
1

Algorithm for the Removal of Rectangle Containment for Rectangle Spline
Generation

Les A. Piegl1, Parikshit Kulkarni2 and Khairan Rajab3

1University of South Florida, lpiegl@gmail.com
2Synopsys Inc., Parikshit.Kulkarni@synopsys.com

3Najran University, khairanr@gmail.com

ABSTRACT

Given a set of axis-aligned rectangles in the plane, this paper presents an algorithm for the removal
of rectangle containment as well as rectangle enclosures. That is, given a query rectangle Rq, this
algorithm removes all rectangles Rk , . . . , Rl from the rectangle set that are contained in Rq. It also
removes Rq if there is a rectangle Rj that encloses Rq. The algorithm, initially implemented for rectan-
gle spline generation using rectangles as building blocks, is fast, easy to implement and maintain, it
can be run on parallel machines such as GPUs at no extra cost, but it requires extra memory to store
the rectangle indexes for quick access and space partitioning.

Keywords: rectangle containment, rectangle splines, spatial data structures, GPUs.

1. RECTANGLE SPLINES INTRODUCED

NURBS curves have played a significant role in design
and manufacturing since the advent of CAD tools in
engineering. As the field matured, they found their
ways into more and more diverse applications such
as graphics, entertainment, medical modeling and the
representation of arbitrary shapes bounded by closed
curves. A NURBS curve, defined as [7]

C(u) =
n∑

i=0

PiNi,p(u)

where Pi are the control points and Ni,p(u) are the nor-
malize B-splines, is well understood and has a number
of desirable properties that account for their popular-
ity. Since this is a curve, it sweeps out a path that has
no thickness. In many applications the goal is to cre-
ate a path with some (variable) thickness, i.e. to create
an area. This is easily done with splines:

A(u) =
n∑

i=0

SiNi,p(u)

where Si represent any shape, e.g. circular discs
or arbitrary domains. In this research we are

interested in rectangle splines defined by axis aligned
rectangles:

R(u) =
n∑

i=0

Ri(Ci , wi , hi)Ni,p(u)

where the control rectangles Ri are defined by
(Ci , wi , hi), the centers, the widths and heights.
Figure 1 shows such a rectangle spline.

The rectangles connected by a dashed polygon
form the control rectangles and the spline is swept
out by a set of rectangles that change position and
width and height as the parameter moves from the
start to the end. There are many ways one can
generate such a rectangle spline; one is by putting
rectangles on the plane and using them as control
rectangles, and another is to generate a set of rect-
angles inside the shape and fitting a rectangle spline
to them. While this is a very viable way of generat-
ing areas, it turns out that in case of a dense set of
rectangles one may end up with a sizeable set of rect-
angles that are contained in one another. The removal
of such containment is highly desirable in applica-
tions like graphics, however, it is a must for spline
fitting in order to avoid a badly conditioned system
of equations.

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

mailto:lpiegl@gmail.com
mailto:Parikshit.Kulkarni@synopsys.com
mailto:khairanr@gmail.com
http://www.cadanda.com

2

Fig. 1: Rectangle spline with control rectangles and area coverage.

Fig. 2: Typical geometrical shape represented by a boundary and a set of rectangles.

2. RECTANGLE CONTAINMENT

Given a set of axis-aligned rectangles R0, . . . , Rn in
the plane, for each query rectangle Rq we are look-
ing for a set of rectangles Rk , . . . , Rl so that Ri ⊂
Rq, i = k, . . . , l. That is, we are looking for all rectan-
gles that are contained inside Rq. In order to serve a
diverse set of applications such as graphical queries,
we are also looking for a set of rectangles so that Rq ⊂
Ri , i = k, . . . , l. That is, all rectangles are sought so that
they enclose the query rectangle Rq. The algorithm
presented herein will remove both contained and
enclosed rectangles simultaneously.

This problem arises in applications where rectan-
gles are used to describe shapes. Fig. 2 shows such a
shape with a small set of rectangles covering a per-
centage of the free-form area. One way to generate
such a set of rectangles is via region growing: select a
guiding curve such as the medial axis, then for each
discretized point on the medial axis grow a rectan-
gle until it hits the boundary, i.e. until it cannot be
grown any further without leaving the boundary or

creating a skewed rectangle. Fig. 3 shows the process
for one branch of the media axis. On the left a large
set of 40 rectangles are produced via region growing
creating lots of containments. On the right all contain-
ment and enclosures have been removed to generate
15 non-containing rectangles; more than half of the
rectangles were unnecessary!

