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ABSTRACT

This paper proposes an algorithm for calculating the directional projection of parametric curves onto
B-spline surfaces. It consists of a second order tracing method with which we construct a polyline
to approximate the pre-image curve of the directional projection curve in the parametric domain of
the base surface. The final 3D approximate curve is obtained by mapping the approximate polyline
onto the base surface. The Hausdorff distance between the exact directional projection curve and
the approximate curve is controlled less than the user-specified distance tolerance. And the continu-
ity of the approximate curve is εT − G1, where εT is the user-specified angle tolerance. Experiments
demonstrate that our algorithm is faster than the existing first order algorithm.

Keywords: directional projection, B-spline, curves on surfaces, approximation.

1. INTRODUCTION

Directional projection of curves onto surfaces is
widely implemented in CAD (computer aided design)
systems [3,12]. It plays fundamental roles in many
operations, for example surface cutting, model
designing, etc. It can also be utilized as a tool for con-
structing curves on surfaces. Given parametric curve
P(t) and surface S(u, v) in 3D space, the directional
projection of P(t) onto S can be defined by the direc-
tional projection of the points of P(t) onto S. Letting
p denote an arbitrary point on P(t), which is called the
test point, the directional projection of p onto S is a
set of points q on S such that the vector (q − p) is par-
allel and in the same direction with a given vector Dir ,
which can be expressed as follows:

(q − p) × Dir = 0,

and (q − p) · Dir > 0 holds. As we move the test point
p along P(t), the motion of q results in a set of points
on S, and that is the directional projection curve (see
Fig. 1.).

Denote the directional projection curve by Q (t). To
get Q (t), first order algorithm were proposed in [16].
They derived the first order differential equation sys-
tems. By solving the system with numerical methods,
they got a sequence of points along Q (t). Then the

approximate projection curve could be obtained using
the interpolation method on the point sequence.

There are some drawbacks in the first order
algorithm above. First, the step length of the points
they got along Q (t) is not well controlled (just by a
constant parametric increment), which results in the
uneven distribution of the points, and directly impact
on the approximation result. Second, the approxi-
mate curve does not lie completely on S, which is not
acceptable for many CAD applications such as surface
blending and surface-surface intersection [19]. The
approximation precision of the approximate curve
cannot be controlled. Moreover, they cannot deal with
the “jumping” projection case (this will be introduced
in Subsection 3.4).

In order to overcome the drawbacks of the first
order algorithm, we provide an algorithm dealing
with the directional projection of parametric curves
onto B-spline surfaces, which approximates the exact
directional projection curve Q (t) with a piecewise
curve on S. And this is similar to our published
method [13], in which we deal with the orthogo-
nal projection of parametric curves onto B-spline
surfaces.

According to the definition of the directional pro-
jection, the projection of a curve onto a surface can
be regarded as the projections of every point of the
curve onto the surface. And this is actually related
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Fig. 1: The definition of the directional projection.

to the intersections of lines and surfaces, which is
also one of the key techniques that we will apply in
our algorithm, and of which we will make brief survey
below.

1.1. Line Surface Intersection

The intersection of line and surface is the funda-
mental problem in curve surface computation, and
is of great use in geometric modeling, robotic tech-
niques, collision detections, etc [14]. The subdivision
method proposed by Whitted [11,17] was firstly uti-
lized to solve this problem, which is very easy and of
high robustness. However, when elevating the preci-
sion requirement, the efficiency of this method will
become low. As a transformation of the subdivision
method, Nishita et al. [9] proposed the Bézier clip-
ping method, which recursively divide the surface into
regions that may contain the solution, and regions
that do not contain the solution.

Generally speaking, the intersection of line and
surface can be reduced into the solving of a nonlin-
ear equation system. As a classic method, Newton-
Raphson method was widely used in calculating the
intersection of line and surface [1,2,5,8,10,14,15,18].
The choice of the initial is very important for Newton-
Raphson method to converge reliably. As a result, on
one hand, some researches on whether the Newton-
Raphson will converge with a given initial value were
proposed. Toth [5] determined the converging inter-
val of the Newton-Raphson method by using interval
analyzing techniques. Lischinski and Gonczarowski
[4] made use of the consistency of the surface and
improved Toth’s method [5]. With the help of Kan-
torovich detection, Srijuntongsiri and Vavasis [14] can
determine whether the convergence order of Newton-
Raphson method is second order or not. On the
other hand, some researchers considered how to pro-
vide a good initial value. Generally, they subdivide
the surface recursively until every surface patches
are flat enough, and the intersection points of the
line and the bounding boxes of the surface patches
are chosen as the initial value [1,2,8,10,18]. Wang
et al. [15] combined the Bézier clipping method and
Newton-Raphson method together.

