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ABSTRACT

We present a method to extract the contour of geometric objects embedded in binary digital images
using techniques in computational geometry. Rather than directly dealing with pixels as in traditional
contour extraction methods, we process on object point set extracted from the image. The proposed
algorithm works in four phases: point extraction, Euclidean graph construction, point linking and con-
tour simplification. In point extraction phase, all pixels that represent the object pattern are extracted
as a point set from the input image. We use the color segmentation to distinguish the object pixels
from the background pixels. In the second phase, a geometric graph G = (V,E) is constructed, where
V consists of the extracted object point set and E consists of all possible edges whose Euclidean
distance is less than a threshold parameter, l ; which can be derived from the available information
from the point set. In point linking phase, all border points are connected to generate the contour
using the orientation information inferred from the clockwise turn angle at each border point. Finally,
the extracted contour is simplified using collinearity check. Experiments on various standard binary
images show that the algorithm is capable of constructing contours with high accuracy and achieves
high compression ratio in noisy and non-noisy binary images.

Keywords: contour extraction, binary images, edge detectors, noisy images.

1. INTRODUCTION

The boundary lines of geometric objects embedded
within an image is referred to as a contour [15]; see
Fig. 1. In computer vision, contour features are used
to identify, localize and analyze objects in digital
images. So, contour extraction from images, particu-
larly images with complex shapes and noise, is a topic
of interest to researchers in the field of computer
vision, graphics and pattern recognition.

Contour extraction finds many applications in dif-
ferent domains. For instance, in the development of
computer aided design (CAD) system for detecting
breast cancers, region of interest (ROI) segmentation
is extremely important. In [21], a local binary image
along with contour extraction has been proposed
for ROI segmentation from mammogram patches.
In automated medical diagnosis, anatomical abnor-
malities of internal organs due to tumors or par-
ticular syndromes can be determined by matching
the contours of corresponding infected and unin-
fected body parts (Please see Fig. 2). Further, contours
extracted from binary images of optical coherence
tomography (OCT) images are used for automated

OCT segmentation in the clinical diagnosis of coro-
nary arterial lumen [23]. Contours are widely applied
in pattern analysis of digital images through feature
extraction [14]. Contour consists of a small subset of
the pixels representing the geometric objects in dig-
ital image and also shares many important features
with the original object pattern. As a consequence,
the computation time will be considerably reduced
if the feature extraction algorithms are applied on
the contour rather than on the original pattern [13,
14]. In machine vision, contour detection plays a
significant role especially when dealing with the
inspection of manufactured parts. Contour extraction
along with matching can be applied in unsupervised
inspection of machine parts for geometric irregularity
[18].

In applications such as tracking of earth resources,
geographical mapping, weather forecasting, predic-
tion of agricultural crops etc., images transmitted by
satellites or remote sensors are often contaminated
by noisy components [12] (Fig. 3 shows an exam-
ple of satellite image before and after transmission).
Consequently, edge detection or contour extraction
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in such images poses a great challenge as the noise
can change the contrast along edges, and even lead to
local contrast reversals. Smoothening the image (e.g.,
with a Gaussian filter [6]) reduces the noise, but it
may also weaken the contrast across the edges and
blend adjacent edges [1]. So, a perfect contour detec-
tion in a noisy image using common edge detectors is
extremely difficult. This is more evident from Fig. 4,
which shows the result of Sobel edge detection [5]
algorithm over noisy image. In this paper, we propose
a geometry-based contour extraction approach that
works well with noisy binary images (see Fig. 4). Fur-
ther, we demonstrate the efficiency of the proposed
algorithm through various experimental studies on
noisy and non-noisy images. Rest of this paper is orga-
nized as follows: In Section 2, we present some closely
related work. In Section 3, we discuss the contour
extraction algorithm. Section 4 illustrates empirical
studies with results and discussions. We conclude the
paper in section 5.

Fig. 1: An image and corresponding contour.

