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ABSTRACT

The origin of scissors is very old and a pair of scissors which was probably made in ancient Greece
around B.C. 1000 is discovered. In Japan a new type of scissors was produced with newly designed
blades and has become one of hit products in 2012. The shape of their blades is a Bernoulli curve.
The Bernoulli curve is the logarithmic spiral and can be classified as a type of the log-aesthetic curves.
One of its properties is that the angle between its tangent vector and the radial axis from the origin
is kept constant. This is the reason why the logarithmic spiral is also called the equiangular spiral.
Consequently if the blades of a pair of scissors are given by a logarithmic spiral, the cutting angle is
always constant.

In this paper, we extend the logarithmic spiral to make the cutting angle of a pair of scissors a
linear function of the rotation angle of the cutting edges and newly define the polar-aesthetic curve
and discuss about conditions for the monotonicity of its curvature. Furthermore we analyze cutting
torques of the scissors and show that the torque of the scissors whose blade is a polar-aesthetic curve
can be controllable to make the users feel easier to cut a sheet of paper.

Keywords: polar-aesthetic curve, logarithmic spiral, log-aesthetic curve, scissors design.

1. INTRODUCTION

The origin of scissors is very old and a pair of scissors
which was probably made in ancient Greece around
B.C. 1000 is discovered. In Japan a new type of scis-
sors was produced with newly designed blades and
has become one of hit products in 2012[8]. The scis-
sors use a logarithmic spiral for their blade. The
features of the scissors are as follows:

1) From the start and end cutting positions, the
cutting angle of the blades can be kept con-
stant at 30 degrees since they use the newly
developed blade of a Bernoulli curve shape.

2) Thanks to the constant cutting angle, the user’s
force necessary to cut is reduced to 1/3 of that
for conventional products.

The Bernoulli curve is the logarithmic spiral and
can be classified as a type of the log-aesthetic curves
[2,4,5,6,7]. One of its properties is that the angle
between its tangent vector and the radial axis from
the origin is kept constant. This is the reason why the
logarithmic spiral is also called the equiangular spi-
ral. Consequently if the blades of a pair of scissors

are given by a logarithmic spiral, the cutting angle
is always constant. Figure 1. shows the cutting and
opening angles of the scissors.

In this paper, we extend the logarithmic spiral to
make the cutting angle of a pair of scissors a linear
function of the rotation angle of the cutting edges and
newly define the polar-aesthetic curve and discuss
about conditions for the monotonicity of its curva-
ture. Furthermore we analyze cutting torques of the
scissors and show that the torque of the scissors
whose blade is a polar-aesthetic curve can be control-
lable to make the users feel easier to cut a sheet of
paper.

2. CONSTANT CUTTING ANGLE

In this section, we derive conditions for the blades
of a pair of scissors to have a constant cutting angle.
We define a curve by using the polar coordinate sys-
tem and use s for its arc length. A point on the curve
P(s) is given by (r(s) cos θ(s), r(s) sin θ(s)) where θ(s)
is an azimuth angle and the direction angle there is
denoted by φ. The tangent vector of the curve t(s) is
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Fig. 1: Blades of scissors.

given by

t(s) = d
ds

(r cos θ , r sin θ)

=
(

dr
ds

cos θ − r sin θ
dθ

ds
,
dr
ds

sin θ + r cos θ
dθ

ds

)
(2.1)

Hence

tan φ =
dr
ds sin θ + r cos θ dθ

ds
dr
ds cos θ − r sin θ dθ

ds

=
dr
ds tan θ + r dθ

ds
dr
ds − r tan θ dθ

ds

(2.2)

We define c = φ − θ , then φ = θ − c and

tan φ = tan θ + tan c
1 − tan θ tan c

(2.3)

By rewriting Eqn. (2), we obtain

tan φ =
tan θ + r dθ

ds
dr
ds

1 − tan θ
r dθ

ds
dr
ds

(2.4)

Therefore, tan c = r dθ
ds /dr

ds . Hence if the ratio of rdθ/ds
to dr/ds is constant, tan c is constant, i.e. c is con-
stant. Then the angle formed by the straight line from
the origin to the point P(s) and the tangent vector will
be constant.

The factor of proportionality between rdθ/ds and
dr/ds is assumed to be k, so dr/ds = krdθ/ds. We
solve this equation by separation of variables and
obtain r = C exp(kθ) where C = exp c0.

