
425

3D ICs Layout Hypergraph Representation

Katarzyna Grzesiak-Kopeć1 and Maciej J. Ogorzałek2

1Jagiellonian University in Krakow, katarzyna.grzesiak-kopec@uj.edu.pl
2Jagiellonian University in Krakow, maciej.ogorzalek@uj.edu.pl

ABSTRACT

The paper presents a knowledge intensive graphical 3D ICs layout representation in the form of hierar-
chical layout hypergraphs that enable to demonstrate all possible relations among chip components,
especially spatial relations in 3D spaces. The introduction of the hierarchy enables to gather and
retrieve information on different levels of details. The proposed graphical knowledge description is
also suitable for the grid like neighborhood representation that may be used to divide the circuit into
layers.

Keywords: hypergraphs, CAD, 3D ICs, optimization, 3D layout design.

1. INTRODUCTION

The task of 3D ICs floorplanning is a super intellec-
tual challenge. It involves the assembly of millions
of components taking into account many different
requirements and constraints, just to mention topo-
logical, wiring or manufacturability ones. According
to Moore’s Law, the number of transistors in a typical
integrated circuit (IC) design doubles approximately
every two years. In 2012 the number of transistors
in the CPU went up to an impressive 2.6 billion
transistors in Intel’s 10-core Xeon Westmere-EX [2].
No wonder that the importance of electronic design
automation (EDA) tools rapidly increases.

Computer aided design (CAD) tools are excellent
in holding graphical and geometric data. However,
it is not enough to provide the complete computer
control of the design process. Valid design solu-
tions have to meet various requirements that are very
often mutually exclusive, like lightweight and dura-
bility or of low cost and of high quality. They also
have to fulfill different kinds of constraints, like the
ones related to the production process, some aes-
thetics values or functionality and ergonomics of use.
In order to automatically generate feasible design
solutions the computational design knowledge rep-
resentation is needed. Typically, either symbolic or
graphical knowledge description may be applied [10].
In the symbolic knowledge description, facts are sym-
bolic terms and the process of inferring involves the
manipulation of these terms. While, in the graphical
one, the spatial relations between components define

the structure of knowledge representation and the
way it is exploit. Taking into account the 3D layout
problem specification, the latter approach seems to
be the natural choice. The paper presents a knowl-
edge intensive graphical 3D ICs layout representation
in the form of hypergraphs.

2. LAYOUT SEMANTIC LAYER REPRESENTATION

2.1. 3D ICs Layout Design Knowledge

One of the earliest and the most critical phase in the
integrated circuits design process is floorplanning.
The task is to pack all the given circuit elements in
a chip without violating design rules, so that the cir-
cuit performs well and the production yield is high.
All the circuits elements are rectangular modules of
fixed orientation, height and width that cannot over-
lap. The minimum bounding box of such a packing is
called the chip [7].

All the constraints and requirements for this
assignment are evaluated on the basis of the pro-
posed spatial arrangement of the chip components.
Some of them are straightforward like the no over-
lapping constraint or the volume constraint defined
by the chip dimensions. While the others, namely
a wirelength reduction or a hot spot problem min-
imization need more sophisticated verification. The
first requirement is met if and only if the connected
chip components are as close to each other as pos-
sible, side by side at best. On the contrary, the

Computer-Aided Design & Applications, 12(4), 2015, 425–430, http://dx.doi.org/10.1080/16864360.2014.997638
© 2015 CAD Solutions, LLC, http://www.cadanda.com

mailto:katarzyna.grzesiak-kopec@uj.edu.pl
mailto:maciej.ogorzalek@uj.edu.pl
http://www.cadanda.com


426

thermal requirement requests separating the most
heating modules and placing them on the chip bound-
aries to cool them more easily. In order to identify
those spatial relations and to enable design process
automation, the layout hypergraph representation is
introduced.