2. RELATED WORK

Several computational models have been reported in
the literature for contour or edge detection in images.
Some of the earlier works include Robert [20], Sobel
[5] and Prewitt [17] edge detectors, all of which use
local derivative filters to do the boundary detection.
D. Marr et.al [9] exploits intensity changes to detect
the edges by finding zero values of Laplacian of Gaus-
sian distribution. Canny edge detector [4] is one of the
well-known edge detection algorithm that uses sharp
discontinuities in the brightness channel to detect
edges.

Contours extracted by geometric algorithms are
often found to have high compression ratio and

smooth representation compared to pixel based
methods. Despite this fact, very few geometry/graph
based algorithms address contour extraction form
digital images. One such algorithm is proposed by
Pedro J. et al. [15], which makes use of geometric tech-
niques such as clustering, linking, and simplification
to find contours in O(n2logn) time where n is the size
of extracted feature points from the image. Q. Zhu
[24] describes a graph based approach for boundary
detection in 2D image with clutters which uses cycle
tracing in the output of an external graph cut. There
are also some methods proposed to capture disconti-
nuity in detected edges [19]. For example, X. Ren et al.
[19] uses constrained Delaunay triangulation over the
set of contours detected by local edge detectors to
remove gaps and clutters present in the extracted
edges.

Fig. 3: Satellite image Left: before and Right: after
transmission.

Fig. 4: Left: Noisy input image Middle: Output of
Sobel edge detector Right: Output of our algorithm.

In general, computational approaches proposed
for contour extraction can be classified depending
on whether they do local, regional or global process-
ing [6]. In local processing, adjacent pixels in the
neighborhood are linked if they satisfy some criteria.
Some examples of local contour tracing algorithms

Fig. 2: (a) Human kidney, (b) Binary image of (a), (c) Contour of (b) extracted by our algorithm, (d) Human kidney
with polycystic kidney syndrome, (e) Binary image of (d), (f) Contour of (e) extracted by our algorithm [Image
courtesy:[7]]
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are: square tracing algorithm, Moore-neighborhood
algorithm [22], radial sweep and bug follower’s
algorithm [13, 14, 16]. A recent local approach include
multi scale version of Pb detector [2], where a Pb
detector [10] is an edge detection algorithm that pre-
dict the posterior probability of a boundary with a
particular orientation at each image pixels by mea-
suring the local image brightness, color and texture
channels. In regional methods, starting from a seed
point, regions grow by adding pixels that are pre-
viously known to be a part of the same region or
contour. Global processing techniques try to find pix-
els which lie on curves of specific shapes. However, all
these three traditional methods possess some draw-
backs: local methods ignore everything other than
those pixels within the neighborhood and hence does
not take into account the valuable global informa-
tion about the geometric proximity of pixels; regional
methods needs some prior knowledge about which
pixels lie on which contour; and usage of global pro-
cessing techniques such as Hough transform are only
applicable to some specific types of shapes [15]. As
opposed to this, our approach exploits the prox-
imity and orientation of points inferred through a
threshold length parameter and turn angle at each
boundary pixel, requires no prior knowledge on the
regional belongings of pixels and is not restricted to
any specific shape.

3. ALGORITHM

A bi-level image (binary image) is a digital image in
which each pixel can have one of 2 values: 0 or 1. Pixel
value 0 is used for denoting background pixels and 1
for denoting object pixels. Our algorithm is designed
to generate closed contours in binary images and
uses some simple geometric techniques for the con-
tour construction. Approach consists of four phases:
point extraction, graph construction, point linking
and contour simplification as shown in Fig. 5. In point
extraction phases, a set of points that represent the
object pattern in the image, are extracted. Then a
geometric graph is constructed on these extracted
points in the second phase. The boundary edges are
linked together to construct the contour in the third
phase. Finally, the extracted contour is simplified
using collinearity checking. We use the following few
notations while describing the algorithm. Let p1, p2
are two points having coordinates (x1,y1) and (x2,y2)
respectively, then (p1,p2) denotes the edge connecting

points p1 and p2 and d(p1, p2) denotes the Euclidean
distance between points p1 and p2.