A logarithmic (equiangular) spiral can be expressed
using the imaginary unit i as follows:

C(t) = r(t) exp(iθ(t)) = C exp(at) exp(ibt) (2.5)

Hence r(t) = C exp(at) and θ(t) = bt. So r = C exp
(

a
b θ
)

and c becomes constant

3. POLAR-AESTHETIC CURVE

Based on the discussions above, we define the polar-
aesthetic curve in this section. A curve is assumed
to be given by C(t) = r(t) exp(iθ(t)). The angle differ-
ence between the direction angle φ and the azimuth
angle θ is defined as θ0 = φ − θ . Then tan θ0 = r dθ

ds /dr
ds .

We regard θ0 to be a function of θ . The differential
equation which the curve should satisfies is given by

dr
dθ

= r
tan θ0

(3.1)

We call a curve which satisfies the above equation the
polar-aesthetic curve. The reasons why we call it an
aesthetic curve are 1) its curvature varies monotoni-
cally with simple conditions as explained in Section 4,
and 2) it is derived from the logarithmic spiral, which
is one of the typical aesthetic curves. Similar to the
log-aesthetic curve [4,5], we would like to propose a
new type of aesthetic curves and we hope we can use
it for aesthetic design. But in this paper we concen-
trate our discussions on scissors design because its
primary usage will be for blade design.

3.1. In Case where θ0 is a Linear Function of θ

Here we assume that θ0 is a linear function and θ0 =
aθ + b for some constants a(�= 0) and b. The constant
a is assumed not to be equal to 0 because if a = 0,
the curve will be a logarithmic spiral. In this case Eqn.
(3.1) is rewritten as follows:

dr
r

= dθ

tan(aθ + b)
(3.2)

Hence

log r = log |sin(aθ + b)| + c2

a

ra = C′| sin(aθ + b)| (3.3)

where C′ = exp c2. Therefore

r = C| sin(aθ + b)| 1
a (3.4)

where C = C′ 1
a .

3.2. In Case where θ0 is an Arbitrary Function of θ

We assume that θ0 is a linear function and θ0 = f (θ ).
Then Eqn. (3.1) is given by

dr
dθ

= r
tan f (θ)

(3.5)

Hence

log r = ∫ dθ

tan f (θ)
(3.6)
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Fig. 2: top: logarithmic spiral (a0 = 6, b0 = −10), bottom: polar-aesthetic curve (a1 = 0.2, b1 = π/24).

Here we put u = sin f (θ), then sin−1u = f (θ), i.e. θ =
f −1(sin−1u) and du = cos(f (θ))

df (θ)

dθ
dθ . Then

cos(f (θ))dθ = du
df (θ)

dθ

(3.7)

Therefore Eqn. (3.6) is rewritten as follows:

log r = ∫ cos f (θ)

sin f (θ)
dθ = ∫ du

u df (θ)

dθ

(3.8)

Hence

r = C exp

⎛
⎝∫ du

u df (θ)

dθ

⎞
⎠ = C exp

(∫
du

u
df (f −1(sin−1u))

dθ

)

(3.9)
where u is determined by the constant of integration.

4. MONONICITY OF CURVATURE

In this section we discuss monotonicity of curvature
of the polar-aesthetic curve whose θ0 is given by a
linear function of θ . The tangent vector of the curve
C(t) = r(t) exp(iθ(t)) is given by

t(t) = dr
dt

exp(iθ) + ir
dθ

dt
exp(iθ)

= dr
dt

cos θ − r
dθ

dt
sin θ + i

(
dr
dt

sin θ + r
dθ

dt
cos θ

)
(4.1)

The curvature κ(t) is given by

κ(t) = 2ṙ2θ̇ + rṙ θ̈ − rr̈ θ̇ + r2θ̇3

(ṙ2 + r2)
3
2

(4.2)

where for example, ṙ denotes the derivative of r with
respect to t. When θ = t, we obtain

κ(t) = 2ṙ2 − rr̈ + r2

(ṙ2 + r2)
3
2

(4.3)

Hence if 2(1 − a)/a > 0, i.e. 0 < a < 1, then when
sin(at + b) monotonically increases, the curvature
decreases monotonically. If a < 0 or a > 1, when

sin(at + b) monotonically increases, the curvature
also increases monotonically. When a = 1,

C(t) = sin(θ + b)(cos θ , sin θ)

= 1
2

(sin(2θ + b) + sin b, − cos(2θ + b) + cos b)

(4.4)

then the curve is a circular arc whose center is at
((sin b)/2, (cos b)/2) and radius is equal to 1/2.