Hypergraphs are a generalization of graphs, where
not only binary but n-ary relations may be repre-
sented. The special edges, called hyperedges, can
connect not only two, but any number of vertices.
Although they are not so popular, they have found
many practical applications just to mention architec-
tural design, linear algebra, data mining and infor-
mation retrieval. Since it is straightforward to map a
netlist into a hypergraph, they have also been exten-
sively studied in ICs layout design [6]. Especially in
the context of the wirelength connection minimiza-
tion where the balanced k-way partitioning problem
is used. The k-way partitioning assigns vertices of
a hypergraph to k disjoint nonempty partitions in
such a way to minimize a net cut function and to
balance the total vertex weight in each partition. A
net cut is the sum of weights of hyperedges that
are cut between partitions. The task is known to
be NP-hard [4].

Unfortunately, the formerly considered hyper-
graph representations and partitioning algorithms [1]
completely neglect the third dimension in the 3D
space. Performing partitioning of the netlist into tiers
using only one dimension just like in 2D often fail
to give near optimal solutions. In order to overcome
the limitations, we propose to adopt the hierarchi-
cal layout hypergraphs defined in [5]. In the contrast
to commonly used simple hypergraph definition with
the only one type of a hyperedge (a set of vertices),
layout hypergraphs have two distinguishable kinds of
hyperedges. The hyperedges of the first type are non-
directed and correspond to chip components which,
if necessary, may be examined at the different level
of details (transistors or block-level) using a hier-
archy relation. The hyperedges of the second type
are used to represent relations among chip elements

like adjacency or wiring. They can be either directed
or non-directed depending on the relation symme-
try property. The vertices serve as pin points and, as
such, allow to represent wire connections without the
need for any additional attributes.

2.2. Hierarchical Layout Hypergraphs

We propose to adapt to our problem domain the hier-
archical layout hypergraphs defined in [5]. They were
originally defined to represent floor-layouts in archi-
tectural design. After [5], we introduce a two step
hierarchical layout hypergraph (HG) definition. We
start with the layout hypergraph definition and then
we define a child nesting function that realizes the
hierarchy relation.

Let [i] denote the interval {1,2, . . . i}, where i ≥ 0
and [0] = Ø. Let �V, �E be non empty alpha-
bets of node and hyperedge labels respectively,
where �E = �C∪�R and �C∩�R = Ø. A layout hyper-
graph over � = �V∪�E is a system HG = (E,V,s,t,lb,ext)
where:

1. E = Ec∪Er and Ec∩Er = Ø, is a finite set of hyper-
edges, where EC represents object components,
ER represents relations,

2. V is a finite set of nodes,
3. s:E → V* and t:E → V* assign to hyperedges

sequences of source and target nodes respec-
tively, in such a way that ∀e ∈ Ec, s(e) = t(e),

4. lb = (lbV,lbEC,lbER), where lbV:V → �V, lbEC:
EC → �c, lber:Er → �r are labeling functions,

5. ext:[n] → V is a mapping specifying a sequence
of hypergraph external nodes.

The example simple logic circuit without hierarchy
and the corresponding layout hypergraph are pre-
sented in Fig. 1. One group of hyperedges of the
layout hypergraph is labeled by names of the corre-
sponding circuit components (i1, i2, i3, i4, U1, . . . U10,
o1, o2). They represent object components and are
depicted in the form of rectangles. The hyperedges

Fig. 1: The example simple logic circuit and the corresponding layout hypergraph.

Computer-Aided Design & Applications, 12(4), 2015, 425–430, http://dx.doi.org/10.1080/16864360.2014.997638
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


427

from the second group reflect the wire relation and
are outlined as ellipses. There are fourteen wire
hyperedges where four of them connect three compo-
nents, while the others are binary connections. Nodes
specify pin points for potential connections between
hyperedges and are drawn as black dots. Each hyper-
edge has a sequence of source and target nodes
assigned. If two sequences are identical, a hyperedge
is called non-directed.

Now let us introduce a child nesting function. A
hierarchical layout hypergraph over � = �v∪�e is a
system HHG = (HG,ch) where HG is a layout hyper-
graph and ch:Ec → P(A) is a child nesting function,
where A = V∪E is called a set of hypergraph atoms and
the following conditions are satisfied:

1. one atom cannot be nested in two differ-
ent hyperedges: ∀a ∈ A∀e1,e2 ∈ Ec a ∈ ch(e1)∧
a ∈ ch(e2) ⇒ e1 = e2,

2. hyperedge cannot be its own child: ∀e ∈ EC
e
∈ch+(e), where ch+(e) denotes all descendants
of a given hyperedge e,

3. source and target nodes are nested together
with their hyperedge: ∀e1 ∈ E ∃e2 ∈ EC e1 ∈ ch(e2):
∀v1 of s(e) ∧∀v2 of t(e) v1 ∈ ch(e2) ∧ v2 ∈ ch(e2).