3.1. Point Extraction

In image processing, the basic processing unit is a
pixel whereas the basic processing unit in discrete
geometry is a point. In this step, the algorithm deals
with the mapping and extraction of pixels that rep-
resent the object pattern in the given digital image to
its corresponding object point set for further process-
ing. Once the point set is extracted, the problem of
contour detection can be reinterpreted as a geometric
problem that deals with the construction of the shape
border for the point set in 2D. Since the inputs to the
algorithm are binary digital images that have only two
color components, the color value at each pixel can be
exploited to decide on whether it belongs to the object
pattern or background. We employ a color segmenta-
tion to extract the object pattern from the image. Let
the image I = {F, G} where F = {f1, f2, f3 . . . , fn} denotes
the set of foreground pixels (or object pattern) with
color value c and B = {b1, b2, . . . , bk} denotes the set
of background pixels. For each pixel fi = (xi , yi ) in I,
the algorithm adds a point pi = (xi , yi ) to P, i.e. the
point set P = {p1, p2, . . . , pn} is constructed where
pi = fi , 0 < i < n + 1. Fig. 6 shows an example in which
the foreground pixels are transformed into a set of
points.

Fig. 6: (a) Sampled part of an input image with object
pattern in white color, (b) Corresponding points (black
filled circles)

3.2. Geometric Graph Construction

3.2.1. Graph construction

This step constructs a geometric graph G = (V, E)
from the point set P, where V is the set of all points
in P and E is the set of all edges (pi ,pj ) such that pi ,
pj in P and d(pi , pj ) < threshold value l. The thresh-
old parameter can be statically defined and provided
to the algorithm and hence eliminates the hassles
of parameter tuning for the construction of a con-
nected graph. Static value of threshold parameter can

Fig. 5: Overview of the Approach.
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be derived through a pixel grid based analysis of the
image which is presented in Section 3.2.2. In order
to realize the graph, for each point pi in P, algorithm
checks the length to all other pj in P, if it is less than
the threshold l, then it adds the edge (pi , pj ) to E.

Fig. 7: Illustration of (a) using parameter value l and
(b) linking a point from edge (s1, s2).

Formally, from a point α1 in P an edge is created
to αi , if αi belongs to the interior of a circle centered
at α1 with radius l. In Fig. 7(a), an edge is created
from α1 to α2 and α3 as they belong to the interior
of circle. Fig. 8(a) and 8(b) show an example point set
of bird and its corresponding geometric graph with
appropriate length parameter l respectively.

3.2.2. Threshold parameter

Now we analyse the pixel grid of a portion of the
image in order to derive the value for threshold
parameter. Consider the mask shown in Fig. 9 which
gives the all possible neighborhoods of a pixel at
position (x, y). Please note that distance between the
centers of two adjacent pixels (squares in the Fig. 9)
is 1. So, the Euclidean distance needed to connect a
point at position (x, y) to any points in its horizon-
tal, vertical and diagonal neighbors are 1, 1 and

√
2

respectively.

Diagonal length =
√

(x − (x − 1))2 + (y − (y − 1))2

=
√

(x − (x + 1))2 + (y − (y − 1))2

=
√

(x − (x − 1))2 + (y − (y + 1))2

=
√

(x − (x + 1))2 + (y − (y + 1))2

=
√

2

Fig. 9: Neighborhoods of a pixel (x,y).

As a general observation, in the case of objects
with a closed loop, at least one point in a pixel should
have a transition to the point in its diagonal neighbor.
Moreover, the length to connect a diagonal neigh-
bor is greater than that of its horizontal or vertical
neighbors. So providing threshold value as diagonal
length will also account for the horizontal and vertical
lengths but not vice versa. So in order to get the con-
tour, we have to construct the graph with threshold
parameter of at least

√
2 (1.41421356237).

3.3. Point Linking

In this phase, the algorithm extracts the contour
from the geometric graph constructed in the previous
phase. A pseudo-code of the procedure is presented
in the algorithm 1.

