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ABSTRACT

The notion of polygonal complexes was originally conceived as a means for exact interpolation of
uniform B-spline curves by Doo-Sabin (and later on by Catmull-Clark) subdivision surfaces. Starting
from the theoretical origin of these complexes, this paper provides a general formulation of this
notion that covers all quad-based (uniform/non-uniform) B-spline as well as NURBS surfaces. This
formulation is generalized even further to cope with the extra-requirements brought about in the
context of T-spline surfaces while, at the same time, maintaining previous formulations as particular
instances of that.
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1. INTRODUCTION

Interpolation (of a point by a curve or a surface, as
well as of a curve by a surface) and, equivalently,
the notion of skinning, have proved to be of consid-
erable benefit in geometric modeling, and has never
ceased to find many sensitive and interesting appli-
cations in science, engineering and technology. This
made interpolation a subject of focus of research for
a few decades now (see [16, 17] for a survey and other
references therein).

Interpolation is traditionally achieved through the
solution of the typical system of linear equations
with many variables [6, 19]. However, the drive for
efficiency led researchers to bordering techniques
such as fitting [7, 26] and approximation [20]. By
comparison, the focus this paper will be on exact
interpolation.

Thus, this notion has been visited by so many
researchers in so many different modeling contexts to
the degree that there is no further need to emphasize
its importance to modeling. This argument gains even
more force when raised in the context of exact inter-
polation as opposed to approximate interpolation (or
fitting).

Against this background, the earliest notion
of polygonal (strip) complexes was proposed by
Nasri [18] as a means of interpolating uniform
quadratic B-spline curves by Doo-Sabin subdivision
surfaces [5]. Later on, Nasri [15] redeployed this
notion to also support the interpolation of uniform

cubic B-spline curves by Catmull-Clark subdivision
surfaces [4].

As suggested above, the initial motivation behind
a polygonal complex is that, under the corresponding
subdivision scheme, it admits a B-spline limit curve of
the same degree (see Fig. 1 and Fig. 2). Thus, when
a complex is embedded within a polygonal mesh,
its limit curve is automatically interpolated by the
surface limit of subdivision of the polygonal mesh,
without the need for any additional overheads.

More interestingly, as suggested in the previous
paragraph, nothing prevents the extension of this
notion to any other subdivision scheme [9].

This notion was employed later, under well-
specified constraints [3], for the interpolation of any
arbitrarily intersecting network of curves by a subdi-
vision surface (see Fig. 3). This works for Doo-Sabin
[13] and Catmull-Clark [3] as well as for Loop [8]
subdivision schemes.

Furthermore, polygonal complexes can also serve
as local neighborhoods for holding information useful
for exercising further control over the limit surface;
e.g., normal direction and local curvature constraints
(see [12] for an illustration of that).

Before delving into the main body of this paper, it
is important to emphasize that the necessity of this
research may be further justified by simply compar-
ing the immediacy and ease with which the interpo-
lation effects are obtained with the help of polygo-
nal complexes against previously employed methods.
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(a) (b) (c)

Fig. 1: Doo-Sabin Polygonal strip Complex and its limit curve: (a) Initial Complex, (b) One Subdivision Step and
(c) Limit Curve.

(a) (b) (c)

Fig. 2: Catmull-Clark Polygonal strip Complex and its limit curve: (a) Initial Complex, (b) One Subdivision Step
and (c) Limit Curve.

(a) (b) (c)

Fig. 3: Interpolating an intersecting network of curves by a subdivision surface: (a) Doo-Sabin (b), Catmull-Clark
and (c) Loop.

This is in addition to other benefits (mentioned in the
previous paragraph) that are gained from the ability
to embed such complexes inside the control mesh of
the surface being modeled.

The rest of this paper is structured as follows.
Section 2 introduces preliminary definitions intended
to make this paper more self-contained. This also lays
the grounds for the derivations conducted in later
sections of this paper. Section 3 provides a specifi-
cation of the interpolation task which forms the basis
of the formulation of polygonal complexes presented
in section 4.

Section 5 shows that the original notion of polyg-
onal complexes for subdivision surfaces is just an
instance of this formulation, which is extended to
also cover the NURBS domain. Section 6 generalizes
this formulation even further to suit the require-
ments of the T-spline domain, and section 7 con-
cludes the paper and provides some suggestions for
further work.

2. PRELIMINARIES

The historical perspective drawn in the paper getting
back to B-spline surfaces (especially the factorization
hint drawn in section 2.3) provides a clue as to why
a polygonal complex represents a curve interpolated
by the respective surface. This hint applies equally
well to NURBS and serves as an indispensable frame-
work that guides the development of this idea in the
T-spline domain.

