positive, that is, R1 > 0
and R2 > 0. Now we discuss the constraints of the
degree of freedom α2 in different cases according to
the original disk B-Spline curve. Note that α2 > 0.

We make A = rn−rn−1
(tn+3−tn)(tn+2−tn)

− rn−1−rn−2
(tn+2−tn−1)(tn+2−tn)

, B =
rn−rn−1
tn+3−tn

, and C = rn. Then we get

{
R1 = C + Bα2 > 0

R2 = C + 2Bα2 + Aα2
2 > 0

(3.10)

Supposing � = (2B)2 − 4AC, in different cases of
A, B and �, Tab. 1. provides the constraints of α2.

A B � The constraints of α2

A > 0 B > 0 α2 > 0

B < 0 � > 0 0 < α2 <
−2B − √

�

2A

� ≤ 0 0 < α2 < −C
B

B = 0 � ≥ 0 This case doesn’t
exist.

� < 0 α2 > 0

A < 0 � > 0 0 < α2 <
−2B − √

�

2A
� ≤ 0 This case doesn’t

exist.
A = 0 B ≥ 0 α2 > 0

B < 0 0 < α2 < − C
2B

Tab. 1: The constraints of degree of freedom α2
in different cases.

3.3.2. Radius function fairness by minimal energy

We optimize the radius function of the extending disk
Bezier curve to determine the degree of freedom α2.
Here we choose the second order energy [16] as the
objective function of the radius function.

Eradius =
∫ 1

0
‖R′′(u)‖2du (3.11)

where R(u) = ∑3
i=0 B3

i (u)Ri is the radius function of
the extending Bezier segment.

Then Eqn. (3.11) becomes E(α2) =∫ 1
0

∥∥∥∑3
i=0 B3

i

′′
(u)Ri

∥∥∥2
du. It can be shown that E(α2) is

a polynomial of α2 of order four, as

E(α2) = c4α4
2 + c3α3

2 + c2α2
2 + c1α2 + c0 (3.12)

where ci(i = 0, 1, . . . 4) are all constants. Minimizing
function Eqn. (3.12) is equal to solving a cubic
equation:

E ′(α2) = 4c4α3
2 + 3c3α2

2 + 2c2α2 + c1 = 0 (3.13)

The closed-form solutions of Eqn. (3.13) can be
found analytically. Considering the constraints of α2,
the monotonicity of the Eqn. (3.12) can be determined.
Thus the optimal α2 with minimal energy of the radius
function can be determined. The radius function of
the extending disk Bezier curve can be achieved.

After achieving the optimal degrees of freedom α1
and α2 for the center curve and radius function of
the extending disk Bezier curve separately, the con-
trol disks of the disk Bezier curve in Eqn. (3.4) can be
determined. Thus the extending disk Bezier curve can
be represented. In the following representation of the
whole extended DBSC, the optimal degree of freedom
α1 is used to determine the unclamping vector of the
original DBSC.

3.4. Re-computing Control Disks of Disk B-Spline
Curve

Through minimizing strain energy of the extending
disk Bezier curve, we acquire 1 + α1 as the corre-
sponding knot value of 〈Q ; R〉. Let u = t−1

α1
. Then

the extending disk Bezier curve 〈B〉(u) is reparame-
terized as 〈B〉(t) = 〈B〉( t−1

α1
), t ∈ [1, 1 + α1]. 〈B〉(t) and

〈D〉(t) are C2-continuous at t = 1. A whole DBSC can
be constructed as follows:

〈D′〉(t) =
{

〈D〉(t), t ∈ [0, 1]

〈B〉(t), t ∈ [1, 1 + α1]
(3.14)

with unclamped knot vector T = [0, 0, 0, 0, t4, . . . , tn, 1,
1, 1, 1 + α1, 1 + α1, 1 + α1, 1 + α1] and control disks
{〈P0; r0〉, 〈P1; r1〉, · · · , 〈Pn; rn〉, 〈Q1; R1〉, 〈Q2; R2〉, 〈Q ; R〉} [8].