The algorithm has been designed for a coordi-
nate system whose origin point, (0, 0) lies at the top
left which is always the case with images. Degree
of a vertex v, is the number of edges in G incident
to v. Algorithm starts by selecting the leftmost valid
vertex using the function Left_Most_Valid_Vertex().
The leftmost valid vertex is the vertex in G,
with least x value and degree greater than 1. If
there are multiple leftmost valid vertices, then the
one with least y value is selected. The function,
Find_Second_Valid_Candidate(v1) returns the vertex
v2 = (x2, y2) with respect to vertex v1 = (x1, y1) such
that x2 ≥ x1 and y2 > y1. Starting from the initial edge
(v1, v2) in G, the algorithm successively adds points
vq that make largest turn angle with the boundary

Fig. 8: Left: Input point set, Middle: Corresponding geometric graph with appropriate value of l, Right: Contour
extracted by our algorithm.
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Algorithm 1 Contour extraction Algorithm

1: procedure Extract_Contour(Geometric
Graph G)

2: v1 = Left_Most_Valid_Vertex()

3: v2 = Find_Second_Valid_Candidate(v1)

4: edge = (v1, v2), s1 = v1, s2 = v2, C = {(v1, v2)}
5: while s2 �= v1 do
6: vq = Find_Valid_Candidate(s1, s2)

7: s1 = s2, s2 = vq
8: C = C

⋃
(s1, s2)

9: end while
10: return C
11: end procedure

edge under consideration((s2, vq)) with the constraint
that vq has a degree greater than 1. The function
Find_Valid_Candidate(s1, s2) returns a vertex vq such
that ∠(s1s2vq) > ∠(s1s2vk), ∀ (s2, vk) belong to the
graph G. If the degree of vertex vq is 1 then vq gets
removed from G and the same procedure is repeated
to find the next valid candidate vq.

The linking process proceeds in anticlockwise
order and the turn angle is taken in clockwise direc-
tion. In Fig. 7(b), with respect to the edge (s1, s2), s2
is connected with p1, p2 and pk shown in blue color
as these three points lie within the circle centered at
s2 having radius l (threshold). It is apparent from the
Fig. 7(b) that (s2,pk) makes the largest clockwise angle
with (s1,s2) and hence (s2,pk) will be added as the next
contour edge. The process stops when the linking pro-
cess reaches the starting edge. A vertex is considered
to be valid iff it has degree greater than 1. Since the
contour is a cycle and if a vertex with degree 1 is
selected as a candidate point then there will not be
an outgoing path. The presence of such invalid can-
didates is considered as a noise and hence will be
eliminated from the graph.

It is important to show that the algorithm always
terminates by returning closed contours which cap-
tures the geometric features of the object boundary.
Fig. 10 shows a part of random synthetic image I.
We argue that the algorithm returns a contour which
contains an edge between the last point (pn) and the
first point (p0). The cyclic property of the contour
is ensured by the degree criteria, which says that
all the candidate points pk selected for linking have
degree greater than or equal to two. Degree ≥ 2 for
a selected candidate point implies that there always
exists an outgoing path from each selected candidate
point pk . Moreover, if the selected candidate point has
degree > 2, the algorithm will select the one with
largest clockwise turn angle as the next candidate
point and hence make sure that the set of selected
points reflects the geometric features of the object
boundary. For instance, in Fig. 10, pn has 4 neigh-
bor object pixels (or points) each within a distance of
1.415. In the last iteration of point linking phase, the
algorithm will select the next candidate point as p0

because p0 is the point that makes the largest clock-
wise turn angle with respect to edge (pn−1, pn) while
processing in anti clock wise direction. If not pn, there
would be any other point lies in the neighborhood of
p0 apart from p1 as p0 has a degree > 1 (The function
Left_Most_Valid_Vertex() make sure this at start of
the algorithm). Once the processing reaches the first
point, the algorithm terminates. For non-noisy images
with single objects, the algorithm always terminates
by returning a closed contour.

Fig. 10: Part of an image I.