2.1. B-Spline Curves

Given a sequence of control points [p0, p1, ..., pm] and
a non-decreasing sequence of knots [t0, t1, ..., tn], a B-
spline curve [21] of degree p is defined as follows:

C(t) ≡
m∑

i=0

Np
i (t)pi , where t ∈ [tp..tm+1] (2.1a)

Here, m = n − p − 1 and Np
i is the degree p B-spline

basis function recursively defined by:

N0
i (t) = 1 if ti ≤ t < ti+1 or 0 otherwise and

Np
i (u) = t − ti

tp+i − ti
Np−1

i (t)

+ tp+i+1 − t

tp+i+1 − ti+1
Np−1

i+1 (t) when p > 0 (2.1b)

Differing versions of the function are adopted by
many authors, where differences are to do with the
use being made of the subscripts versus the end
conditions of the recursion.

Since Np
i (t) = 0 for all t such that t < ti or t >

ti+p+1, a control point pi influences the curve only
in the range ti < t ≤ ti+p+1. Furthermore, for any t
such that ti ≤ t < ti+1, at most p + 1 degree p basis
functions are non-zero:

Np
i−p(t), Np

i−p+1(t), . . . , Np
i−2(t), Np

i−1(t), Np
i (t)

The number of those functions reduces to p when
the parameter t is one of the knots, which is the
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case in the uniform situation. For example, in the
cubic case, when a knot ti is in the span[tp..tm+1], the
expression:

N3
i−3(ti)pi−3 + N3

i−2(ti)pi−2 + N3
i−1(ti)pi−1

evaluates to a point interpolated by the curve C(t)
of Eqn. (2.1a). Furthermore, if pi−2 is replaced by the
point:

1

N3
i−2(ti)

[−N3
i−3(ti)pi−3 + pi−2 − N3

i−1(ti)pi−1] (2.1c)

in the associated control polygon, the resulting curve
will interpolate pi−2.

2.2. B-Spline Surfaces

Given the following items (see Fig. 4):

• a set of control points pij , where 0 ≤ i ≤ m1 and
0 ≤ i ≤ m2;

• a knot vector in the u direction, [u0, u1, ..., un1 ];
• a knot vector in the v direction, [v0, v1, ..., vn2 ];
• a degree p1 in the u direction (such that m1 =

n1 − p1 − 1); and
• a degree p2 in the v direction (such that m2 =

n2 − p2 − 1);
• and given a knot u ∈ [up1 ..um1+1] and a knot v ∈

[vp2 ..vm2+1],

Fig. 4: Control points grid of a B-spline surface.

a B-spline surface [21] is defined by the following
expression:

S(u, v) ≡
m1∑
i=0

m2∑
j=0

Np1
i (u)Np2

j (v)pij (2.2a)

2.3. Factorization

For any particular parameter v such that vj ≤ v < vj+1,
Np1

i (u)may be factored out of the inner summation of

Eqn. (2.2), since it is constant along the u direction.
This reduces the expression to:

m1∑
i=0

Np1
i (u)

j∑

k=j−p2

Np2

k (v)pik (2.2b)

3. INTERPOLATION OF A CURVE BY A B-SPLINE
SURFACE

The research conducted in this paper is a natural out-
growth of conventional polygonal complexes devel-
oped in previously-visited modeling domains (essen-
tially Doo-Sabin, Catmull-Clark and Loop subdivision
surfaces) in the same way that T-splines are a natural
outgrowth from NURBS surfaces. So, in order to elim-
inate the element of surprise, it is rather necessary to
explain the context against which this idea is further
developed in the T-spline domain.

3.1. Interpolation: fundamental specification

Generalizing the notion of polygonal complexes
should start from a specification of the interpola-
tion process itself. In fact, regardless of how it is
achieved, the interpolation of a B-spline curve C(t)
by a B-spline surface S(u, v) may be specified by the
following formula:

∀t ∈ [tp..tm+1]∃u ∈ [up1 ..um1+1]∃v ∈ [vp2 ..vm2 + 1]C(t)

= S(u, v) (3.1)

Accordingly, with reference to Eqn. (2.2b), the
surface S(u, v) would be interpolating the curve
C′(u) ≡ ∑m1

i=0 Np1
i (u)p′

i , where p′
i = ∑j

k=j−p2
Np2

k (v)pik ,

for every i = 0..m1.
This is a mere generalization to surfaces of the

observation made for curves at the end of section
2.1. Moreover, as noted before, the expression of
p′

i reduces to
∑j−1

k=j−p2
Np2

k (v)pikwhen v is one of the

knots (i.e. vj ) in the span [vp2 ..vm2+1], which will be the
case for the rest of the paper.