The multiplicity of ‘1’ in the above knot vector can
be reduced, and a DBSC unclamping algorithm is used
to re-compute the new control disks for the whole
DBSC [5].

The whole extended DBSC can be presented as

〈D′〉(t) =
∑n+1

i=0
Ni,p(t)〈P ′

i ; r
′
i 〉 (3.15)

where control disks 〈P ′
n+1; r ′

n+1〉 = 〈Q ; R〉, and 〈P ′
i ; r

′
i 〉

(i = 0, 1, · · · , n) are determined as follows. For the
cubic DBSC, p = 3.

(1) Set P−1
j = Pj , r−1

j = rj , j = n − p + 1, . . . , n
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(2) Pi
j =

⎧⎪⎪⎨
⎪⎪⎩

Pi−1
j , j = n − p + 1, . . . , n − i + 1

Pi−1
j − (1 − αi,j)P

i
j−1

αi,j
, j = n − i, . . . , n

ri
j =

⎧⎪⎪⎨
⎪⎪⎩

ri−1
j , j = n − p + 1, . . . , n − i + 1

ri−1
j − (1 − αi,j)ri

j−1

αi,j
, j = n − i, . . . , n

αi,j = tn+1 − tj
ti+j+2 − tj

, i = 0, 1, . . . , p − 2

(3) P ′
j =

{
Pj , j = 0, 1, . . . , n − p

Pp−2
j , j = n − p + 1, . . . , n

r ′
j =

{
rj , j = 0, 1, . . . , n − p

rp−2
j , j = n − p + 1, . . . , n

With the DBSC unclamping algorithm above,
the representation of the whole extended DBSC is
achieved. Note that the knot vector can be normalized
without a change of geometry as

T =
[
0, 0, 0, 0,

t4
1 + α1

, . . . ,
tn

1 + α1
,

1
1 + α1

, 1, 1, 1, 1
]

.

3.5. Extension with Multiple Target Disks

We generalize the method for extending one cubic
DBSC to two target disks. For a given DBSC 〈D〉(t) =∑n

i=0 Ni,3(t)〈Pi ; ri〉, two disk Bezier curves 〈B1〉(u)and
〈B2〉(u) are constructed as the extending curve seg-
ment to the two target disks 〈Q1; R1〉and 〈Q2; R2〉
respectively. Suppose 〈B1〉(u) is constructed using the
above method, and the optimal degrees of freedom
α11 and α12 for the center curve and radius func-
tion of 〈B1〉(u) are obtained. Thus the corresponding
knot value of 〈Q1; R1〉 is determined as 1 + α11. With
the DBSC unclamping algorithm, the first extended
DBSC for extending 〈D〉(t) to 〈Q1; R1〉 is represented,
denoted by 〈D1〉(t). 〈B2〉(u) can be constructed in the
same way through extending 〈D1〉(t) to 〈Q2; R2〉. The
optimal degrees of freedom α21 and α22 for the center
curve and radius function of 〈B2〉(u) can be obtained.
Then the corresponding knot value of 〈Q2; R2〉 is cal-
culated as 1 + α11 + α21. With the DBSC unclamping
algorithm, the second extended DBSC for extending
〈D1〉(t) to 〈Q2; R2〉 is represented, denoted by 〈D2〉(t).
In this way 〈D2〉(t) is the extended DBSC for extending

DBSC 〈D〉(t) to two given disks 〈Q1; R1〉and 〈Q2; R2〉.
Case of more than two extending disks is similar.

4. EXPERIMENTAL RESULTS

In this section, we give experimental results and
provide comparisons of our method with the accu-
mulated chord length parameterization method pro-
posed in [20]. The difference between these two meth-
ods is the determination of the unclamping vector
of the extended DBSC. In our proposed method, G2

continuity offers degrees of freedom for the extend-
ing curve segment and we use the degree of freedom
acquired through minimal energy method to deter-
mine the unclamping vector of the extended DBSC.
Method in [20] uses accumulated chord length param-
eterization method to determine the unclamping vec-
tor of the extended DBSC, in which way only exclusive
extending result exists.