Fig. 11 shows five possible places for the occur-
rence of a noisy point. The red point in the Fig. 11
shows noisy data point and black portion shows lower
right part of an object. In the first case (noisy point is
detached from object), since the noisy point cannot
be connected by parameter l the point has no impact
on extracted contour. In the second case (the noisy
point is in diagonal neighbor of exactly one object
point), the noisy point is not a valid candidate point
because it has only one neighbor and hence degree 1.
The noisy point will marginally affect the contour in
third and fourth cases by adding a non-object point to
contour (false positive) and removing an object point
from contour (true negative) respectively. It is to be
noted that, as the object size increases, the visual
impact of false positives and true negatives on the
extracted contour becomes more negligible. The fifth
case illustrates the occurrence of a noisy point within
the object, and it has no impact on contour since it is
not part of contour.

Fig. 11: Possible positions for the occurrence of
noise.

The main idea behind this simple linking proce-
dure is that, if we add an edge other than that makes
maximum turn angle, then it will make a fissure in
the contour. For non-uniformly distributed points, the
value of parameter l determines the shape of contour.
Moreover, it is not necessary to start with the left-
most valid point, any extreme valid point will generate
the same contour where “extreme point” refers to the
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point with minimum or maximum x value or mini-
mum or maximum y value. Fig. 8(c) shows a sample
output of a point linking process.

3.4. Contour Simplification

In most of the cases the contour extracted in the pre-
vious step will contain large number of pixel most of
which are redundant. So in order to reduce the space
needed to store the contour, it is necessary to elim-
inate all the least relevant points from the extracted
contour. Simplification is based on the fact of the high
probability for the existence of collinear points. Sup-
pose ‘k’ adjacent points are lying on a line, i.e. ‘k’
points are collinear then all ‘k-2’ points other than the
end points are not required to reconstruct the line. So
a compression ratio of k/2 can be achieved by remem-
bering only the end points. In this phase, a walk is
done over the extracted contour to remove irrelevant
points from it. Fig. 12 shows an example of how a
contour is simplified.

Fig. 12: Left: A sample contour, Middle: Points
selected after contour simplification, Right: Simplified
contour.

There is also a chance for the presence of small
irregularities or projections from the exact con-
tour due to the interference of noise. Those points
which make this kind of irregularities can be simply
eliminated using an external parameter ‘β’. Suppose
pi , pj , pk are three adjacent points in contour then
pj is considered as an irregularity when the area of
�pipjpk is less than parameter ‘β’. Fig. 13 shows

the change in contour with respect to the tuning of
parameter ‘β’. This is an optional part that can be used
if the user is giving more priority to compression than
the accuracy.

3.5. Complexity

Let the size of extracted point set be n. The Euclidean
graph construction needs O(n2) time, because while
creating the graph, each point may be connected to all
other (n-1) points. In point linking phase, from each
candidate point, choosing the next candidate point
among a set of size (n-1) costs O(n2) time. The con-
tour simplification phase requires O(n) time. So the
overall asymptotic time complexity is O(n2).

4. EMPIRICAL STUDY

The algorithm was implemented using MATLAB,
C + + and the results were displayed using OpenGL.

4.1. Qualitative Results

We have used binary images taken from MPEG7
CE Shape–1 Part B database [11] that contains
1400 images in 70 categories, to test the proposed
approach. Each category consists of 20 samples where
each sample varies from one another with respect to
rotation, size, position and image resolution. Experi-
ments were conducted on few random images as well.
Fig. 14 shows the contour of a machine part extracted
from an illuminated color image having visual cues
like texture and brightness. It is to be noted that,
when dealing with color or gray scale images, the
image has to be converted to binary before applying
our algorithm as shown in Fig. 14.

Fig. 13: Contour extracted for various values of ‘β’ from a binary image (p denotes number of pixels needed to
represent the contour).
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Fig. 14: (a) Original image of a machine part, (b) Binary image of machine part, (c) Contour of machine part
extracted by our algorithm, (d) Output of Sobel edge detector, (e) Output of Canny edge detector.

Fig. 15: Results of the proposed algorithm for some random color images taken from Caltech database [3] Left
to Right: Input image, Binarized image, Image with Gaussian noise, Output of our algorithm.