Important applications arise in graphical search
using bounding rectangles and a rectangular search
window, i.e. what is visible in a particular window,
and in clipping applications where a complicated
scene needs to be clipped using a rectangular clipping
windows and bounding boxes.

Given two rectangles R1(x1
l , x1

r , y1
b , y1

t), R2(x2
l , x2

r ,

y2
b , y2

t) and an offset distance δ, rectangle containment
is defined as follows:

R1 ⊂ R2 : x2
l < x1

l + δ ∧ x2
r > x1

r − δ ∧ y2
b

< y1
b + δ ∧ y2

t > y1
t − δ

The case R2 ⊂ R1 is defined similarly. Now given any
rectangle pair, there are three outcomes: R1 ⊂ R2, or

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

3

Fig. 3: Rectangles obtained via region growing: original rectangles (left), containment removed (right).

R2 ⊂ R1, or R1 ⊂⊃ R2, i.e. they mutually contain one
another. The mutual containment comes into play
when the rectangles are identical or nearly identical.
One or the other or both of them can be removed,
depending on the needs of the application.

3. PRIOR WORK

The literature has a number of fine algorithms for
the reporting of rectangle containment and/or enclo-
sures. One of the earliest works is due to Vaishnavi
and Wood [8] where the enclosure and containment
problem is formulated as a batch range searching
problem in 4-D and the algorithm is based on a semi-
dynamic range tree data structure. Lee and Preparata
[6] improved the space requirement of this algorithm
by transferring the problem to the point dominance
problem in 4-D and using a quadruply threaded list
with a divide-and-conquer algorithm. The rectangle
retrieval problem was investigated by Abel and Smith
[1] using quadtree decomposition and a locational
key for each rectangle. The data structure that is
applied with their algorithm is a B-tree. Rectangle
enclosures are computed by Bistiolas et al [2] using
a multi-layered data structure consisting of a combi-
nation of range and priority search trees. Gupta et al
[4] reported an algorithm with linear space require-
ment based on the 4-D dominance reporting method.
Improvements of this algorithm are found in Bozanis
et al [3] and Lagogiannis et al [5].

4. THE ALGORITHM

Given R0, . . . , Rn and an offset distance δ, compute
R0, . . . , Rm, m ≤ n so that no two rectangles in the
output set contain one another, i.e. eliminate all
containment as well as enclosures.

4.1. Data Preparation

The algorithm uses a cell data structure to hold the
indexes of rectangles that overlap a given cell. The

cell structure is computed as follows:

• Get the boundary box and the x- and y-extent
(xd , yd) of the rectangle set

• Compute the cell size size = α

√
xd ·yd

n

• Get the cell resolution (nx , ny)=(xd
size+1, yd

size + 1
)

• Allocate memory to hold (nx , ny) number of cells

Note that at this point we have an empty cell struc-
ture. Each cell will be given memory to hold rectangle
indexes when the rectangles are pre-processed. Also,
the choice of the value of α has a profound effect on
the performance of the algorithm (see below).

4.2. Pre-processing

Once the cell structure is established, each rectangle
is pre-processed into the cell-based registry, i.e. each
cell is given a list of indexes whose rectangles overlap
the cell. That is

• For each rectangle do:
◦ Get the indexes of the cells that cover the

rectangle
◦ For each cell allocate memory to store the

indexes. Keep all indexes in sorted order.

A note on memory allocation. It is tempting to use a
linked data structure to hold the rectangle indexes.
Our experience shows that dynamic memory alloca-
tion and de-allocation can be quite expensive, slowing
down the algorithm with a factor of 1.5–2.5. We had
good success with a combination of dynamic and
static memory allocation. It works as follows:

• Estimate the memory that is needed for each
cell.
• Allocate a static array to hold the indexes.
• If the array becomes too small, reallocate the

memory by adding another chunk to it.

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

4

Fig. 4: Cell structure used to register the rectangles.