We can compare these two methods through visual
and numeric comparisons. The strain energy and rota-
tion number of the center curve of the extended
DBSC are two indices for numeric comparisons.
Strain energy is defined as Ecurve = ∫

k2(s)ds, which is
explained in detail in section 3.2. Rotation number is
an important tool for analyzing the whole shape prop-
erty of curve in differential geometry. It describes the
rotation of tangent or normal vector moving along a
curve. For a planar curveP(t)(0 < t < 1), rotation num-
ber is defined as Rot = 1

2π

∫ 1
0 |k(t)|‖P ′(t)‖dt, where k(t)

is the curvature of P(t)[8].
Fig. 1 shows the first example of extending DBSC

to one target disk. Fig. 1(a) shows the given DBSC
and the extending disk. Fig. 1(b) gives the exten-
sion result based on the accumulated chord length
parameterization method. Fig. 1(c) shows the G2-
continuity extension result of our minimal energy
method with optimal degrees of freedom α1 = 0.327
and α2 = 0.375.

Fig. 2 shows the second example of extending
DBSC to one target disk. Fig. 2(a) shows the given
DBSC and the extending disk. Fig. 2(b) gives the exten-
sion result based on the accumulated chord length
parameterization method. Fig. 2(c) shows the G2-
continuity extension result of our minimal energy
method with optimal degrees of freedom α1 = 0.278
and α2 = 0.0156.

(a) (b) (c)

Fig. 1: Extension results of DBSC to one target disk. (a) The given DBSC and the target disk; (b) Extension by
accumulated chord length parameterization method; (c) Extension by our minimal energy method.
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(a) (b) (c)

Fig. 2: Extension results of DBSC to one target disk. (a) The given DBSC and the target disk; (b) Extension by
accumulated chord length parameterization method; (c) Extension by our minimal energy method.

(a)

(b) (c)

Fig. 3: Extension results of DBSC to two target disks. (a) The given DBSC and the target disks; (b) Extension by
accumulated chord length parameterization method; (c) Extension by our minimal energy method.

Fig. 1 Fig. 2 Fig. 3

Curve (b) Curve (c) Curve (b) Curve (c) Curve (b) Curve (c)

Energy 0.02897 0.01961 0.03209 0.02779 0.29750 0.13346
Rot 0.29475 0.21608 0.27422 0.23154 0.51153 0.30407

Tab. 2: Numeric comparisons of different experimental examples.

Fig. 3 shows an example of extending DBSC to
two target disks. Fig. 3(a) shows the given DBSC and
the two extending disks. The extension result based
on the accumulated chord length parameterization
method is shown in Fig. 3(b). Fig. 3(c) shows the G2-
continuity extension result of our minimal energy
method with optimal degrees of freedom α11 = 0.327,
α12 = 0.375, α21 = 0.045 and α22 = 0.084.

From visual effects, these two methods can both
satisfy the visual continuity at the joint disk, while
the curve length of extended DBSC using the accumu-
lated chord length parameterization method is longer
than the one using our minimal energy method, which
means more energy consumption.

Tab. 2 gives the numeric comparisons of the exper-
imental examples by these two methods. From the
computed results, the extended DBSCs generated by
our minimal energy method have less strain energy
and less rotation number than the ones by accumu-
lated chord length parameterization method. Com-
parisons show that our method can acquire better
extension results.

5. CONCLUSIONS

In this paper an extension algorithm for disk B-Spline
curve with G2 continuity is presented. The extend-
ing segment is expressed in disk Bezier curve and a
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whole extended disk B-Spline curve is represented.
G2-continuity is used to describe the smoothness of
the joint disk and the extending disk Bezier curve
fairness is achieved by minimizing energy objectives
for the center curve and radius function respectively.
The experimental results verify the effectiveness of
our method. This work can lead to wider and further
applications of DBSC in 2D region modeling.