4. POLYGONAL COMPLEXES FOR B-SPLINE
SURFACES OF ANY DEGREE

Since NP2
j (v) is also constant, for any particular

parameter v along the columns of the grid, the note
made at the end of section 3.1 also suggests that the
control points of the curve C′(u) can also be obtained
through the following matrix multiplication:

R × M (4.1)

Where R is a single row matrix consisting of the

sequence
(
Np2

k (v)
)

k=j−p2..j−1
, and M consists of p2

consecutive rows of points
(
pik

)
i=0..m1

, starting from
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row number j − p2. The matrix M so described repre-
sents a polygonal complex of degree p2, and the curve
C′(u) is the associated interpolated curve obtained as
such (see Fig. 5).

Fig. 5: Cubic polygonal complex marked on a
B-spline surface grid.

As it is currently formulated, the curve is always
iso-parametric, along one or the other of the param-
eters of the surface; i.e., row-wise as well as column-
wise.

Beside its immediacy, the above derivation embod-
ies as particular cases those reported by Abbas [2],
Nasri [15], Maekawa [10] and Yamaguchi [28] for the
special case of uniform bi-cubic B-spline surfaces.

Since the subject of the discussion is no longer
restricted to subdivision surfaces, it might be worth
it to update the definition of a polygonal complex
so as to take into account the non-uniform situa-
tion. Accordingly, it should now become: the minimal
neighborhood of the interpolating surface that holds
the necessary information for the interpolated curve
to be specified and constructed.

5. APPLICATIONS

This section briefly surveys some of the applications
that have already made use of polygonal complexes,
illustrating the simplicity and ease with which inter-
polation is achieved. It focus mainly on interpolating
B-spline curves by subdivision surfaces, without miss-
ing the fact that other applications of interest have
already made use of these complexes, as mentioned
in the introduction of this paper.

5.1. Curve Interpolation by Doo-Sabin Subdivision
Surfaces

As far as this discussion is concerned, the only fea-
ture required from Doo-Sabin subdivision surfaces is
the uniform bi-quadratic B-spline feature. As such, a
polygonal complex will be a 2 × N matrix of points of
the control mesh, while the matrix R will be

1
2

× [
1 1

]

Thus, when M is embodied within a control mesh,
the matrix R × M specifies a control polygon of a
quadratic B-spline curve interpolated by the limit
Doo-Sabin subdivision surface of the embodying con-
trol mesh.

In the opposite direction, when a polygon P is
replaced (in the embodying control mesh of a surface)
by a two-row matrix M such that these two rows are
symmetric with respect to P , the resulting subdivision
surface will interpolate the quadratic B-spline curve
limit of P itself.

5.2. Curve Interpolation by Catmull-Clark
Subdivision Surfaces

As far as this discussion is concerned, the only feature
required from Catmull-Clark subdivision surfaces is
the uniform bi-cubic B-spline feature. As such, the
polygonal complex will be a 3 × N matrix of points
of the control mesh, while the matrix R will be:

1
6

× [
1 4 1

]

Thus, when M is embodied within a control mesh,
the matrix R × M specifies a control polygon of a cubic
B-spline curve interpolated by the limit Catmull-Clark
subdivision surface of the embodying control mesh.

In the opposite direction, when the middle polygon
m of M is replaced (in M ) by the polygon:

1
4

× [−1 6 −1
] × M

the embodying subdivision surface will interpolate
the cubic B-spline curve limit of the middle polygon
m itself. This particular application of the technique
is at the basis of a process often called lofting [24] or
skinning [27, 14] (see Fig. 6).

Fig. 6: A Catmull-Clark skinning subdivision surface.

5.3. Polygonal Complexes for NURBS Surfaces

This formulation of polygonal complexes and their
associated curve is directly extendible to the NURBS
[19] domain. The only extra feature that is required
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to deal with here is the weight associated with each
control point. However, the weight may simply be hid-
den as a multiplicative scalar inside the matrix M
representing the polygonal complex with the corre-
sponding point itself (more details on that may be
found in the following section).

6. POLYGONAL COMPLEXES FOR T-SPLINE
SURFACES

The following technical results should be considered
as a culmination of the conceptual idea that could not
have been justified without the inclusion of the dis-
cussion of the earlier part of the paper. Moreover,
this gradual introduction of this idea represents a
methodology that could be of value for anyone aim-
ing to introduce polygonal complexes to any other
modeling domain.

In this sense, this section shows that the specifica-
tion of section 3.1 may also be exploited to derive fur-
ther generalizations of polygonal complexes to cater
for the requirements of other modeling domains,
which is T-splines in this particular case.