Let us come back to the simple circuit example
depicted in Fig. 1 and try to divide it in two layers
so that the wire length be minimized and the number
of components in each layer be balanced. One of the
possible optimal solutions together with its hierarchi-
cal layout hypergraph representation is illustrated in
Fig. 2. The wire length treated as the distance between
cells in a grid cube equals one for each pair of con-
nected components and the number of components
in both layers is perfectly balanced. It should be kept
in mind that any not immediately adjacent vertical
connections may be too expensive in terms of routing
resources and delay [9]. Nevertheless, the hyperedge
cut between layers in such a way that all components
are enclosed in the neighborhood of radius one is
more preferred than minimizing a net cut function.

The hierarchy relation enables to analyze the pro-
posed layout at different levels of details. Depending

Fig. 2: The example optimal 2-layer partitioning of the circuit in Fig. 1 and the corresponding hierarchical layout
hypergraph in the collapsed and the expanded form.

Computer-Aided Design & Applications, 12(4), 2015, 425–430, http://dx.doi.org/10.1080/16864360.2014.997638
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


428

on the currently considering design aspects the
hypergraph may be either collapsed or expanded. For
example, if the net cut function undergoes exam-
ination, the hypergraph can be collapsed only to
two hyperedges representing the layers and six wire
hyperedges that are cut between them. However, in
order to verify whether the partition is balanced, the
expanded variant of the hierarchical layout hyper-
graph is needed.

Additional semantic information may be easily
introduced as attributes assigned to different hyper-
graph elements, namely hyperedges and vertices.

2.3. 3D Partitioning Heuristics

Having realized the huge size of the hypergraphs rep-
resenting the real-world circuits, the partition heuris-
tics should be extremely efficient in order to be prac-
tical. The most popular approaches apply Fiduccia-
Mattheyses algorithm [3] which is not only computa-
tionally effective (a linear time heuristics) but easily
adjustable to different objective functions as well.

Nevertheless, as stated before, the commonly applied
hypergraph partitioning algorithms in ICs floorplan-
ning to minimize the total wirelength connections do
not take into consideration the third dimension in the
3D space. They perform partitioning of the netlists
into layers in the same way they work in 2D and use
the single dimension. That is why, they often fail to
find near optimal solutions. The partitioning heuris-
tics is applied in a top-down recursive manner. The
min-cut bisection is used to divide a chip volume
geometrically into sectors, while the logic inside the
sectors is partitioned topologically. The procedure is
recursively repeated until achieved subdivisions are
small enough for an optimization algorithm to be
solved in a reasonable amount of time [8].

Let us try to apply such a partitioning to the exam-
ple simple logic circuit in Fig. 1. Originally, the aim is
to minimize a net cut function and to balance the total
vertex weight in each partition. However, since in the
proposed layout hypergraph representation the inter-
pretation of vertices and some hyperedges is novel,
the notion of balance has to be specified. For the time

Fig. 3: The example 2-layer partitioning of the circuit in Fig. 1 and the corresponding hierarchical layout
hypergraph.

Computer-Aided Design & Applications, 12(4), 2015, 425–430, http://dx.doi.org/10.1080/16864360.2014.997638
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


429

Fig. 4: The grid-like types of neighborhoods: the Moore neighborhood and the von Neumann neighborhood.

being let us assume that the partition is balanced if
the total weight of the hyperedges that correspond to
chip components is balanced in each layer.