4.2. Robustness to Noise

To evaluate the performance of the approach on noisy
images, we injected appropriate amount of Gaus-
sian noise into the images taken from MPEG7 CE
Shape–1 Part B [11] and Caltech [3] databases using
some well-defined functions in MATLAB. Object con-
tours extracted by the proposed algorithm from a
few random color images are shown in Fig. 15. All
these images are first binarized and then injected
with Gaussian noises before fed into our contour
extraction algorithm as illustrated in Fig. 15.

A qualitative comparison of the results generated
by our algorithm with the results of Sobel and Canny
edge detectors reveals the strength of the proposed
approach, especially when applied to noisy binary
images as shown in Fig. 16. For all the images in
Fig. 16, our approach returns the contour with a clean
background whereas Sobel and Canny detectors fail to
return contours without background noise. The rea-
son behind the failure of traditional edge detectors is
that the noise makes a sharp transition in black back-
ground which will be misinterpreted as an edge. So,
in the result of edge detectors [4, 5] there will be the
presence of misinterpreted edges due to background
noise and hence the methods become comparatively
ineffective.

As opposed to the edge detectors, our algorithm
completely rely on proximity and orientation of

points and that is one of the major reasons why
our results are noise free. Since we are dealing with
the binary images, we restrict the intensity values
of the injected synthetic Gaussian noise to either
0 or 255. The extracted pixels with intensity value
255 contain object pixels along with some noisy
pixels which have the color value 255. As a conse-
quence, few portion of the noise is already elimi-
nated in the point extraction phase. Fig. 17 shows
an example of points extracted from a noisy image.
While constructing graph, edges are created only if
its length is less than or equal to the parameter
length l (1.415). As shown in Fig. 17, there does
not exist edges between any noisy points or between
noisy and object points because they lie a distance
greater than 1.415 apart. However, from our exper-
iments, we observed that once the Gaussian noise
goes above 70%, edges between noisy points are
created and this will affect the subsequent contour
extraction.

Overall, one can observe that the contours gener-
ated by the proposed approach preserve fine details
and features of the object pattern, especially in
the case of horse, device (Fig. 16), llama and star
fish (Fig. 15). Further, fine quality contours were
extracted from images with 70% synthetic Gaussian
noise (device in Fig. 16) which is much better when
compared to the automatic scale selection based
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Fig. 16: Comparison of our method with Sobel and Canny edge detectors in noisy images. Left to Right: Original
image, Input image with 30%, 50% and 70% Gaussian noise respectively in each rows, Output of Sobel edge
detector, Output of Canny edge detector, Result of our algorithm.

Fig. 17: Illustration of geometric graph construction in the presence of noise. Left to Right: Image with
background noise, Extracted point set, Geometric graph constructed (blue color).

method that has a capacity to cope with 10% Gaussian
noise [8].

4.3. Compression

Compression is computed by counting the num-
ber of pixels in the contours detected by each
algorithm. Graphs plotting the comparison with Sobel
and Canny edge detection techniques are shown in
Fig. 18. In Fig. 18(a), one can observe that the num-
ber pixels extracted as the contour are relatively
low by our method. Even for noisy images such as
device which has 70% synthetic Gaussian noise, our
method extracted minimal number of contour pixels
as opposed to Canny and Sobel edge detectors. The
compression ratio is computed by taking the fraction
of number of pixels in the contour extracted by our
algorithm and the same in the contour detected by

other edge detectors as follows:

Compression ratio =
number of contour pixels
in the proposed algorithm

number of contour pixels
in edge detector

Indeed, it’s a comparative compression ratio that
we have presented here. Compression ratio gives a
measure of the level of compression achieved by our
method which is found to be very high even for
the noisy images. On average, the number of pixels
reduced to 2.489% - 24.394% as shown in Fig. 18(b).

4.4. Comparison

We compare our method with two other contour
extraction techniques: a geometry based technique
(GBA) [15] and a pixel based contour tracing method
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Fig. 18: Comparison of contour extraction algorithms for various noisy images in terms of (a) number of contour
pixels and (b) compression ratio.

