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ABSTRACT

The performance of Hybrid Electric Vehicles (HEVs) is strongly affected by their powertrain control
strategies, in particular when complex architectures are concerned. Therefore the purpose of this
paper is to analyze, through numerical simulation, different methodologies to develop an energy man-
agement strategy aiming to minimize the overall CO2 emissions of the vehicle. In order to perform
a comprehensive comparison, different optimization algorithms were selected among the available
solutions in the control theory. Foremost a global optimization strategy, the Dynamic Programming
(DP), was used to benchmark the performance of the energy management systems. Then a local opti-
mization strategy, the Equivalent Consumption Minimization Strategy (ECMS), was evaluated, to prove
its suboptimal performance and to evaluate the possibility to be implemented on a real Engine Con-
trol Unit (ECU). Finally, the potential of heuristic control techniques was evaluated due to their low
computational requirements and since they represent the most common solution in real applications.
The analysis focused on the case study architecture of the Chevrolet Volt, for which a Simulink model
was built and tested on both regulatory driving cycles and real world driving conditions, emphasizing
pro and cons of each method.

Keywords: hybrid electric vehicle, control strategies, Matlab/Simulink.

1. INTRODUCTION

Thanks to the exponential grow of computational
power, ground transportation industry has accepted
the reality that fast, efficient, reliable and cost effec-
tive powertrain and vehicle development necessitates
the use of numerical simulation at every stage of the
design process.

In particular, Hybrid Electric Vehicles (HEVs) are
nowadays widely investigated as effective ways to
improve the efficiency of the powertrain and thus to
reduce vehicular CO2 emissions, but their potential
can be fully exploited only through the careful devel-
opment of proper Energy Management Systems (EMS),
capable of achieving an optimal partition between
the different power sources available on board of the
vehicle.

Computer Aided Engineering (CAE) techniques
play therefore a fundamental role in the selection,

design and development of energy management
strategies of HEVs, especially for complex hybrid
architectures: different approaches will therefore be
analyzed in this paper through numerical simulation,
aiming to develop an energy management strategy
capable of minimizing the overall CO2 emissions of
a complex HEV.

2. ENERGY MANAGEMENT STRATEGIES FOR
HEVS OVERVIEW

The main advantage of using a Hybrid Electric Vehi-
cle is the additional degree of freedom that can be
obtained due to the presence of an additional energy
reservoir – the electric battery – besides the fuel tank.
This implies that, at each instant of time, the power
needed by the vehicle can be provided by either one
of these energy sources, or by a combination of the
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two. While in a conventional vehicle the driver decides
the instantaneous power delivery through brake and
accelerator pedals, and his requests are translated
into actions by low-level controllers, in a hybrid vehi-
cle, since there are more power sources available, it is
necessary to introduce an additional layer, the energy
management system, which decides the power split
between the different actuators (typically between the
Internal Combustion Engine - ICE and the Electric
Motors).

The choice from among all the available power-
split combinations depends on the actual objective
of the hybridization (i.e. minimization of the fuel
consumption), which can usually be defined as the
minimization of a given cost function. This process
represents a typical optimal control problem that
can usually be addressed through several methodolo-
gies which can differ in performance, computational
requirements and computational efforts [9,14].

Generally, hybrid powertrain control strategies can
be classified into the following three categories [13]:

• Global optimization strategies, (with full a-
priori knowledge), in which the dynamic nature
of the system is considered for optimization and
an optimal solution is found over a predefined
driving cycle, which must be known a-priori.
For this reason, and for the high computational
effort requested, these strategies can only be
used for benchmarking, and to gain insights for
the development of simpler and implementable
strategies, as in the present work [2].

• Local optimization strategies, in which the
problem of the energy management optimiza-
tion is translated into the instantaneous mini-
mization of a pre-defined cost function, taking
into account both the engine fuel consumption
and the use of the electrical energy stored into
the battery.

• Heuristic strategies, which are based on a set
of rules, aiming to keep the internal combustion
engine operating conditions within the region
with highest efficiencies. These are the most
common strategies since thanks to their low
computational requirements they can be easily
implemented in an Engine Control Unit (ECU).