With some tests and intelligent estimates memory
reallocation is done very rarely (at the expense of
wasting some of the statically allocated memory
which may have been an issue in the early days of
computing but is becoming less of a concern).

Fig. 4 shows the cell structure for the rectangles
depicted in Fig. 2. There are 144 rectangles to be reg-
istered with the cells and after the pre-processing is
complete, the number of rectangles per cell is given
in the matrix below.

⎡
⎢⎢⎢⎢⎢⎢⎣

0 4 7 10 1 0 0 0
0 5 6 4 0 0 0 0
0 3 5 2 0 0 0 0
4 7 6 4 1 0 2 5
6 8 4 5 5 6 5 6
5 5 0 0 3 6 3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

It is evident that most of the non-empty cells contain
the indexes of more than one rectangle, more pre-
cisely, on average 4 rectangles are registered with a
given cell.

4.3. Containment Elimination

After the rectangles have been pre-processed, the
algorithm is ready to eliminate containment. The
algorithm works as follows.

for each rectangle Rq do
find all cells that cover Rq
for each cell do

for each index list in the cell do
Ri ← registered rectangle with the cell
ContainmentCheck(Rq, Ri , δ)
if Ri ⊂ Rq eliminate Ri from the cell list

and the rectangle data structure
if Rq ⊂ Ri break

end
if Rq ⊂ Ri break

end

if Rq ⊂ Ri eliminate Rq from the rectangle
data structure

eliminate Rq from the cell list
end

Note that the algorithm eliminates both containment
as well as enclosures within the same loop structure.
The function ContainmentCheck looks for contain-
ments both ways as well as mutual containment. Once
the query rectangle is found to be contained, the inner
loop structure stops and the rectangle is removed
both from the rectangle data structure as well as from
the cell registry. On the other hand, if the query rect-
angle contains more than one rectangle, all of them
are found and removed from the global as well as
the local cell data structure. Because each rectangle
is registered will cells that cover the rectangles, the
query rectangle has access to all contained rectangles.
Note that the data structures used in this algorithm
are dynamic, i.e. contained and/or enclosed rectan-
gles are eliminated from rectangle as well as index
data structures.

5. THEORECTICAL ANALYSIS

In this section we give a theoretical analysis of the dif-
ferent stages of the algorithm as well as a growth anal-
ysis, i.e. how the algorithm performs as the number of
rectangles increases.

5.1. Calibration

As noted above, the choice of α, the size of a cell, has
a profound effect on the performance of the method.
Also, the size of the static array for each cell deter-
mines the amount of memory reallocations and hence
the performance. Setting these parameters is done in
two steps: the first step is calibration, i.e. for a par-
ticular application one has to run the algorithm for

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

5

a small set of values to find out which provides the
best performance. The second step is knowledge base
building, i.e. for each type of data set and for each
amount of data the appropriate parameters are stored
(a simple look-up table would do).

It is our opinion that the one-size-fits-all type algo-
rithms may not perform well in the presence of a
large variety of data. Algorithms should be endowed
with freely chosen parameters to accommodate many
different rectangle configurations. As the knowledge
base expands, the algorithm becomes smarter and
is able to perform well even if the data set changes
quite a bit. This is a biologically-inspired computing
paradigm where algorithms are allowed to learn and
to adapt; the longer they are in use, the smarter they
get and the better the performance.

5.2. Theoretical Analysis for a Given n

The theoretical performance of the algorithm is
broken down into the various components as fol-
lows:

• Data preparation. Only bounding box and sim-
ple numerical computations are done at this
stage and this is achieved in O(n) time.
• Pre-processing. Each rectangle is registered with

all cells that cover this rectangle. If on average
each cell list has k indexes, then this part is
achieved in O(n log k) time as the indexes are
kept in sorted order. The size of the index arrays
is a small percentage of the total number of
rectangles, usually around 5-15%
• Elimination. The performance of this stage

depends largely on how the rectangles are
arranged. We identified three vastly different
cases:
◦ Trivial arrangement. In this case the rectan-

gles are mutually contained, i.e. nearly iden-
tical, and the algorithm removes all of them
(minus the query rectangle) in one step. For
n− 1 rectangles the cost is (n− 1)k log k,
where k is the average length of the index
array for each cell which is kept in sorted
order (it takes O(log k) time to find the index
and O(k) to shift the elements).
◦ Well distributed. If for each query rectan-

gle the density around this rectangle is the
same, then for each query one has to check
about the same number of rectangles for
containment, i.e. containment check is done
in O(n) time. Once a contained rectangle is
found, its index has to be removed from the
cell registry which requires mk log k opera-
tions, where m is the number of rectangles
to be removed.
◦ Poorly distributed. One can create an

arrangement where the rectangles are nearly

mutually contained, i.e. for each query rect-
angle the algorithm has to check all other
rectangles for containment. This is clearly
an O(n2) process and an additional mk log k
cost is added to update the cell registry.