6.1. T-Spline Surfaces : basics

T-splines surfaces [22, 23] were conceived as a gen-
eralization of NURBS [19]. The main distinguishing
features of these surfaces are (see Fig. 7):

Fig. 7: A T-mesh.

a) The control mesh (called T-mesh) is no longer
required to be a rectangular control grid, in
the sense that constituting (rows and columns)
control polygons do not necessarily stretch
from one side of the control mesh to the
other. This gives rise to so-called T-junctions,
together with meaningful reduction in the num-
ber of control points required to specify the
resulting surface.

b) A knot inference mechanism that permits the
automatic generation of the local knot vectors
ûiand v̂jassociated with any particular point pij
of the T-mesh, depending on the configuration
of its immediate neighborhood on the T-mesh.

c) The ability to perform local refinement; a desir-
able but hardly obtainable feature in other
existing modeling domains in general.

By comparison to the regularity of the B-splines
setting, it is natural to anticipate that the extra fea-
tures arising in the T-spline domain will imply that the
formulation of a polygonal complex here will not flow
as easily. Moreover, the expression representing the
associated curve will be less straightforward to derive
without further manipulation. This extra manipula-
tion is quite apparent, for example, in the formula-
tion of polygonal complexes in the Loop subdivision
setting (see [8] and [9]).

6.2. T-Spline Surfaces : reformulation

Following the formulation of B-Spline polygonal com-
plexes, a parallel treatment here will start from the
basic expression of a T-spline surface:

T (u, v) ≡
∑

i∈I
∑

j∈Ii wijB[ûi , v̂j ](u, v)pij∑
i∈I

∑
j∈IiwijB[ûi ,v̂j ](u,v)

(6.2a)

where I denotes the set of indices of the point-
populated columns of the grid embodying the T-
mesh, and Ii denotes the set of point-populated
indices of column i of the same grid. Moreover,
< ûi , v̂j > is the pair of knot vectors associated with
the control point pij , along the i and the j directions
respectively.

Additionally, without sacrificing too much gener-
ality, the following discussion will be restricted to
bi-cubic T-spline surfaces. Accordingly, the blending
function B is as follows:

B[û, v̂](u, v) = N3
0 [û](u)N3

0 [v̂](v) (6.2b)

Here, N3
0 [û](u) and N3

0 [v̂](v) are the same cubic B-
spline basis function defined above but, this time,
calculated with respect to the local knot vector û and
v̂, respectively.

For the sake of simplicity, the subscript 0 and the
superscript 3 of the B-spline basis function N will be
suppressed from now on. Furthermore, the weights
wij associated with individual points pij of the T-mesh
will also be ignored, without any loss of generality,
since they can always be treated in the same way sug-
gested for NURBS. Finally, the denominator of Eqn.
(6.2a) will also be ignored, since it plays no more role
than a multiplicative constant.

Thus, under the above assumptions, the summa-
tion in Eqn. (6.2a) reduces to:

T (u, v) ≡
∑
i∈I

∑
j∈Ii

N [ûi ](u)N [v̂j ](v)pij (6.2c)

6.3. Further Manipulations

In the cubic case, and following our discussion in
section 2, the influential elements of the set Ii over
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(a)

(b)

Fig. 8: The control points of the T-mesh: (a) The colored points of a polygonal complex and (b) The associated
knot vectors.

the inner summation of Eqn. (6.2c) are no more than
three, which reduces this summation to:

∑
i∈I

(N [ûi<](u)N [v̂j<](v)pij< + N [ûi ](u)N [v̂j ](v)pij

+ N [ûi>](u)N [v̂j>](v)pij>) (6.3)

Here, pij (if it exists) is the control point on the
crossing of row j with column i of the T-mesh, where
j refers to the index of the iso-parametric curve
corresponding to parameter v of the T-mesh.

Additionally, pij< (if it exists) is the control point
on the first populated row below j crossing with col-
umn i of the T-mesh, but still within the area of
influence of < ûi , v̂j > of pij . Likewise, pij> (if it exists)
is the control point having similar role to that of pij<
but this time above row j on column i of the T-mesh.
The notation of the associated knot vectors should
be accorded the natural interpretation matching that.
Fig. 8 indicates the colored nodes on the T-mesh that
should, in principle, belong to the polygonal complex.