Fig. 19: A qualitative comparison of contours extracted by different algorithms for binary images, apple and
device Left to Right: Input image, Outputs of Geometry based algorithm, Bug followers algorithm and Our
algorithm.

called bug followers algorithm (BFA) [13, 14, 16] that
deals with binary images.

The geometry based algorithm [15] makes use
of techniques such as clustering, linking and path
simplification for contour detection and can han-
dle color/gray scale pictures. Contrastingly, though
geometry based approach that makes use of prox-
imity and orientation information of points, our
algorithm can extract only closed contours in binary
images. However, GBA requires O(n2 log n) time for
the entire computation whereas our algorithm runs in
O(n2) which is comparatively better. For feature point
extraction, GBA completely rely on Sobel edge detec-
tor, whereas our method uses color value at each pixel
for the point extraction. Geometric algorithm needs
parameters at each stage and hence heavily depen-
dent on parameter tuning. As opposed to this, our
algorithm requires parameters such as color value c
which doesn’t require any tuning (object color is evi-
dent in most of the cases and the user can supply
the color value directly), threshold parameter l is stati-
cally defined and an optional simplification parameter
‘β’. In some cases, the output of geometric algorithm
may not give the required contour as shown in the
first row of Fig. 19. In Fig. 19, for apple image, GBA

generates an open contour (as highlighted in the red
box) whereas both BFA and our method constructs the
required closed contour.

The proposed contour extraction technique dif-
fers from bug followers algorithm (BFA) [13, 14, 16]
mainly in the fact that the former is a geometry
based approach whereas BFA is a traditional pixel
based technique. In several instances, BFA requires
backtracking to produce the exact contours, which
increases the complexity of the entire process. If
backtracking is not applied, it constructs only par-
tial contours as illustrated in the second column of
Fig. 20. Table 1 reports the size of the contours (in
terms of pixels) extracted by the proposed algorithm
and BFA for a few binary images. Compared to BFA,
our algorithm generates contours which are more
compact for all the tested images.

4.5. Limitations and Future Work

One of the major limitations of the proposed
algorithm is that it is designed to work with binary
images with single object embedded in it. When
dealing with color or gray scale images, one has
to convert these images to its corresponding binary
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Fig. 20: Contours extracted by BFA and our approach Left to Right: Input image, Output of BFA without
backtracking, Output of BFA with backtracking, Output of our algorithm.

Contour size in
terms of pixels

Image Object size BFA Our Algorithm

Apple-2 34534 681 299
Classic-1 28974 873 384
Cup-1 32682 950 431
Device0-5 58526 1838 692

Tab. 1: Comparison of proposed algorithm and
bug followers algorithm in terms of contour pix-
els for images taken from MPEG7 CE Shape-1 Part
B database [11].

images. However, in some of the cases, this conver-
sion ends up in binary images with undesired loops or
regions on the objects. In such cases, contour extrac-
tion by our algorithm is difficult because false positive
object points will get extracted in the extraction phase
and subsequently, this affects the graph construction
and point linking phases.

Currently, we focus on extending this algorithm to
incorporate the following objectives:

Contour extraction from gray scale and color
images with multiple objects.

Extraction of open contours and hole boundaries
from images.

Development of an automated medical diagnosis
system using contour matching is also under our
consideration.

5. CONCLUSION

We have used a geometric approach for contour
extraction of digital binary images that is found to
be very effective and has the advantage that the
method can be applied to both vector and raster
graphics. Unlike pixel based contour extraction, our
algorithm found to extract more compact and smooth
contours and is also capable of generating con-
tours for images with considerable noise, where the
standard edge detecting algorithms like Sobel edge
detector and Canny edge detector fail. Robustness
to background noise, especially without applying any
preprocessing noise filtering methods, makes the pro-
posed approach unique and hence several image
segmentation applications dealing with input binary

images having background noise (MRI scans or satel-
lite images) will find our method very appealing and
useful. The compression ratio achieved for noisy
images by our algorithm is very high. On average,
the number of pixels reduced to 2.489% - 24.394%
(Fig. 18(b)). In our experimental study, the default
value of the threshold is found to be 1.415, which is
theoretically supported by a pixel grid analysis.
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