It is clear from the above analysis that the algorithm’s
performance is very dependent on how the rectan-
gles are distributed in space. An empirical analysis is
necessary to assess the value of the method to any
particular application.

5.3. Theoretical Growth Rate as a Function of n
and the Density

To establish a theoretical growth rate, one has to
consider two issues: the growth of the number of rect-
angles and the change of the density for each query
rectangle. The performance depends greatly on how
the rectangles are placed as the number of rectangles
increases. We consider two cases:

• The rectangles are placed while keeping the den-
sity constant, i.e. rectangles are added to the
part of the plane where no or few rectangles are
present. This is done by tiling the plane with
shapes similar to the one shown in Fig. 2 so
that there is no overlap between any two shapes.
Since the density is constant, i.e. for each query
rectangle the number of containment checks is
the same, the growth rate is O(n).
• The rectangles are placed into a confined space

so that as more of them are squeezed in, the
density increases. In this case not only the num-
ber of query rectangles increases but the num-
ber of containment checks increases as well,
e.g. for twice the number of rectangles there
may be two times more candidate rectangles in
the vicinity of each query rectangle requiring
four times more comparisons. In this case the
performance is clearly exponential.

The major contributing factor to the growth rate is
density; as more and more rectangles are packed into
the same space, the performance suffers a great deal
(as we demonstrate in the practical analysis section).

6. PRACTICAL ANALYSIS

In this section we present some numerical data to gain
a deeper insight into the working of the algorithm.
We chose to test the method on random rectangles,
Fig. 5 right, confined to a certain space, i.e. both
the number of rectangles as well the density have
been increased. Also because they are chosen ran-
domly, there may not be consistency as in shape
filling rectangles shown in Fig. 5 on the left.

Table 1 shows data for space as well as time
requirements tested on an off-the-shelf laptop with

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

6

Fig. 5: Rectangle configurations: shape filling rectangles (left), random selection (right).

8 GB of RAM, and choosing α = 10 for all tests. The
notations are as follows:

– n is the number of input rectangles
– m is the number of output rectangles, i.e. the

rectangles after containment elimination
– nx × ny is the cell resolution in x- and y-

directions
– k is the average number of indexes per cell
– tP denotes the time to take to prepare the data
– tE denotes elimination time
– tT represents total processing time

n m nx × ny k tP tE tT

1,000 592 5 ×3 179 0.005 0.031 0.036
2,000 958 6 ×4 279 0.003 0.06 0.063
4,000 1,515 9 ×5 398 0.01 0.141 0.151
8,000 2,416 12 ×7 616 0.023 0.428 0.451
16,000 3,830 17 ×10 955 0.05 1.056 1.106
32,000 5,888 24 ×14 1,574 0.094 3.66 3.754
64,000 8,909 33 ×20 2,709 0.325 14.875 15.2
128,000 13,440 47 ×28 4,831 1.164 71.359 72.523

Tab. 1: Timing results for random rectangles.

A number of notes are in order:

• The removal rate is quite high, e.g. for 16,000
rectangles 76% of the input rectangles are
removed, whereas for 128,000 the removal rate
is 89%.
• The algorithm requires quite a bit of memory to

hold the indexes of rectangles, e.g. for 16,000
rectangles the memory requirement is about 6%
of the total number of rectangles per non-empty
cell, and for 128,000 this drops to about 4%.
• For each query rectangle all rectangles that may

be contained inside this rectangle are readily
available as their indexes are registered with the
cells that cover the query rectangle. No search is
necessary.