6.4. The Associated Curve

The cubic B-spline curve associated with the T-spline
polygonal complex should look like the following:

∑
i∈Jj

N3
ij [ŵij ](w)qij (6.4a)

Here, J denotes the set of indices of the point-
populated rows of the grid embodying the T-mesh,
and Jj denotes the set of point-populated indices of
row j of the same grid. Accordingly, in order to sim-
plify matching between various terms of the curve
expression in Eqn. (6.4a) against the corresponding
ones in the surface expression of Eqn. (6.2c), two
complications need to be resolved:

• As opposed to the regularity of B-splines, the
sets I and Jj in the T-spline context, are not

identical. In fact, in the case of T-splines, Jj ⊆ I
in general, because not every populated column
necessarily implies a control point qij for the
corresponding curve (see Eqn. (6.2a)).

• The nature of the T-splines knot inference mech-
anism implies that the derived knot vectors
may not necessarily be identical along any given
row of the T-mesh. Consequently, the associated
basis functions Np1

i (u) may not be conducive
to factorization as in the case of expression of
Eqn. (2.2b).

The first complication is addressed by insisting
that I and Jj should be made identical; i.e., Jj ≡ I .
This may be achieved through the application of T-
spline local refinement, which introduces a point on
the main row of the complex for every populated
column of the T-mesh.

This process always yield a result (see Fig. 9),
due to the fact that local refinement does not add
any extra rows or columns to the rectangular grid
underlying the T-mesh, except maybe during the
insertion of the first knot (which is not the situation
here).

Fig. 9: The added points marked in blue.

The shaded area of Fig. 10(a) illustrates an instance
of a T-spline non-regular polygonal complex obtained
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(a) (b)

Fig. 10: A T-Spline polygonal complex: (a) non-regular and (b) refined.

(a) (b)

Fig. 11: The interpolated curves: (a) Interpolated curve 1 and (b) Interpolated Curve 2.

as a result of this refinement mechanism. Note that,
in the particular instance depicted in this figure, a
node on a particular column of the T-mesh does not
have to have counterparts on either of the other two
rows. However, the middle row has to always be pop-
ulated. The resulting polygonal complex should be
taken as a natural growth since, as one might expect,
a regular polygonal complex is just a particular case
of that.

Since the nodes of the middle row of the com-
plex are all associated with the same parameter v,
such a polygonal complex may be traced directly
along this parameter so as to produce a curve inter-
polated by the T-spline surface corresponding to the
T-mesh of Fig. 9 (see Fig. 11(a) and Fig. 11(b)). Note
here that, although Fig. 11(b) is a slight deformation
of Fig. 11(a), interpolation of the same curve is still
maintained there, nevertheless.

However, this gives rise to another problem; that
of showing that the obtained interpolated curve is
a cubic B-spline curve in the classical sense. In fact,
with reference to Eqn. (6.4a), the identity (Jj ≡ I ) does
not by itself guarantee that a sequence of points
(qi)i∈Kmay be generated to satisfy:

N [ûi ](u)qij = N [ûi<](u)N [v̂j<](v)pij<

+ N [ûi ](u)N [v̂j ](v)pij

+ N [ûi>](u)N [v̂j>](v)pij> (6.4b)

Thus, the second complication referred to above
remains unresolved, in the sense that the required
factorization over all terms of summation of Eq. (6.4b)
remains inapplicable, wherever N [ûi ](u) is different
from N [ûi<](u) and/or from N [ûi>](u).

For this reason, a further round of refinement
operations is still required to refine ûi< and ûi>, thus
splitting the defying terms N [ûi<](u) and N [ûi>](u)

into parts that are equal to N [ûi ](u), and consequently
admissible for factorization.

6.5. The Formulation

The shaded area of Fig. 10(b) illustrates an instance of
a T-spline polygonal complex after this second round
of local refinement operations. Again, this should be
taken as a natural growth since, as one would per-
haps expect, a regular polygonal complex is just a
particular case of that.

In the worst case scenario, too many refinement
operations may turn the T-mesh into a NURBS like
control mesh (actually, this is the method pursued in
[25] to achieve interpolation), but the technique would
still be working because, as explained above, a NURBS
polygonal complex is just particular a case of those of
T-splines.

At the end, the above sequence of manipulations
yields a sequence (qij)i∈Jj

defined by:

qij ≡ N [v̂j<](v)pij< + N [v̂j ](v)pij + N [v̂j>](v)pij> (6.5a)

However, for any given parameter v, the terms
Np2

j<(v), Np2
j (v) and Np2

j>(v) may not necessarily be sim-

ilar along any column. Consequently, the formulation
of the control points of the curve associated with a
polygonal complex given in Eqn. (4) will have to be
generalized in order to cope with the T-spline addi-
tional requirements. In fact, these control points are
now restricted to the first diagonal of the matrix
multiplication in Eqn. (4).