The left of Figure 2 shows a logarithmic spi-
ral C0(t) = exp(a0t + b0) exp(it) in green color and its
mirror image about the x-axis in blue. Its right shows a

polar-aesthetic curve C1(t) = | sin(a1t + b1)|
1

a1 exp(it)
in green and its mirror image about the x-axis in
blue. The tangent vectors at their intersection points
are depicted in these figures. We notice that for the
logarithmic spiral its cutting angle is constant, but
the cutting angle of the polar-aesthetic curve changes
gradually.

5. FORCE AND TORQUE APPLIED TO A PAIR OF
SCISSORS

In this section, we discuss force and torque applied to
a pair of scissors based on Mahvash et al [3].

5.1. Contact Force

Figure 3 shows a pair of scissors, its coordinate sys-
tems with a thin plate. The origin of the coordinate
system is located at the pivot and the symmetrical
axis of the scissors is on the x-axis. We assume that
both the scissors and the plate do not move during
the cutting process. The opening angle of the pair of
scissors is denoted by θ and the position of a crack
generated by it is denoted by xc .

The blades locally deform the plate around a crack.
This deformation is composed of bending, stretching,
compression, or their combination. During deforma-
tion, the upper end of the crack is displaced from
(xc , h/2) to (xc , h/2 − δ), where δ is a displacement
length (see Fig. 1.). In response to deformation of the
plate, the force is fn applied to the upper blade along
the normal to the blade’s edge at point (xc , h/2 − δ). fn
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Fig. 3: Coordinates of a pair of scissors [3].

is given by

fn = g(δ) (5.1)

where g(δ) is a linear function of the tip displacement,
obtained by measurement or material properties.

When the blades of the scissors can be assumed
to be a straight line and α is the angle between the
blade’s edge and the centerline of a blade as shown in
Fig. 3., the torque caused by fn at the pivot is given by

τ = xcfn cos(α) (5.2)

where α is the angle between the blade’s edge and
the centerline of the blade. Since scissors’ blades are
slightly tapered as shown in Fig. 3., α is usually not
zero.

The force which the user feels at the handle is
calculated by

fu = τ

R
= xc

R
fn cos(α) (5.3)

where R is the distance between the pivot and the
handle.

5.2. Blade Edge Curve

We define the curve of the edge of the upper blade in
the coordinate system of the scissors as

y = φ(x, θ) (5.4)

Where (x, y) is a point on the edge of the blade and
φ(x, θ) is a nonlinear function of x and θ . From the
above equation, the displacement δ caused by a blade
with curve is obtained by

h
2

− δ = φ(xc , θ)

δ = h
2

− φ(xc , θ) (5.5)

5.3. Cutting Force by Sharp Blade

Figure 3 shows two sequential time steps at t and t +
dt of a scissor cutting process. During the time inter-
val dt, the opening angle of the scissors is changed

from θ to θ + dθ , and the upper end position of the
crack is moved from xc to xc + dxc . The area of crack
extension is given by dA = h dxc .

An energy-based approach for fracture mechanics
is adopted to estimate the torque and the upper end
position of the crack during cutting. If we consider
the principle of conservation of energy, we obtain

dWe = dWA + dU (5.6)

where dWe is the external work applied by the scis-
sors, dWA is the irreversible fracture work, and dU
is the change in elastic potential energy stored in the
plate.

If quasi-static operation is assumed and we ignore
inertia terms, the external work dWe can be calculated
by

dWe = −τdθ (5.7)

If the blade is very sharp, it does not cause cutting
burrs and the work of fracture for separating the area
is given by [1]

dWA = JcdA = Jch dxc (5.8)

where Jc is the fracture toughness. Substituting Eqns.
(5.7) and (5.8) into Eqn. (5.6) yields

− τdθ = Jch dxc + dU (5.9)

Then

τ = −Jch
dxc

dθ
− dU

dθ
(5.10)

If the deformation pattern around the upper end of
the crack does not significantly change when its upper
end is displaced, the change of the potential elastic
energy stored in a plate during sharp cutting can be
ignored, so we can assume that dU/dθ = 0. This and
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Eqn. (5.10) yield

τc = −Jch
dxc

dθ
(5.11)

where τc is the torque applied to the scissors during
sharp cutting. Differentiating Eqn. (5.5)

dδ

dθ
= 1

2
dh
dθ

− dφ(xc , θ)

dθ
= 0 − ∂φ

∂θ
− ∂φ

∂xc

dxc

dθ
(5.12)