In the present study, a representative strategy
was selected among each of these categories to
develop a powertrain controller targeted towards
the overall CO2 emissions minimization of a com-
plex HEV. Among the global optimization strate-
gies the Dynamic Programming (DP) was selected
to assess the ideal performance of the tested vehi-
cle while the Equivalent Consumption Minimization
Strategy (ECMS) and the Rule Based (RB) approach
were selected as the most promising techniques
among the other two categories. The controller per-
formance was then evaluated on a virtual test bench,

Matlab/Simulink based, able to reproduce the vehicle
behavior, which was provided by the coordinators of
the HEV Control Benchmark competition of the 2012
IFAC Workshop on Engine and Powertrain Control
Simulation and Modeling [8].

The three selected energy management strategies
will be briefly introduced and discussed in the follow-
ing paragraphs.

2.1. Dynamic Programming

Dynamic Programming generates a numerical solu-
tion for an optimal control problem and it gives
sufficient conditions for the global optimality [2]. DP
is based on Bellman’s principle of optimality and it
is capable of determining the optimal solution to the
discretized problem. The need for a backward proce-
dure means that the solution can be obtained only off-
line, for a driving cycle known a-priori, and therefore
it is not possible to use DP for an online imple-
mentable solution; furthermore, the high computa-
tional load makes any DP optimization prohibitive on
typical onboard control unit.

Nevertheless it can be used to evaluate the upper
limit of the fuel economy potential of a hybrid vehicle
and extract rules for real-time controllers.

2.2. Equivalent Consumption Minimization
Strategy

In the ECMS the global optimization problem is
reduced to a local optimization problem, solved at
each instant [11]. This strategy is based on the con-
cept that in a hybrid vehicle the usage of the electric
power can be associated with an equivalent fuel con-
sumption: the equivalent future fuel consumption
(which will be needed to recharge the battery, when-
ever the electric power is used for vehicle propulsion)
can be summed to the present real fuel consumption
to obtain the instantaneous equivalent fuel consump-
tion:

ṁeqv = ṁf + ṁbatt = ṁf + s • Pbatt

LHV
(1)

where ṁf is the engine instantaneous fuel consump-
tion (fuel mass flow rate), LHV is the fuel lower heat-
ing value (energy content per unit of mass), ṁbatt is
the virtual fuel consumption associated with the use
of the electrical rechargeable energy storage system,
Pbatt the power delivered by the electric actuator(s),
s is an equivalence factor. This latter parameter is
representative of the future efficiency of the battery
recharge, i.e. it translates into an equivalent fuel con-
sumption the usage of the electrical energy stored
into the battery. As a result, also the ECMS implic-
itly relies on some information about future driving
conditions in order to tune the equivalence factor and
fully exploit hybridization potential.
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2.3. Rule-based Strategy

It relies on sets of empirical rules (i.e. thresholds)
defined analyzing the performance maps of the
engine and it chooses the power split among the
energy sources by observing the operating conditions
of the vehicle. This approach is computationally effi-
cient and suitable for an on board CPU, although it
usually generates results quite far from the optimal-
ity. Its calibration, in addition, could be quite difficult
and it strongly depends on the driving conditions.

3. CASE STUDY DESCRIPTION

3.1. Case Study Vehicle

The Chevrolet Volt was selected as the case study
vehicle, because of its sophisticated powertrain which
makes the Volt a plug-in complex hybrid vehicle, and
therefore an extremely challenging test case for the
development of energy management strategies. The
architecture powering the Chevrolet Volt consists in
a power-split, planetary-based system, named Voltec
and shown in Fig. 1.

Three clutches (C1, C2, C3) allow connecting or
disconnecting the Internal Combustion Engine, the
generator (GEN) and the main traction machine or
motor (MOT).

The powertrain can operate in the following modes
[5,6,12]:

(1) One-motor EV - Mode 1 (C1 locked, C2 open,
C3 open, engine off). MOT alone propels the
vehicle, powered by the battery.

(2) Two-motor EV - Mode 2 (C1 open, C2 locked,
C3 open, engine off). In this case, GEN acts on
the planetary ring through C2, thus changing
the gear ratio between MOT and the powertrain
output.

(3) Range-extender mode - Mode 3 (C1 locked, C2
open, C3 locked, engine on). This is a tradi-
tional series-HEV mode: the engine and gener-
ator are connected and produce electric power;
MOT alone propels the wheels.