ACKNOWLEDGEMENTS

This work is partially supported by National Natu-
ral Science Foundation of China (No: 61170170 and
61271366) and the Capital Science and Technology
Platform project of China (No: Z131110000613062).

REFERENCES

[1] Chen, Q.; Tian, F.; Seah, H.; Wu, Z.; Qiu, J.; Kon-
stantin, M.: Dbsc-based animation enhanced
with feature and motion, Computer Animation
and Virtual Worlds, 17(3–4), 2006, 189–198.
http://dx.doi.org/10.1002/cav.122

[2] Cheng, M.; Wang, G.: Shape blending of artis-
tic brushstroke represented by disk B-spline
curves, Progress in Natural Science 17 (12).

[3] Hu, S.-M.; Tai, C.-L.; Zhang, S.-H.: An extension
algorithm for B-splines by curve unclamping,
Computer-Aided Design, 34(5), 2002, 415–419.
http://dx.doi.org/10.1016/S0010-4485(01)
00108-7

[4] Lin, Q.; Rokne, J. G.: Disk Bezier curves, Com-
puter Aided Geometric Design, 15(7), 1998,
721–737. http://dx.doi.org/10.1016/S0167-
8396(98)00016-8

[5] Liu, Y.; Qiu, R.; Liang, X.: NURBS curve blending
using extension, J. Zhejiang Univ. Sci. A, 10(4),
2009, 570–576. http://dx.doi.org/10.1631/jzus.
A0820819

[6] Melikhov, K.; Tian, F.; Seah, H.; Wu, Z.: Dbsc-
based grayscale line image vectorization, Jour-
nal of Computer Science and Technology, 21(2),
2006, 244–248. http://dx.doi.org/10.1007/
s11390-006-0244-0

[7] Melikhov, K.; Tian, F.; Xie, X.; Seah, H. S.: Dbsc-
based pencil style simulation for line drawings,
Proceedings of the 2006 international confer-
ence on Game research and development, 2006,
17–24.

[8] Mo, G; Zhao, Y.: A new extension algorithm for
cubic b-splines based on minimal strain energy,
J. Zhejiang Univ. Sci. A, 7(12), 2006, 2043–2049.
http://dx.doi.org/10.1631/jzus.2006.A2043

[9] Nijboer, M.; Gerl, M.; Isenberg, T.: Interac-
tion concepts for digital concept sketching,
in: Poster Presentations of the Seventh Inter-
national Symposium on Non-Photorealistic
Animation and Rendering, NPAR, New Orleans,
USA, 2009.

[10] Nijboer, M.; Gerl, M.; Isenberg, T.: Interaction
concepts for fluid freehand sketching, in: Pro-
ceedings of the Sixteenth Annual Conference
of the Advanced School for Computing and
Imaging, ASCI, Veldhoven, The Netherlands,
2010.

[11] Qiu, J.; Seah, H.; Tian, F.; Wu, Z.; Chen, Q.: Fea-
ture and region based auto painting for 2d
animation, The Visual Computer, 21(11), 2005,
928–944. http://dx.doi.org/10.1007/s00371-
005-0307-1

[12] Seah, H. S.; Wu, Z.; Tian, F.; Xiao, X.; Xie, B:
Artistic brushstroke representation and anima-
tion with disk b-spline curve, in: ACM SIGCHI
International Conference on Advances in Com-
puter Entertainment Technology, ACE, Poly-
technic University of Valencia (UPV), Spain,
2005.

[13] Seah, H. S.; Wu, Z.; Tian, F.; Xiao, X.; Xie, B.:
Interactive free-hand drawing and in-between
generation with disk B-spline curves, in: ACM
SIGCHI International Conference on Advances
in Computer Entertainment Technology, ACE,
Polytechnic University of Valencia (UPV), Spain,
2005.