If we ignore the change of displacement δ during
cutting and assume dδ/dθ = 0, then

dxc

dθ
= − ∂φ/∂θ

∂φ/∂xc
(5.13)

By substituting the above equation into Eqn. (5.10) we
obtain

τc = Jch
∂φ/∂θ

∂φ/∂xc
(5.14)

In case where the edge curve of the blade is given by a
parametric curve, i.e. there is a parameter u such that

(x, y) = (x(u, θ), y(u, θ)) (5.15)

at the upper end of the crack (xc , h/2), x(uc , θ) = xc
and y(uc , θ) = h/2 are satisfied. By solving y(uc , θ) =
h/2, uc is determined and we can obtain xc = x(uc , θ).
If the plate is very thin like paper, we can assume that
h = 0. By solving y(uc , θ) = 0, uc is determined and we
can obtain xc = x(uc , θ).

5.4. Logarithmic Spiral

Here we use a logarithmic spiral to represent the
upper blade. For comparison to the polar-aesthetic
curve, we define the curve using parameter u as
follows:

C(t) = exp(au + b) exp(iu) (5.16)

where a and b are constants. Note that exp(au + b) =
exp(b) exp(au). We can regard exp(b) as a scaling
factor for the whole curve.

In order to take the rotation about the scissors’
pivot into consideration, we assume that the curve
is at the initial position when t = 0 and the direc-
tion angle of the blade at the initial position is θs . If
the clock-wise rotation angle according to the elapsed
time is θr , then the relationship of the direction angle
θ to θr is given by

θ = θs − θr (5.17)

The direction angle θ is a half of the opening angle in
Fig. 1. The upper blade after rotation is given by

C ′(u) = C(u) exp(−iθr ) = exp(au + b) exp(i(u − θr )

(5.18)
We assume that the plate is very thin like paper and
ignore thickness h. Then yc = 0 and from sin(u − θr ) =

0, we obtain u = θr . Hence

xc = exp(au + b) = exp(aθr + b) = exp(a(θs − θ) + b)

(5.19)
From Eqn. (5.10),

τc = −2Jch
dxc

dθ
= 2Jch a exp(a(θs − θ) + b) (5.20)

A factor 2 is multiplied to Eqn. (5.10) because the
direction angle θ here is a half of the opening angle
θ in Eqn. (5.10).

5.5. Polar-aesthetic Curve

Here we use a polar-aesthetic curve to represent the
upper blade. We represent a polar-aesthetic curve
using parameter u as follows:

C(t) = Csin
1
a (au + b) exp(iu) (5.21)

where a, b and C are constants.
Similar to the logarithmic spiral case, the upper

blade after rotation is given by

C ′(u) = C(u) exp(−iθr ) = Csin
1
a (au + b) exp(i(u − θr )

(5.22)
The plate is assumed to be very thin like paper and we
ignore thickness h. Then yc = 0 and from sin(u − θr ) =
0, we obtain u = θr . Hence

xc = Csin
1
a (au + b) = Csin

1
a (a(θs − θ) + b) (5.23)

From Eqn. (5.10),

τc = −2Jch
dxc

dθ
= 2Jch Csin

1
a −1(a(θs − θ) + b)

× cos(a(θs − θ) + b) (5.24)

5.6. Torque Calculation Examples

In this subsection we show several examples of torque
calculation.

5.6.1. Logarithmic spiral

We show several torque calculation examples for log-
arithmic spirals in Fig. 3. Since the purpose of this
subsection is to illustrate how the torque changes
according to rotation angle θ , the parameters of the
plate, material toughness Jc and thickness h are
assumed to be simple values, i.e. Jc = h = 1.

Figure 4(a) shows a change of torque with
respect to θ from 0 to π/2 for the logarithmic
spiral whose (a, b) = (1/ tan

(
π
6

)
, 1) ≈ (1.732, 1). θ is

the angle between the centerline of the upper
blade and the x-axis and the angle interval used
for cutting is from π/12 to 0. Since the posi-
tion of the handle is fixed, the force felt by the
user is proportional to the torque. Figures 4(b) and
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Fig. 4: Torque of various logarithmic spiral scissors.

Fig. 5: Torque of various polar-aesthetic curve scissors.