(4) Power-split mode - Mode 4 (C1 open, C2 locked,
C3 locked, engine on). In this mode, the three
machines are all connected together with a
variable speed ratio that depends on the gen-
erator speed. This mode allows transmitting
mechanical power directly from the engine to
the wheels, thus resulting in an overall higher
efficiency than a pure series mode.

The main features of the powertrain are summarized
in Table 1.

3.2. Vehicle Modeling Approach

In order to assess the performance of the differ-
ent controllers, multiple modeling approaches can

Fig. 1: Powertrain architecture of the Chevrolet Volt.
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ICE
Engine Type S.I.
Displacement 1.4 L 4 cyl.
Max Power 63 kW@5000 RPM
Max Torque 130 Nm@4000 RPM

Electric Generator Data (GEN)
Max Power 65 kW
Max Torque 92 Nm
Max Speed 6000 RPM

Electric Motor Data (MOT)
Max Power 118 kW
Max Torque 370 Nm
Max Speed 9500 RPM

Battery Data
Total Energy 16 kWh

Tab. 1: Main Powertrain Characteristics

be adopted to describe the vehicle. However, a high
level of detail, able to describe the dynamic behav-
ior of each component of the powertrain [10], is not
the objective of the present work. Hence, the chosen
simulation model follows a “quasi-static” approach: a
driver model (typically a Proportional Integral Deriva-
tive, PID) compares the target vehicle speed with the
actual speed and generates a power demand profile
in order to follow the target, by solving the longitudi-
nal vehicle dynamics equation; the Internal Combus-
tion Engine and the electric machines are described
by performance maps, obtained by means of exper-
imental measurements under steady state operat-
ing conditions. This simulation approach has been
demonstrated to be appropriate for the evaluation of
instantaneous fuel consumption of light-duty vehicles
over the most common regulatory driving cycles [3].
In order to exploit a Matlab Function developed by
the ETH of Zurich to run the DP optimization [15],
a simpler model of the vehicle was also developed
following a kinematic approach [10].

3.3. Tested Driving Cycles

The design of the energy management systems and
the benchmark of their performance were performed

in different driving conditions considering not only
typical regulatory driving cycles (such as NEDC, WLTP,
US06 etc.), but also real world driving conditions since
the benefits achievable through the hybridization on
the regulatory test procedures could significantly dif-
fer from the ones recorded in real world operations.
For the sake of brevity, only the results concerning
two of the real world driving cycles will be presented
here below.

• Aachen Driving Cycle. It was recorded in the
city center of the German city of Aachen, and
it was chosen as representative of typical real
world urban driving condition in a European
city. The vehicle speed pattern depicted in
Fig. 2(a) clearly shows frequent start & stop
phases, quite important accelerations (with a
maximum acceleration equal to 4.66 m/s2, sig-
nificantly higher than NEDC maximum accel-
eration, which is equal to 1.042 m/s2) and an
average speed of 42 km/h. The cycle is repeated
three times, for a total 45 kilometers length, and
does not show any significant altitude variation.

• Arco-Merano Driving Cycle. It was recorded
on the Italian Alps going from the city of
Arco to the city of Merano, near Trento, in
Northern Italy, and it was chosen as represen-
tative of extra-urban driving conditions with
significant altitude variations, with extremely
demanding uphills and downhills, as shown
in Fig. 2(b). This pattern, which is completely
different from the common regulatory driv-
ing cycles, makes the Arco-Merano a highly
challenging test case for the assessment of
the energy management strategies performance,
especially because of its altitude variations. This
cycle shows a total length of 158 kilometers, an
average speed of 52 km/h, a maximum acceler-
ation equal to 5.66 m/s2 and a maximum grade
of 8 %.