2. OUTLINE OF OUR ALGORITHM

First, some symbols which will be used all through the
paper will be introduced. In 3D space, given a para-
metric test curve P(t) where t ∈ [m, n], a normalized
projection direction vector Dir and a B-spline base
surface S(u, v) defined by:

S(u, v) =
nu∑
i=0

nv∑
j=0

Np
i (u)Nq

j (v)Pi,j ,

where u ∈ [a, b], v ∈ [c, d], Pi,j are the control points,
Np

i (u) and Nq
j (v) are the pth-degree and qth-degree

B-spline basis functions, respectively (see Fig. 2.).

Fig. 2: Surface of the stomach of Venus: the origi-
nal B-spline surface, the test curve and the projection
direction.

We denote the directional projection curve of P(t)
onto S by Q (t). Since Q (t) lies on S, there exists a
pre-image curve q(t) = (u(t), v(t))T of Q (t) in the para-
metric domain of S and Q (t) = S(u(t), v(t)) holds. We
suppose that Q (t) is at least G1 continuous and q(t)
is in Bézier representation.

We provide an algorithm which generates an
approximate curve of Q (t) on S. First, we construct
a polyline (a continuous curve composed of one or
more line segments) to approximate q(t) in the para-
metric domain of S, taking the Hausdorff distance
and angle tolerances into account. Then the final 3D
piecewise approximate curve is obtained by mapping
the approximate polyline onto S. The Hausdorff dis-
tance between Q (t) and the final approximate curve is
less than εD . And the continuity of the final approx-
imate curve is εT − G1, which means that for any
pair of adjacent curves in a piecewise curve, the
angle between the end derivatives at the mutual point
of them is less than εT . Here εD and εT are the
user-specified tolerances. The main algorithm flow is
described as follows:
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1. Compute the directional projection of the
starting point of P(t) onto S with the line
surface intersection method [15].

2. Based on the projection point, with a second
order tracing method, an array of points along
q(t) is derived. Set the array of points as the
vertices, and the initial approximate polyline
is obtained in the parametric domain of S.

3. According to the user-specified Hausdorff dis-
tance tolerance εD , discrete points are sampled
at specified positions on q(t) and added into
the approximate polyline so as to guarantee
that the Hausdorff distance between the final
approximate curve and Q (t) is less than εD .

4. According to the user-specified angle tolerance
εT , split q(t) at specified position to make sure
that the final approximate curve is at least εT −
G1 continuous.

5. After the steps above, the final approximate
polyline in the parametric domain of S is
obtained. Map the polyline onto S using blos-
soming techniques [6,7] and the 3D approxi-
mate curve of Q (t) is obtained.

The rest of the paper is organized as follows.
Section 3 introduces the second order tracing method,
and constructs the initial approximate polyline in the
parametric domain of S. In Section 4, the approxima-
tion precision and the continuity of the final approx-
imate projection curve are controlled, using our pub-
lished method [13]. Section 5 shows the experimental
results and Section 6 concludes the paper.

3. CONSTRUCTING THE INITIAL APPROXIMATE
POLYLINE OF THE DIRECTIONAL PROJECTION
IN THE PARAMETRIC DOMAIN OF S

First, the initial approximate polyline is to be con-
structed in the parametric domain of S with our sec-
ond order tracing method, which can be summarized
in the following steps:

1. Compute the first directional projection of the
points on P(t) onto S, and take the projection
point as the current tracing point.

2. Compute the first and second order derivatives
of q(t) at the current tracing point in the para-
metric domain of S and locally approximate
q(t) with the second order Taylor polynomial.

3. Get the parametric increment using the con-
stant arc length increment strategy. Then the
new test point on P(t) and the estimated posi-
tion of the next tracing point are obtained.