4(c) show the torques for the logarithmic spirals
whose (a, b) = (1/ tan

(
π
12

)
, 1) ≈ (3.732, 1) and (a, b) =

(1/ tan
(

π
24

)
, 1) ≈ (7.593, 1), respectively. For the scis-

sors with logarithmic spiral blades, the torque is
increasing rapidly as θ gets closer to 0.

5.6.2. Polar-aesthetic curve

We show several torque calculation examples for
polar-aesthetic curves in Fig. 4. The parameters of the
plate, material toughness Jc and thickness h are also
assumed that Jc = h = 1.

Figure 5(a) shows a change of torque with
respect to θ from 0 to π/2 for the logarithmic spiral
whose (a, b, C) = (

0.2, π
24 , 1

) ≈ (0.2, 0.1309, 1). Figures
5(b) and 5(c) show the torques for the logarithmic
spirals whose (a, b, C) = (

0.3, π
24 , 1

) ≈ (0.3, 0.1309, 1)

and (a, b, C) = (
0.45, π

24 , 1
) ≈ (0.2, 0.1309, 1) respec-

tively. For the scissors with polar-aesthetic curve
blades, the torque can be controlled by selecting
appropriate parameters to avoid rapid increases as
θ approaches to 0 and we can obtain flatter change
of torque than that of logarithmic spiral. That means
the torque will be independent of the opening angle
of the scissors and we will be able to cut a sheet of
paper with almost a constant force.

6. DESIGN OF SCISSORS

In this section at first we analyze the shape of actual
product scissors using a logarithmic spiral for their
blade shape. Then we show a design example with a
polar-aesthetic curve as well as that with a straight
line.

6.1. Fitcut Curve Scissors: SC-175S

The scissors SC-175S produced by Plus Corp. in Japan
is sold under the name of Fitcut Curve Scissors. The
scissors use a logarithmic spiral for their blade. The
specifications of the scissors are as follows:

• Length of the centerline of the blade = 74 mm
• Opening angle of the configuration when the

cutting starts = 40 degrees
• Position of the configuration when the cutting

starts = 10 mm
• Cutting angle (angle between the two blades) =

19 degrees

In our measurement the cutting angle is 19
degrees instead of 30 degrees [8] and the shape
of the blade becomes almost identical if we adopt
19 degrees to determine its shape. The shape and
torque of the scissors with the above specifications
are shown in Fig. 6.

6.2. Scissors with a Polar-Aesthetic Curve

We design a pair of scissors using a PA curve for their
blade shape. Its specifications are as follows:

• length of the centerline of the blade = 74 mm
• Opening angle of the configuration when the

cutting starts = 40 degrees
• Position of the configuration when the cutting

starts = 10 mm
• Cutting angle = linearly changes from 12

degrees (opening angle = 40 degrees) to 30
degrees (opening angle = 0 degrees)
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Fig. 6: Commercial Scissors, SC-175S: (a) its shape and (b) torque.

Fig. 7: Designed Scissors with PA curve: (a) its shape and (b) torque.

Fig. 8: Designed Scissors with straight curve: (a) its shape and (b) torque.

The shape and torque of the scissors with the
above specifications are shown in Fig. 7.

6.3. Scissors with a Straight Line

To evaluate effects of the blade shape, we design
a pair of scissors using a straight line instead of
a smoothly bending curve. Its specifications are as
follows:

• length of the centerline of the blade = 74 mm
• Opening angle of the configuration when the

cutting starts = 40 degrees
• Position of the configuration when the cutting

starts = 10 mm
• The centerline intersects the blade at its end.

The shape and torque of the scissors with the
above specifications are shown in Fig. 8.

Although the torque of SC-175 rapidly increases
as the opening angle approaches to 0, that of the scis-
sors with a PA curve is almost linearly decreases. That
of the scissors with a straight line seems to increase
exponentially as the opening angle approaches to 0.
We can expect that we will be able to cut a sheet of
paper and other slabs of material easily with scissors
with a PA curve.

7. CONCLUSIONS

In this paper, we have proposed a new aesthetic curve
named the polar-aesthetic curve as another type of
aesthetic curves in addition to the log-aesthetic curve.
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We use “aesthetic” for its name because 1) it is derived
from the logarithmic spiral, which is a typical aes-
thetic curve and 2) we can guarantee the monotonicity
of curvature under simple conditions. The curve is
basically fair and it can be used to be a shape of the
blade of scissors to control the torque to cut a slab of
material. For future work, we will try to extend it into
3 dimensional space.
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