Fig. 2: Real world Driving cycles considered in the analysis – (a): Aachen driving cycle; (b): Arco-Merano driving
cycle.
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3.4. Optimization Target

Although Hybrid Electric Vehicles (HEVs) are mostly
being developed for reducing fuel consumption, for
plug-in architectures such an approach may not be
suitable since it neglects the energy consumption
related to the battery, which cannot be considered an
energy buffer, like in a charge sustaining HEV, but is,
on the contrary, an additional energy source which
has to be recharged from the power grid. A possible
solution to take into account both energy contribu-
tions to vehicle motion (i.e. from the fuel tank and
from the battery) is to minimize the overall CO2 emis-
sions of the vehicle: as shown in Eq. 2, in addition
to the CO2 produced by the engine, a second term
related to the battery discharge and to the technology
mix used to produce the electricity supplied by the
grid has to be considered:

J = μCO2

μfuel

∫ T

0
ṁf (t, u (t)) dt + 1

ηchg • ηgrid
• CIE•

�SOC • Ebatt (2)

where J is the cost-to-go function, μCO2
, and μfuel are

the molar mass of CO2 and fuel respectively, ṁf is
the instantaneous fuel consumption of the engine,
u(t) is the vector of the control variables, T is the
duration of the vehicle mission, ηchg is the average
battery charging efficiency, ηgrid is the transmission
and distribution efficiency of a typical grid, Carbon
Intensity of the Electricity (CIE) is the average CO2

emission related to the production of the electrical
energy that is supplied by the grid to recharge the bat-
tery (a value of 326 g/kWh was assumed in this work
as representative of the average for the European
countries belonging to the Organization for Economic
Co-operation and Development (OECD) for the year
2009 [7]), ΔSOC is the variation of the State Of Charge
from the beginning to the end of the vehicle mis-
sion, and Ebatt is the total electrical energy that can
be stored in the battery. As far as batteries charging
and grid efficiencies are concerned, according to the
data reported in literature [1,4] grid transmission and
distribution losses were estimated to be equal to 6%
of the generated electrical power, while for the lithium
batteries considered in this work, a charging efficiency
equal to 86 % was considered [16].

4. SIMULATION RESULTS

After the preliminary evaluation of the optimal per-
formance achievable with an offline optimization
through the DP, the potential of the two imple-
mentable control algorithms was verified exploiting
the Simulink virtual test bench.

4.1. Benchmark Strategy: Dynamic Programming

An extensive set of DP simulations was performed in
order to find the optimal driving strategy for several
different driving conditions.

Fig. 3: DP results: SOC vs. Distance (top), Altitude vs. Distance (bottom).
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Driving Fuel Economy Engine CO2 Battery CO2 Total CO2
Cycle [l/100km] Emissions [g/km] Emissions [g/km] Emissions[g/km]

Arco – Merano Cycle 2.8 65 25 90
Aachen Cycle 1.8 42 40 82

Tab. 2: Fuel consumption and CO2 emissions (DP results).

Fig. 4: Powertrain operating modes as a function of vehicle speed and traction torque request.

As shown in Fig. 3, as far as the Aachen Cycle is
concerned, the DP manages the powertrain trying to
achieve a linear discharge of the battery along the
cycle. Since the CO2 specific emission of the engine
(about 800 [g/kWh] on average) is significantly higher
in comparison with the average CIE of industrialized
countries (see section 3.4), the DP exploits the bat-
tery as much as possible, trying to reach the minimum
SOC at the end of the trip. On the contrary, the par-
ticular altitude pattern of the Arco-Merano cycle, with
two strong downhills, leads to a SOC evolution which
is no more linear with the travelled distance. In this
case the DP prefers to collect all the CO2 saving com-
ing from the usage of the battery during the first half
of the cycle (when the powertrain provides power to
the wheels) and then to recover the kinematic energy
of the vehicle during the downhill. Moreover it is
eye-catching that at the end of the driving cycle the
battery is no more fully depleted. As a matter of fact,
since a strong downhill occurs just before the end of
the trip, the only chance to reach the lower limit of
the SOC at the end of the mission would have been to
push the discharge of the battery below the lower SOC
limit before the last downhill, but since the violation
of the minimum SOC limit is prohibited, the best the
DP can do is to reach the minimum SOC immediately
before the last downhill.

The CO2 emissions results obtained by the DP over
the two driving cycles are shown in Table 2: it can
be noticed that the full exploitation of the hybrid
powertrain potential in terms of CO2 emissions reduc-
tion achieved by the DP is quite impressive, since,
even considering real world and highly challenging
cycles, and even by taking into account the CO2

emissions related to the battery recharge, remarkable
CO2 emissions figures, all below 90 g/km are reached.