In the cubic case, as illustrated in Eqn. (6.5b), M
is now a 3 × m1 matrix of points with the ith column
consisting of the three points pij<, pij and pij>, for all
i ranging from 0 to m1 − 1. Furthermore, R is now an
m1 × 3 matrix of scalars, with the ithrow consisting
of the three terms Np2

j<(v), Np2
j (v) and Np2

j>(v), for all i

ranging from 0 to m1 − 1.
In this sense, Eqn. (4) turns out to be a particular

case of Eqn. (6.5b), were all rows of the matrix R are
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Fig. 12: Further illustrations of the interpolation task via T-spline Polygonal Complexes.

identical.

⎡
⎣

N [v̂0<](v) . . . N [v̂(n−1)<](v) N [v̂n<](v)

N [v̂0](v) . . . N [v̂(n−1)](v) N [v̂n](v)

N [v̂0>](v) . . . N [v̂(n−1) >](v) N [v̂n>](v)

⎤
⎦

T

×
⎡
⎣

p0< . . . p(n−1)< pn<

p0 . . . p(n−1) pn
p0> . . . p(n−1)> pn>

⎤
⎦ (6.5b)

6.6. Further Applications: T-Spline Surface
Skinning

A direct application of Eqn. (6.5a) may be the gener-
ation of a T-spline surface interpolating a sequence
of iso-parametric curves (the same processed referred
to above as lofting or skinning). In fact, in such a
situation, the inverse of Eqn. (6.5a) may be used.
That is:

pij = 1
N [v̂j ](v)

(−N [v̂j<](v)pij< + qij − N [v̂j>](v)pij>)

(6.6)
When focusing on the points of the control mesh

existing along a fixed parameter line as the control
points of a B-spline curve (C), lofting (or skinning)
concerns the techniques that should be used for mod-
ifying the rest of the control point of the mesh so
that the surface resulting from these modifications
will interpolate the initially given curve (C).

In this sense, the benefits of polygonal complex
resides in the fact that a control point on the mid-
dle row of a polygonal needs to be repositioned with
respect to only the other two points existing on the
wings of this complex.

Again, this is a major simplification of the skinning
task, when compared to previous techniques.

This should be compared to the result presented
in [11], where the skinning process, in the T-spline
domain, is attempted without making use of polyg-
onal complexes. Actually, the research described in
[11] constitutes the main motivation behind the work
reported in the present paper, since it paved the way
for a formulation of T-spline polygonal complexes,
which makes the present paper a natural outgrowth
of [1] directed toward T-splines surfaces.

6.7. Further Remarks

Fig. 12 also presents another set of figures illustrat-
ing the effectiveness of T-spline polygonal complexes
with regard to the curve interpolation task.

One might complain from the uniformity of these
figures. However, this uniformity mainly arises from
the fact that each figure is interpolating a single curve
along a single (horizontal or vertical) parameter line.

This may be helped by interpolating more than one
curve (on the same parameter direction), by making
sure that the section occupied by each curve is iso-
lated from all the others. This method is employed in
[14] in the context of subdivision surfaces (also see
fig. 6).

This may also be extended to interpolate two
interecting curves, on two orthogonal parameter
directions, but with a special arrangement around
the point where these two curves are interecting
(see [3]).

However, when it comes to interpolating more
than two curves with the same intersection point,
this takes the problem to a higher level of difficulty,
since one of these curves will necessarily be non-iso-
parameteric with respect to the interpolating surface,
which represents a problem that has so far been
defying exact solutions for a few decades now.

7. CONCLUSIONS AND FURTHER WORK

This paper introduces polygonal complexes to the
T-spline domain, starting from the theoretical foun-
dations of this notion. Considering the generality of
the approach, this work should also be expandable to
cover more liberal domains.

A major effort (expanded throughout this paper)
went toward showing that those complexes devel-
oped in the respective domains are basically emanat-
ing from the same origin and are developed within
the same unifying framework and serves the same
purpose in those respective domains.

Continuity of the interpolating surface is never
affected, since nothing of the essentials relating to
the construction of the surface is touched during the
development of the polygonal complex.

The usefulness of polygonal complexes, beside
many other things, resides in their ability to achieve
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interpolation at very little computational cost, with
relatively simple operations. However, the research
conducted in this paper should be seen as just a first
step. The natural research direction that should fol-
low should perhaps go toward the applications of
these complexes in the T-spline domain, which have
been briefly mentioned in the introduction and also
in main body of the paper.

ACKNOWLEDGEMENT

The research work reported in this paper is supported
by a grant from the Lebanese Council for Scientific
Research for the academic year 2012–2013.