4. Refine the accuracy of the estimation with the
Newton-Raphson method. Connect the result
point of the refinement and the current trac-
ing point with a line segment, and add it at
the end of the approximate polyline. Take this
refinement result point as the new tracing
point.

5. Repeat steps 2 ∼ 4 until the test point we
get reaches the end of P(t) and the initial
approximate polyline is obtained.

3.1. Preparation for Tracing

Suppose P0 to be the starting point of P(t). To start
the tracing we need to compute the directional pro-
jection points of P0 onto S(u, v). For these points lies
on a line L, which passes P0 and is parallel with Dir,
so we derive these points utilizing line surface inter-
section method. We first divide the B-spline surface
S(u, v) into several Bézier surface patches (see Fig. 3.).
Then we can just take advantage of the division result
to compute the directional projection of P0. And it can
be figured out in the following three steps:

1. First we take the surface patches, whose con-
trol polygons intersect with L, as the candidate
surface patches. According to the convex hull
ability of Bézier surfaces, other surfaces can
be pruned. So we can reduce the range of the
computation.

Fig. 3: Surface of the stomach of Venus: (a) the original B-spline surface; (b) the division result and the candidate
surface patch.
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2. Then for every candidate surface patch, use
the line surface intersection method [15] to
compute the intersection of L with it. And each
intersection point is taken as one of the can-
didate intersection points of L with the base
surface.

3. Eliminate the intersection points, which do not
satisfy the condition (p − P0) · Dir > 0, from
the candidate intersection points.

So we can get the intersection points of L and
the base surface. Assume that one of the projection
points of P0 onto S is Q0, meanwhile in the parametric
domain of S, we can get the corresponding pre-image
point q0 on q(t).

To control the tracing process, we preserve two
points cur_P ∈ R3 and cur_Q ∈ R2 to store the values
of the current test point on P(t) and the correspond-
ing current tracing point on q(t). cur_P and cur_Q
have the same parameter value on P(t) and q(t),
respectively.

After the directional projection of P0, the point q0
is taken as the current tracing point cur_Q and P0
is taken as the current test point cur_P . To keep on
tracing, we need to get the next tracing point accord-
ing to cur_Q . Note that there may exist more than
one intersection point of L and the base surface, and
for each intersection point, we take it as a seed point,
and trace the corresponding projection curve, respec-
tively. Taking one projection curve for example, now
we will introduce how to construct the approximate
curve of the projection curve.

3.2. The First and Second Order Derivatives of the
Directional Projection Curve

We estimate the next tracing point with the second
order Taylor expansion of q(t) at cur_Q , so we need
to compute the first and second order derivatives of
q(t) at cur_Q . Now we will deduce the first and sec-
ond order differential equation systems satisfied by
the directional projection. Assume that S is at least
C2 continuous locally.

First, recall the definition of the directional projec-
tion:

(q − p) × Dir = 0, (3.1)

where p is the point on the test curve P(t), q is the
corresponding point on the projection curve Q (t), Dir
is the projection direction vector, S(u, v) is the base
surface, and Q (t) = S(u(t), v(t)) holds.

Take the derivative of Eqn. (3.1) on both sides with
respect to t, and it follows that:(

Su
du
dt

+ Sv
dv

dt
− dp

dt

)
× Dir = 0.

According to the distributive law of cross product, we
have:

(Su × Dir)
du
dt

+ (Sv × Dir)
dv

dt
= dp

dt
× Dir ,

multiply Su and Sv on both sides of the equation
above, respectively, and it follows that:⎧⎪⎪⎨

⎪⎪⎩
Sv · (

Su × Dir
) du

dt
= Sv ·

(
dp
dt

× Dir
)

Su · (
Sv × Dir

) dv

dt
= Su ·

(
dp
dt

× Dir
) .