As far as the hybrid mode selection operated by
the Dynamic Programming is concerned, it can be
noticed that it is strongly related to the vehicle speed
and to the driver torque request, as depicted in Fig. 4,
at least for the Aachen cycle, while on the Arco-
Merano the Dynamic Programming strongly exploits
the a-priori knowledge of the driving profile and no
clear patterns can be identified in the mode selection
on the basis of vehicle speed and driver demand.

4.2. Implementable Strategies

4.2.1. Rule Based

As for the DP, the rule-based strategy should aim to
fully discharge the battery at the end of the driving
cycle. Since no information about the future is avail-
able, this target could be approached by setting a
certain trip length estimate, and then trying to achieve
a linear discharge of the battery over the travelled
distance, through a combination of pure EV mode
and Hybrid operations. Since the powertrain of the
Chevrolet Volt can operate in four modes two decision
levels are required: first, the engine switch on has to
be defined by means of a threshold level of the State
Of Charge; then, the state of clutch 1 and clutch 2 has
to be set depending on the vehicle speed.

In particular in pure electric drive the choice
between mode 1 and mode 2 is based on the efficiency
of the electric motor and of the generator. Because
of its higher efficiency the generator (mode 2) should
generally be preferred, but due to the kinematic
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Fig. 5: RB – State Of Charge, operating mode and altitude profile as a function of distance.

relationships of the planetary gear set and to its lower
maximum torque, it cannot be used to fulfill all the
driver’s requests.

On the other hand, the operation of the internal
combustion engine in modes 3 and 4 is based on the
battery SOC and vehicle speed. In mode 3 the engine
will always operate at its best efficient point for each
power request, while due to the mechanical coupling
with the wheels, this is not possible in mode 4. So an
extra rule on vehicle speed has to be implemented to
ensure that the engine is kept operating at its high
efficiency region.

Looking at the State Of Charge pattern shown in
Fig 5, a Continuous Discharge, Continuous Charge
(CD-CC) behavior can be clearly distinguished, with
pure electric driving being used at the first part of
the cycles, until the minimum SOC is reached after
a target distance of about 70 km has been travelled.
However, it can clearly be noticed that the altitude
profile of the Arco-Merano cycle influences the Con-
tinuous Charge phase, because the downhill parts
allow a significant regeneration of the vehicle kinetic
energy, so that the operation of the engine is not
needed.

In order to evaluate the computational require-
ments of the RB strategy, the computational time

required for the simulations was estimated. In
particular, on a PC equipped with an INTEL i7 3.4 GHz
and 16 GBs of RAM, the simulation time for the RB
control strategy was about 2000 times faster than the
real time.

4.2.2. ECMS

As already mentioned in section 2.2, the equivalence
factor s plays a fundamental role, strongly affecting
the effectiveness of the ECMS. If it is too high, an
excessive cost is then attributed to the use of the elec-
trical energy and therefore the hybridization potential
will not be fully exploited; if it is too low, the oppo-
site happens and the battery will be depleted too
soon. Since the optimal value of the equivalence fac-
tor is different for each driving cycle, the tuning is
only possible with a-priori knowledge of the cycle.
To make online implementation possible, the equiv-
alence factor must be adapted during a driving cycle.
In this work the adaptation of the equivalence factor
is performed in the form of PI feedback (Proportional
and Integral) on the State Of Charge, using a refer-
ence signal which decreases linearly with the travelled
distance.

Fig. 6: ECMS – State Of Charge, operating mode and altitude profile as a function of distance.
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Fig. 7: RB vs. ECMS – Operating mode as a function of vehicle speed and driver torque request.

Control Driving Fuel Economy Total CO2 �

Strategy Cycle [l/100km] Emissions [g/km] [%]

ECMS Arco – Merano Cycle 3.0 92 +2%
Aachen Cycle 2.5 91 +11%

Rule Based Arco – Merano Cycle 3.2 93 +3%
Aachen Cycle 2.3 84 +2%

Dynamic Programming Arco – Merano Cycle 2.8 90 [−]
Aachen Cycle 1.8 82 [−]

Tab. 3: Fuel consumptions and CO2 emissions for the different energy management
strategies.