• The growth rate of the algorithm is very good
up until about 16,000 rectangles (nearly lin-
ear). Then, because of the increased density, the
performance deteriorates rapidly.
• The preparation time is negligible: 5% for 16,000

rectangles and only about 2% for 128,000.

For a few thousand rectangles the performance of
the algorithm is very good, it exhibits a nearly linear
characteristic. The only disadvantage is space require-
ment. If this is an issue, the method may not be viable.
However, if shapes are processed one at a time, then
the memory usage is a non-issue. It turns out, how-
ever, that the extra storage requirement and the cell
data structure allow easy parallelization, which is the
subject of the next section.

7. PARALLEL IMPLEMENTATION

The proliferation of GPUs (Graphics Processing
Unit) into everyday computing opened up new
opportunities for algorithm design. GPUs are used not
only for graphics processing but also for other com-
puting tasks such as cutter path generation. The trick
is to transform the problem into a graphics problem,
solve it with a GPU and then transform the result back
to the original domain.

The cell structure provides a natural way to remov-
ing rectangle containment in parallel. The method
works as follows:

• Create a stand-alone version of the rectangle
eliminator and load it into each processor.
• Prepare the data in the main processor as

before, i.e. build the cell structure and bin each
rectangle into a set of cells.
• Group the cells into a set of sub-groups, e.g.

1-by-1 or 2-by-2, and for each group do:
◦ Collect all rectangles registered with the

group.
◦ Pass these rectangles to individual proces-

sors with an access to the global cell index
and rectangle data structures.

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

7

◦ Have the processors eliminate containment
and update the global cell and rectangle data
structures.

The issue that needs a bit of care is how to grant
access to the processors in case many of them want
to update the global (master) index and the rectangle
data structure. The main processor holds the global
cell and rectangle data structures, whereas individual
sub-processors receive only a subset of the rectangles,
e.g. for 8,000 input rectangles each processors gets
on average about 600 rectangles, and build their own
local cell structures for local elimination. Once a rect-
angle is found to be eliminated, its index is removed
from the local as well as the master cell structure (to
which the processor has access) and the rectangle is
eliminated from both the local as well as the global
rectangle arrays.

Table 2 shows timing results for a 1-by-1 sub-
array of cells, i.e. each cell is passed onto individual
processors.

∞ 64 128
n nx × ny k −core −core −core

1,000 5 ×3 179 0.0020 0.0020 0.0020
2,000 6 ×4 279 0.0025 0.0025 0.0025
4,000 9 ×5 398 0.0048 0.0048 0.0048
8,000 12 ×7 616 0.0099 0.0198 0.0099
16,000 17 ×10 955 0.0171 0.0515 0.0343
32,000 24 ×14 1,574 0.0294 0.1796 0.0883
64,000 33 ×20 2,709 0.0643 0.7074 0.3858
128,000 47 ×28 4,831 0.1376 2.8914 1.5145

Tab. 2: Timing results obtained via a GPU.

The data is interpreted as follows:

• The ∞− core means that each cell receives its
own processor, i.e. there is no shortage of pro-
cessor. For example, for 8,000 rectangles there
are 12× 7 = 84 processors, whereas for 128,000
rectangles there are 1,316 processors (47× 28)
at our disposal.
• The timing results are average processing times

since each processor receives different number
of rectangles.
• Assuming no shortage in processors, the rectan-

gle elimination problem can be solved in linear
time, as the timing results so indicate. In fact,
with a 128-core GPU the problem is tackled in
linear time up to 8,000 points.
• Once we run out of processors, the data has to

be run in batches, e.g. for 8,000 points on a 64-
core machine the rectangles are processed in 2
batches, in the first batch 64 cells are processed
and in the second the remaining 20 are handled
(12× 7 = 84 require 64 plus 20 processors).
• For a larger number of rectangles the elimi-

nation remains to be exponential after some

number of rectangles, although the timing
results are much better than for single proces-
sors (for 128,000 rectangles 1.5 seconds on a
128-core processor vs. 72 seconds on a single
processor!).

Other cell grouping can also be tested. In fact, it
is advisable to add the cell grouping to the list of
parameters that the algorithm has to entertain cus-
tomization for specific input types (in addition to the
cell size and the static array size).