REFERENCES

[1] Abbas, A.: Generalizing Polygonal Complexes
across Modeling Domains, Computer Graphics
International, 12–15 June, Bournemouth, U.K.,
2012.

[2] Abbas, A.; Nasri, A.; Maekawa, T.: Generating
B-spline curves with points, normals and cur-
vature: a constructive approach, The Visual
Computer, 26, 2010.

[3] Abbas, A.; Nasri, A.: Interpolating Multiply
Intersecting Curves Using Catmull-Clark Sub-
division Surfaces, Computer-Aided Design &
Applications, 1(1–4), 2004, 25–32.

[4] Catmull, E.; Clark, J.: Recursively gener-
ated B-spline surfaces on arbitrary topolog-
ical meshes, Computer Aided Design, 10(6),
1978, 350–355. http://dx.doi.org/10.1016/00
10-4485

[5] Doo, D.; Sabin, M.: Behavior of recursive divi-
sion surfaces near extraordinary points, Com-
puter Aided Design, 10(6), 1978, 356–360.
http://dx.doi.org/10.1016/0010-4485

[6] Halstead, M.; Kass, M.; DeRose, T.: Efficient,
fair interpolation using Catmull-Clark surfaces,
Computer Graphics (Proceedings of ACM SIG-
GRAPH‘ 93), 1993, 35–44.

[7] Hoschek, J.; Jüttler, B.: Techniques for fair and
shape preserving surface fitting with tensor-
product B-splines, Shape Preserving Represen-
tations in Computer-Aided Geometric Design,
1999, 163–185. Nova Science, New York.

[8] Ma, W.; Wang, H.: Interpolating an arbitrary
number of joint B-spline curves by Loop sur-
faces, Computers and Graphics, 36(5), 2012.

[9] Ma, W.; Wang, H.: Loop subdivision surfaces
interpolating B-spline curves, Computer-Aided
Design, 41(11), 2009, 801–811. http://dx.doi.
org/10.1016/j.cad.2009.03.011

[10] Maekawa, T.; Matsumoto, Y.; Namiki, K.: Inter-
polation by geometric algorithm, Computer-
Aided Design, 39(4), 2007, 313–323. http://dx.
doi.org/10.1016/j.cad.2006.12.008

[11] Nasri, A.-H.; Sinno, K.; Zheng, J.: Local T-spline
surface skinning, The Visual Computer, 28(6–
8), 2012, 787–797. http://dx.doi.org/10.1007/
s00371-012-0692-1

[12] Nasri A.; Sabin, M.; Abu Zaki, R.; Nassiri, N.;
Santina, R.: Feature curves with cross curva-
ture control on Catmull–Clark subdivision sur-
faces, Computer Graphics International, 2006,
761–768.

[13] Nasri, A.: Interpolating an Unlimited Number of
Curves Meeting at Extraordinary Points on Sub-
division Surfaces, Computer Graphics Forum,
22(1), 2003, 87–97. http://dx.doi.org/10.1111/
1467-8659.t01-1-00648

[14] Nasri, A.; Abbas, A.; Hasbini, I.: Skinning
Catmull-Clark Subdivision Surfaces with
Incompatible Cross-Section Curves, Pacific
Graphics, 2003, 102–111.

[15] Nasri, A.; Abbas, A., Designing Catmull-
Clark subdivision surfaces with curve inter-
polation constraints, Computer and Graph-
ics, 26(3), 2002, 393–400. http://dx.doi.org/
10.1016/S0097-8493

[16] Nasri, A.; Sabin, M.: Taxonomy of Interpolation
Conditions in Recursive Subdivision Curves,
The Visual Computer Journal, 18(4), 2002, 259–
272.

[17] Nasri, A.; Sabin, M.: Taxonomy of Interpolation
Conditions in Recursive Subdivision Surfaces,
The Visual Computer Journal, 18(6), 2002, 382–
403.

[18] Nasri, A.: Recursive Subdivision of Polygonal
Complexes and their applications in CAGD,
Computer Aided Geometric Design Journal,
17, 2000, 595–615. http://dx.doi.org/10.1016/
S0167-8396(00)00015-7

[19] Piegl, L.; Tiller, W.: The NURBS Book, Springer-
Verlag, New York, NY, 1997. http://dx.doi.org/
10.1007/978-3-642-59223-2

[20] Pottmann, H.; Leopoldseder, S.; Hofer, M.:
Approximation with Active B-Spline Curves
and Surfaces, Pacific Conference on Computer
Graphics and Applications, 2002, 8–25.