According to Eq. 1, the strategy determines the
equivalent fuel consumption for the entire range of
power splits between engine, electric motor and gen-
erator for each mode. The operating point with the
lowest instantaneous equivalent fuel consumption is
then selected.

As depicted in Fig. 6, while over the Aachen cycle
the target of achieving a linear discharge of the bat-
tery over the travelled distance is pretty well matched,
in the Arco-Merano cycle, the steep downhills in the
second portion of the trip lead the ECMS to chose
mainly the two electric modes for this segment, using
instead the Internal Combustion Engine (enabling
mode 3 and 4) in the first segment after about 20 km
from the beginning.

In this case, the high volume of data which have
to be processed in order to perform the local opti-
mization strongly affects the simulation time which,
however, remains still 10 time faster than Real Time.

4.2.3. RB vs. ECMS

Even though the two control strategies operate
according to different principles, thus excluding the
possibility of a direct comparison, few similarities can
be pointed out: thanks to the kinematic constrains of
the powertrain, the same hybrid modes tend to be
selected depending on the torque and speed required,
leading to comparable mode selection patterns, as
shown in Fig. 7.

A clear transition between mode 1 and mode 2
can be noticed at a driver torque request thresh-
old level of about 500 Nm, which is also the max-
imum torque that the generator can deliver to the
planetary gear set. The dependence of the selec-
tion of mode 3 and mode 4 on vehicle speed is
shown by the minimum vehicle speed at which mode
4 is active, which is around 55 km/h. The maxi-
mum torque of the generator also limits the oper-
ation in mode 3 and 4, so that mode 3 will be
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active only for low vehicle speeds and high torque
demands.

As far as CO2 emissions are concerned, although
the worsening respect to the DP results was not neg-
ligible, the two tested controllers were capable of
achieving performance levels comparable with the DP
benchmark, without any a-priori knowledge of the
mission profile. Although better results on both driv-
ing cycles were expected to be reached by the ECMS,
due to its sub-optimality, the RB achieved lower CO2
emissions on the Aahen cycle. This behavior has to
be attributed to the adaptation algorithm which was
chosen for the equivalence factor s: in order to obtain
satisfactory results on different kind of driving cycles,
a trade-off was chosen in the settings for the s fac-
tor adaptation, thus sacrificing the performance over
specific cycles.

5. CONCLUSIONS

In this work a virtual test bench methodology,
Simulink based, was employed to assess, through
numerical simulation, the performance of different
powertrain control strategies for a complex Hybrid
Electric Vehicle in order to minimize its CO2 emis-
sions.

The design of energy management system was
firstly addressed through the Dynamic Programming,
in order to establish the optimal performance achiev-
able by the vehicle.

Two implementable control strategies, a Rule
Based and an Equivalent Consumption Minimization
Strategy were then tested in different driving con-
ditions and benchmarked against the DP. The main
findings can be summarized as follows.

• The analysis of the Dynamic Programming
results showed that a linear discharge of the
battery over the travelled distance represents
the optimal strategy only for vehicle missions
without altitude variations.

• Both implementable powertrain control strate-
gies achieved satisfactory results on the tested
driving cycles if compared with the benchmark
established by the Dynamic Programming.

• Despite the good results achieved on the tested
driving cycles, the performance of the ECMS
were strongly affected by the adaptation law of
the equivalence factor s.

• Rule based control techniques were proved to
be a good compromise between the achievement
of optimal performance and the computational
efforts.
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DEFINITIONS/ABBREVIATIONS

CAE Computer Aided Engineering

CIE Carbon Intensity of Electricity

DP Dynamic Programming

ECMS Equivalent Consumption Minimization Strategy

ECU Engine Control Unit

ETH Eidgenössische Technische Hochschule

EV Electric Vehicle

GEN Generator

HEV Hybrid Electric Vehicle

ICE Internal Combustion Engine

IFAC International Federation of Automatic Control

LHV (Fuel) Lower Heating Value

MOT Motor

NEDC New European Driving Cycle

PC Personal Computer

pHEV plug-in Hybrid Electric Vehicle

PID Proportional Integral Derivative

RAM Random Access Memory

RB Rule Based

SOC State of Charge

US06 United States Supplemental Federal Test Procedure

WLTP Worldwide harmonized Light duty vehicles Test Procedure
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