After the balanced net cut function minimization,
the total wirelength connections are minimized in
each layer separately. A net cut is the sum of weights
of hyperedges that are cut between partitions. Let us
assume that all the weights are equal to one. The
achieved solution may look like the one in Fig. 3. A net
cut equals four and the partition is perfectly balanced
since there are eight component-hyperedges in each
layer. Comparing this partition to the one in Fig. 2:

• the net cut value has been significantly
improved from six to four,

• the total vertex weight in each partition has not
been changed,

• the total wirelength has increased by one (the
length of the connection between U9 and U8 is
two).

Hence, two additional objectives are met, but the
primary goal is not accomplished. Of course, in this
very situation the difference in the total wirelength is
not essential but the example is also pretty simple.
Scaling the number of circuit elements to millions the
difference in the wire length may also significantly
increase so that it cannot be disregarded. Proposing
3D partitioning heuristics, the following facts should
be considered [1]:

• size – the number of hyperedges representing
components may range to as many as several
millions, furthermore, the number of hyper-
edges representing nets is typically between
0.8x and 1.5x of the number of components,

• sparsity – each component has in the average
from 3 to 5 connections and the higher numbers
occur in a block-level design, also average net
sizes varies between 3 and 5,

• granulation – very large nets (hundreds or thou-
sands of components) are very rare.

Taking into account all this factors we propose to
perform a 3D topological partitioning of the IC hierar-
chical layout hypergraph. Instead of searching for the

minimal and balanced cut of the hypergraph, the opti-
mal grouping of interconnected 3D neighborhoods is
needed. The proposed hierarchical hypergraph repre-
sentation is ideally suited for such a task.

Depending on the problem representation, the
neighborhood may have many different interpreta-
tions. For example, taking into account a graph repre-
sentation, the graph neighborhood of a vertex may be
considered. However, we suggest to take a closer look
at the grid like structure of a chip and take the advan-
tage of the component’s neighbors in a grid. There
are two types of neighborhoods, the Moore neigh-
borhood and the von Neumann one (Fig. 4), that are
commonly used in the cellular automata evolution
on a square grid. The first one is a square-shaped
neighborhood and there are 26 immediately adjacent
neighbors for a single cell. While the second neigh-
borhood is diamond-shaped and each cell has only 6
immediately adjacent neighbors. Since the average IC
net size varies between 3 and 5 even the von Neumann
neighborhood is good enough to realize a single net
in such a way to minimize the total wirelength. How-
ever, the Moor neighborhood allows a more flexible
neighbors arrangement and a single hyperedge rep-
resenting the net connecting 5 components may be
realized in the number of distinct 4-element subsets
of 26 neighbors.

Hence, let us show how the grid like neighborhood
may be represented in the form of layout hyper-
graph proposed in this paper. In order to represent
the Moore neighborhood, it is enough to attach 26

Fig. 5: The example grid like neighborhood and the
corresponding layout hypergraph.

Computer-Aided Design & Applications, 12(4), 2015, 425–430, http://dx.doi.org/10.1080/16864360.2014.997638
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


430

attributed vertices to each hyperedge that correspond
to a chip component. Each of those vertices may
be connected at most to 7 others. Let the hyper-
edges that represent neighborhood relation be labeled
neigh. The example grid like neighborhood and the
corresponding layout hypergraph are presented in
Fig. 5. The group of hyperedges that represent object
components are depicted in the form of cubes.

3. SUMMARY

The paper presents a 3D ICs hierarchical layout hyper-
graph representation that fully reflects possible rela-
tions among chip components. Most of all, in contrast
to previously proposed 3D ICs hypergraph represen-
tations, it naturally resembles spatial relations in 3D
spaces. Using labeling mappings allow describing dif-
ferent relations among chip elements and introducing
various cost functions, depending on the actual opti-
mization task. Engaging hierarchy enables to gather
and retrieve information on different levels of details.
In the future, applying hypergraph transformation
rules may be used to derive important facts about the
generated design solution and the knowledge stored
in the layout hypergraph may also be translated
into first-order logic sentences [10] describing the
design and design requirements that should be met
by the hypergraph. In this way, comparing the actual
design solution with formulas expressing design
goals and constraints the near-optimal design may be
obtained.