Solve the system above, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

du
dt

=
Sv ·

(
dp
dt

× Dir
)

Sv · (
Su × Dir

)
dv

dt
=

Su ·
(

dp
dt

× Dir
)

Su · (
Sv × Dir

)
. (3.2)

Eqn. (3.2) is just the first order differential equation
system of the directional projection, and this was
first derived by [16]. Moreover, take the derivative of
Eqn. (3.2) on both sides with respect to t, we have:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2u

dt2
= Sv ·

(
d2p
dt2

×Dir
)
+

(
Svu

du
dt +Svv

dv
dt

)
·
(

dp
dt ×Dir

)
Sv ·

((
Suu

du
dt +Suv

dv
dt

)
×Dir

)
+

(
Svu

du
dt +Svv

dv
dt

)
·(Su×Dir)

d2v

dt2
= Su·

(
d2p
dt2

×Dir
)
+

(
Suu

du
dt +Suv

dv
dt

)
·
(

dp
dt ×Dir

)
Su·

((
Svu

du
dt +Svv

dv
dt

)
×Dir

)
+

(
Suu

du
dt +Suv

dv
dt

)
·(Sv×Dir)

.

(3.3)
And Eqn. (3.3) is just the second order differential
equation system of the direction projection.

3.3. Searching For the Next Tracing Point

We estimate the position of the next tracing point with
the second order Taylor expansion of q(t) at cur_Q ,
whose expression is as follows:

q(t0 + �t) = q(t0) + q′(t0)�t + q′′(t0)�t2

2
+ o(�t2),

(3.4)
where q(t0) = cur_Q , �t is the parametric increment
and o(�t2) is the second order Taylor remainder,
which is a vector-valued function f (�t) such that
lim

�t→0
f (�t)/�t2 = 0. By omitting the remainder of the

expansion, the polynomial follows:

q̄(t0 + �t) = q(t0) + q′(t0)�t + q′′(t0)�t2

2
, (3.5)

with which we approximate q(t) locally. Given the
value of t0, we can get the values of q′(t0) and q′′(t0)

with Eqn. (3.2) and (3.3), respectively. So the only
unknown factor in Eqn. (3.5) is �t, which directly
impacts on the distribution of the sampling points
and the approximation result.

In order to obtain an evenly distributed sampling
during the generation process of the initial approx-
imate polyline, we use the step length controlling
method based on constant arc length increment used
in [13] as follows.
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Let ds and dt denote the arc differential and
parameter differential of Q (t), respectively. It follows
that:

ds = ∣∣Q ′(t)
∣∣ dt.

Further, according to the chain rule, we can get the
expression of Q ′(t):

Q ′(t) = Su
du
dt

+ Sv
dv

dt
, (3.6)

where the values of Su, Sv , du
dt , dv

dt can all be calculated
with the given value of t0, respectively. Hence, with
the user-specified arc length increment �s on Q (t),
the corresponding approximate parametric increment
�t is determined by:

�t = �s∣∣Q ′(t)
∣∣ . (3.7)

Substitute �t into Eqn. (3.5), the estimated position
of the next tracing point on q(t) can be obtained as
q̄(t0 + �t) = (ū, v̄).

This step length controlling method is incomplete
in [13], because it is hard to estimate the total arc
length of the projection curve before we can gener-
ate it. And improper arc length increments may leads
to the wrong results. In the case of directional pro-
jection, the arc length of the projection curve Q (t)
can be estimated like this. We can first sample on the
test curve P(t), link the sample points with a polyline,
with which we approximate P(t). Then we direction-
ally project this polyline onto the control polygons,
which are only composed of planar triangles, of the
Bézier surface patches we derived in Subsection 3.1.
The directional projections of polyline onto triangles
can be computed in linear time and are much easier
to realize, whose projection result curve is also a poly-
line. Then the length of the projection result polyline
is taken as the approximate arc length of the projec-
tion curve Q (t), and we can choose a proper arc length
increment according to the estimated total arc length.

Usually, the estimated point deviates from the
precise point we desire, so an error exists. Accord-
ing to the definition of the directional projection in
Eqn. (3.1), we define the error of the estimation as
follows:

ε =
∥∥Dir × (

S(ū, v̄) − cur_P
)∥∥∥∥S(ū, v̄) − cur_P

∥∥ , (3.8)

where (ū, v̄) = q̄(t0 + �t) is the estimated point gener-
ated by our tracing method in the parametric domain,
S(ū, v̄) is the 3D image point of (ū, v̄) on S, Dir is
the normalized projection direction. The geometric
significance of ε is the absolute value of the sine of
the angle between Dir and (S(ū, v̄) − cur_P). Specially,
when S(ū, v̄) coincides with cur_P , Eqn. (3.8) becomes
invalid for the denominator equals to 0. In this situ-
ation, we let the error ε = 0, because cur_P lies on S
now and S(ū, v̄) is just the projection point of it.