[14] Shetty, S.; White, P.: Curvature-continuous
extensions for rational b-spline curves and
surfaces, Computer-Aided Design, 23(7), 1991,
484–491. http://dx.doi.org/10.1016/0010-
4485(91)90046-Y

[15] Su, B.; Liu, D.: Computational Geometry, Sci-
ence and Technology Press of Shanghai, 1981.

[16] Wallner, J.: Note on curve and surface ener-
gies, Computer Aided Geometric Design, 24(8–
9), 2007, 494–498. http://dx.doi.org/10.1016/
j.cagd.2007.05.007

[17] Wu, Z.; Seah, H. S.; Tian, F.; Xiao, X.: Simulating
artistic brushstroke using disk B-spline curves,
in: Conference on Multimedia Arts Asia Pacific,
MAAP, 2004.

[18] Xie, N.; Laga, H.; Saito, S.; Nakajima, M.: Ir2s:
interactive real photo to sumi-e, Proceedings
of the 8th international symposium on non-
photorealistic animation and rendering, NPAR,
2010, 63–71.

[19] Xie, N.; Laga, H.; Saito, S.; Nakajima, M.:
Contour-driven sumi-e rendering of real pho-
tos, Computers and Graphics, 35(1), 2011, 122–
134. http://dx.doi.org/10.1016/j.cag.2010.
11.017

[20] Zhang, T.; Wang, X.; Jiang, Q.; Wu, Z.; Zhou,
M.; Seah, H. S.: G2-continuity disk B-spline
curve blending using extension, in: The 26th
International Conference on Computer Anima-
tion and Social Agents, CASA, Istanbul, Turkey,
2013.

[21] Zhou, Y.; Zhang, C.; Gao, S.: Extension of
b-spline curves with g2 continuity, LNCS (2008)
1096–1105.

Computer-Aided Design & Applications, 12(5), 2015, 519–525, http://dx.doi.org/10.1080/16864360.2015.1014729
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1002/cav.122
http://dx.doi.org/10.1016/S0010-4485(01)00108-7
http://dx.doi.org/10.1016/S0010-4485(01)00108-7
http://dx.doi.org/10.1016/S0167-8396(98)00016-8
http://dx.doi.org/10.1016/S0167-8396(98)00016-8
http://dx.doi.org/10.1631/jzus.A0820819
http://dx.doi.org/10.1631/jzus.A0820819
http://dx.doi.org/10.1007/s11390-006-0244-0
http://dx.doi.org/10.1007/s11390-006-0244-0
http://dx.doi.org/10.1631/jzus.2006.A2043
http://dx.doi.org/10.1007/s00371-005-0307-1
http://dx.doi.org/10.1007/s00371-005-0307-1
http://dx.doi.org/10.1016/0010-4485(91)90046-Y
http://dx.doi.org/10.1016/0010-4485(91)90046-Y
http://dx.doi.org/10.1016/j.cagd.2007.05.007
http://dx.doi.org/10.1016/j.cagd.2007.05.007
http://dx.doi.org/10.1016/j.cag.2010.11.017
http://dx.doi.org/10.1016/j.cag.2010.11.017
http://www.cadanda.com

	1. INTRODUCTION
	2. G2-continuity conditions for Disk B-Spline Curves
	2.1. Definition of Disk B-Spline Curve
	2.2. G2-continuity Conditions

	3. Disk B-Spline Curve Extension with G2-continuity
	3.1. Extending Principle
	3.2. Center Curve Fairness by Minimal Energy
	3.3. Radius Function Fairness by Minimal Energy
	3.3.1. The constraints of the degree of freedom 2
	3.3.2. Radius function fairness by minimal energy

	3.4. Re-computing Control Disks of Disk B-Spline Curve
	3.5. Extension with Multiple Target Disks

	4. Experimental results
	5. Conclusions
	Acknowledgements
	References