In the next stage of the research, the layout hyper-
graph representation will be applied to the task of
the total wirelength minimization. The stacking grid
like neighborhoods algorithm playing a Tetris like
game will be evaluated. Since many ICs floorplanning
papers refer to MCNC benchmark netlists that are
represented in the YAL (Yet Another Language) file
format, the parser reading the YAL file netlist into a
layout hypergraph has been implemented.

ACKNOWLEDGEMENTS

Research supported by FNP under the Program “Mis-
trz”: “New computational approaches for solving next
generation microelectronic design problems”.

REFERENCES

[1] Ababei, C.; Feng, Y.; Goplen, B.; Mogal, H.;
Zhang, T.; Bazargan, K.; Sapatnekar, S.: Place-
ment and Routing in 3D Integrated Cir-
cuits, IEEE Des. Test, 22(6), 2005, 520–531,
http://dx.doi.org/10.1109/MDT.2005.150

[2] De Gelas, J. Westmere-EX: Intel’s Flagship
Benchmarked, May 2011, http://www.anand
tech.com/show/4285/westmereex-intels-flagsh
ip-benchmarked, Retrieved on January 19,
2014

[3] Fiduccia, C. M.; Mattheyses, R. M.: A Linear-
time Heuristic for Improving Network Parti-
tions, DAC, 1982, 175–181. http://dx.doi.org/
10.1109/DAC.1982.1585498

[4] Garey, M. R.; Johnson, D. S.: Computers and
Intractability: A Guide to the Theory of NP-
Completeness, San Francisco, CA: Freeman,
1979

[5] Grabska, E.; Grzesiak-Kopeć, K.; Lembas, J.;
Łachwa, A.; Ślusarczyk, G.: Hypergraphs in
Diagrammatic Design, in K. Wojciechowski et
al. (eds.), Computational Imaging and Vision
32, Springer, 2006, 111–117, http://dx.doi.org/
10.1007/1-4020-4179-9_17

[6] Karypis, G.; Aggarwal, R.; Kumar, V.; Shekhar, S.:
Hypergraph Partitioning: Application in VLSI
domain, In Proceedings of 34th Annual Confer-
ence on. Design Automation, DAC 1997, 1997,
526–529.

[7] Murata, H.; Fujiyoshi, K.; Nakatake, S.;
Kajitani, Y.: VLSI module placement based on
rectangle-packing by the sequence-pair, IEEE
TCAD, 1996, 15(12), 1518–1524, http://dx.doi.
org/10.1109/43.552084

[8] Papa, D. A.; Markov, I. L.: Hypergraph Parti-
tioning and Clustering, In Approximation Algo-
rithms and Metaheuristics, 2007

[9] Sawicki, S.; Wilke, G.; Johann, M.; Reis, R.: 3D-
Via Driven Partitioning for 3D VLSI Integrated
Circuits, CLEI ELECTRONIC JOURNAL, 13(3),
2010

[10] Ślusarczyk, G.: Visual language and graph-based
structures in conceptual design, Advanced
Engineering Informatics, 26(2), 2012, 267–279.
http://dx.doi.org/10.1016/j.aei.2011.10.005

Computer-Aided Design & Applications, 12(4), 2015, 425–430, http://dx.doi.org/10.1080/16864360.2014.997638
© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1109/MDT.2005.150
http://www.anandtech.com/show/4285/westmereex-intels-flagship-benchmarked
http://www.anandtech.com/show/4285/westmereex-intels-flagship-benchmarked
http://www.anandtech.com/show/4285/westmereex-intels-flagship-benchmarked
http://dx.doi.org/10.1109/DAC.1982.1585498
http://dx.doi.org/10.1109/DAC.1982.1585498
http://dx.doi.org/10.1007/1-4020-4179-9_17
http://dx.doi.org/10.1007/1-4020-4179-9_17
http://dx.doi.org/10.1109/43.552084
http://dx.doi.org/10.1109/43.552084
http://dx.doi.org/10.1016/j.aei.2011.10.005
http://www.cadanda.com

	1. INTRODUCTION
	2. Layout Semantic Layer Representation
	2.1. 3D ICs Layout Design Knowledge
	2.2. Hierarchical Layout Hypergraphs
	2.3. 3D Partitioning Heuristics

	3. SUMMARY
	Acknowledgements
	References