[21] Prautzsch, H.; Boehm, W.; Paluszny, W.:
Bézier and B-Spline techniques, Springer, 2002.
http://dx.doi.org/10.1007/978-3-662-04919-8

[22] Sederberg, T.; Cardon, W.; Finnigan, D.; North,
G.; Zheng, N.; Lyche, T.: T-spline Simplifica-
tion and Local Refinement, ACM Transactions
on Graphics, 23(3), 2004. http://dx.doi.org/
10.1145/1015706.1015715

[23] Sederberg, T.; Zheng, J.; Bakenov, A.; Nasri,
A.: T-splines and T-NURCCS, ACM Trans-
actions on Graphics, 22(3), 2003, 477–484.
http://dx.doi.org/10.1145/882262.882295

[24] Schaefer, S.; Warren, J.; Zorin, D.: Lofting curve
networks using subdivision surfaces, Proc.
Eurographics Symposium on Graphics, 2004,
105–116.

Computer-Aided Design & Applications, 12(4), 2015, 465–474, http://dx.doi.org/10.1080/16864360.2014.997643
© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1016/0010-4485
http://dx.doi.org/10.1016/0010-4485
http://dx.doi.org/10.1016/0010-4485
http://dx.doi.org/10.1016/j.cad.2009.03.011
http://dx.doi.org/10.1016/j.cad.2009.03.011
http://dx.doi.org/10.1016/j.cad.2006.12.008
http://dx.doi.org/10.1016/j.cad.2006.12.008
http://dx.doi.org/10.1007/s00371-012-0692-1
http://dx.doi.org/10.1007/s00371-012-0692-1
http://dx.doi.org/10.1111/1467-8659.t01-1-00648
http://dx.doi.org/10.1111/1467-8659.t01-1-00648
http://dx.doi.org/10.1016/S0097-8493
http://dx.doi.org/10.1016/S0097-8493
http://dx.doi.org/10.1016/S0167-8396(00)00015-7
http://dx.doi.org/10.1016/S0167-8396(00)00015-7
http://dx.doi.org/10.1007/978-3-642-59223-2
http://dx.doi.org/10.1007/978-3-642-59223-2
http://dx.doi.org/10.1007/978-3-662-04919-8
http://dx.doi.org/10.1145/1015706.1015715
http://dx.doi.org/10.1145/1015706.1015715
http://dx.doi.org/10.1145/882262.882295
http://www.cadanda.com


474

[25] Sinno, K.: T-Spline Skinning Surfaces, Mas-
ter Thesis, Department of Computer Sci-
ence, American University of Beirut, Lebanon,
2008.

[26] Weiss, V.; Andor, L.; Renner, G.; and Várady, T.:
Advanced surface fitting techniques, Computer
Aided Geometric Design, 19(1), 2002, 19–42.
http://dx.doi.org/10.1016/S0167-8396

[27] Woodward, C.: Skinning techniques for interac-
tive B-spline surface interpolation, Computer-
Aided Design, 20(8), 1988, 441–451. http://dx.
doi.org/10.1016/0010-4485(88)90002-4

[28] Yamaguchi, F.: Curves and Surfaces in Com-
puter Aided Geometric Design, Springer-Verlag,
NY, 1988. http://dx.doi.org/10.1007/978-3-
642-48952-5

Computer-Aided Design & Applications, 12(4), 2015, 465–474, http://dx.doi.org/10.1080/16864360.2014.997643
© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1016/S0167-8396
http://dx.doi.org/10.1016/0010-4485(88)90002-4
http://dx.doi.org/10.1016/0010-4485(88)90002-4
http://dx.doi.org/10.1007/978-3-642-48952-5
http://dx.doi.org/10.1007/978-3-642-48952-5
http://www.cadanda.com

	1. INTRODUCTION
	2. Preliminaries
	2.1. B-Spline Curves
	2.2. B-Spline Surfaces
	2.3. Factorization

	3. Interpolation of a Curve by a B-Spline Surface
	3.1. Interpolation: fundamental specification

	4. Polygonal Complexes for B-Spline Surfaces of Any Degree
	5. Applications
	5.1. Curve Interpolation by Doo-Sabin Subdivision Surfaces
	5.2. Curve Interpolation by Catmull-Clark Subdivision Surfaces
	5.3. Polygonal Complexes for NURBS Surfaces

	6. Polygonal Complexes for T-Spline Surfaces
	6.1. T-Spline Surfaces : basics
	6.2. T-Spline Surfaces : reformulation
	6.3. Further Manipulations
	6.4. The Associated Curve
	6.5. The Formulation
	6.6. Further Applications: T-Spline Surface Skinning
	6.7. Further Remarks

	7. Conclusions and Further Work
	ACKNOWLEDGEMENT
	References