8. COMPARISON

In comparing our method to previously published
results we find several differences. First, all report
worst case performances which may not be applica-
ble in the majority of practical cases. Second, there
are no implementation considerations which could
be an issue from a software engineering standpoint,
e.g. maintenance. Third, there are no practical tim-
ing results broken down to the components of the
algorithm. For example, divide-and-conquer is a very
fine method, however, the division and the merge
steps may be quite intricate resulting in complicated
implementations. Fourth, most methods use a fairly
complicated data structure. Implementing, maintain-
ing and porting such data structures may be a chal-
lenge. In the world of software systems simplicity is
king, even if it comes at a price of some extra mem-
ory requirement. Fifth, no parallel implementation is
given in any of the prior work even though the prob-
lem admits easy parallelization and the proliferation
of GPU into everyday computing requires such con-
sideration. Sixth, most data structures used are static.
Our method is dynamic and allows the insertion and
deletion of rectangles (dropping a rectangles into the
cell structure is a trivial exercise). Finally, prior works
give no considerations to tolerances. This is an impor-
tant issue as many of the applications are in the
floating point domain and run into cases of mutual
enclosures or containments that need to be handled
carefully.

9. CONCLUSIONS

We presented an algorithm for the elimination of
rectangle containments as well as enclosures with a
method that operates in 2-D and uses a simple cell-
based data structure to pre-process the rectangles
for fast elimination. The advantages of the algorithm
are: it is very simple to implement, it requires almost
no maintenance, has free parameters that allow cus-
tomizing the method to specific data types, it per-
forms quite fast up to about 10,000 rectangles and
it is easily parallelizable. The one shortcoming the
algorithm has is that it requires some extra memory,
although the only data that needs to be stored are the
indexes of the rectangles.

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

8

ACKNOWLEDGEMENTS

This work was supported in part by Synopsys, Inc.
and Najran University. All opinions, findings and
conclusions are those of the authors and do not
necessarily reflect the funding agencies or the insti-
tutions the authors are affiliated with.

REFERENCES

[1] Abel, D. J.; Smith, J. L.: A data structure and
algorithm based on a linear key for a rectangle
retrieval problem, Computer Vision, Graphics
and Image Processing, 24(1), 1983, 1–13.

[2] Bistiolas, V.; Sofotassios, D.; Tsakalidis, A.:
Computing rectangle enclosures, Computa-
tional Geometry: Theory and Applications, 2(6),
1993, 303–308.

[3] Bozanis, P.; Kitsios, N.; Makris, C.; Tsakalidis,
A.: The space-optimal version of a known
rectangle enclosure reporting algorithm,

Information Processing Letters, 61(1), 1997,
37–41.

[4] Gupta, P.; Janardan, R.; Smid, M.; Dasgupta, B.:
The rectangle enclosure and point-dominance
problems, International Journal of Computa-
tional Geometry and Applications, 7(5), 1997,
437–457.

[5] Lagogiannis, G.; Makris, C.; Tsakalidis, A.: A
new algorithm for rectangle enclosure report-
ing, Information Processing Letters, 72(5–6),
1999, 177–182.

[6] Lee, D. T.; Preparata, F. P.: An improved
algorithm for the rectangle enclosure problem,
Journal of Algorithms, 3(3), 1982, 218–224.

[7] Piegl, L.; Tiller, W.: The NURBS Book, Springer-
Verlag, 1997.

[8] Vaishnavi, V.; Wood, D.: Data structures for
the rectangle containment and enclosure prob-
lems, Computer Graphics and Image Process-
ing, 13(4), 1980, 372–384.

Computer-Aided Design & Applications, 12(1), 2015, 1–8, http://dx.doi.org/10.1080/16864360.2014.949566
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

	1. RECTANGLE SPLINES INTRODUCED
	2. RECTANGLE CONTAINMENT
	3. PRIOR WORK
	4. THE ALGORITHM
	4.1. Data Preparation
	4.2. Pre-processing
	4.3. Containment Elimination

	5. THEORECTICAL ANALYSIS
	5.1. Calibration
	5.2. Theoretical Analysis for a Given n
	5.3. Theoretical Growth Rate as a Function of n and the Density

	6. PRACTICAL ANALYSIS
	7. PARALLEL IMPLEMENTATION
	8. COMPARISON
	9. CONCLUSIONS
	Acknowledgements
	References