As a result, to get the precise point, a refine-
ment is needed. Take the point P(t0 + �t) as the
new test point cur_P . We introduce the following
Newton-Raphson method based refinement method.

Multiply Su and Sv on both side of Eqn. (3.1),
respectively, and set r = ((S(u, v) − p) × Dir). We have
the following equation system:

{
f (u, v) = ((S(u, v) − p) × Dir) · Su(u, v) = r · Su(u, v) = 0

g(u, v) = ((S(u, v) − p) × Dir) · Sv(u, v) = r · Sv(u, v) = 0
,

(3.9)
Solve the equation system above with Newton-

Raphson method, where we set:

δi =
[
�u
�v

]
=

[
ui+1 − ui
vi+1 − vi

]
,

Ji =
[

fu fv
gu gv

]

=
[

Suu · r Suv · r + Su · (Dir × Sv)

Suv · r + Sv · (Dir × Su) Svv · r

]
,

ki = −
[
f (ui , vi)

g(ui , vi)

]
.

Then the parameter increment of the iteration can be
obtained by solving:

Jiδi = ki .

Then the convergence criteria of the iteration are as
follows:

1.
∥∥(ui+1 − ui)Su(ui , vi) + (vi+1 − vi)Sv(ui , vi)

∥∥ ≤ ε1,

2.
∥∥S(ui , vi) − cur_P

∥∥ ≤ ε1,

3. |Dir×(S(ui ,vi)−p)|
‖Dir‖·‖S(ui ,vi)−p‖ ≤ ε2,

where (ui , vi) is the parameter of the ith iteration, ε1
and ε2 two zero tolerances of Euclidean distance and
sine. The iteration is halted if any of the three condi-
tions above is satisfied. In the iterations above, we set
the initial parameter value equals to (ū, v̄), and set p =
cur_P in the above Newton-Raphson method. The con-
vergence of the iteration depends on the errors of the
estimated initial values. As shown in the experimen-
tal results in Section 5, the average estimation error
of our algorithm is comparable with that of the first
order algorithms [16] implemented with Runge-Kutta
method, which have been widely used.

Let next_Q ∈ R2 denote the result point of the
refinement in the parametric domain of S. Connect
cur_Q and next_Q with a line segment L, and add
L into the approximate polyline. Take next_Q as the
new tracing point and we continue seeking for the
next tracing point.

The tracing will not stop until the test point we
obtain reaches the end of P(t). Then we can get the
initial approximate polyline of q(t) in the parametric
domain of S.
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3.4. Projection Jumping Checking

In the generating process of the approximate projec-
tion curve, the directional projection points of the test
point on P(t) onto S may “jump”, with the increment
of the parameter (see Fig. 4.). The projection line L1
of the current tracing point P(t0) only intersects with
surface in the back part (the point Q1 in Fig. 4.). How-
ever the projection line L2 of the next tracing point
P(t0 + �t) intersects both in front and back parts of
the surface (the points Q2 and Q ′

2 in Fig. 4.). And this
is called the “jumping” of the intersection points. If
we still only trace the projection curve in the back
part of the surface, the should-exist projection curve
in the front part of the surface will be missed. We deal
with this case as follows.

Fig. 4: The jumping of the intersection points.

For each projection curve Qi(t), we record the
tag Active_Patchi representing the surface patch the
cur_Qi(t) of Qi(t) lies in. When we compute the next
projection point, we construct the projection lines L2
which start from the point P(t0 + �t) and is paral-
lel to Dir , and L1 which start from the point P(t0)

and is parallel to Dir . Compute the intersection of
L2 and the control polygons of all surface patches.
For every surface patch Inter_Patch, whose control
polygon intersects with L2, we check whether the
“jumping” happens with the following criteria:

1. Inter_Patch is not the neighbour of any of
Active_Patchi .

2. Inter_Patch is the neighbour of some of
Active_Patchi , but the distance from the point
S (cur_Qi) to the common edge of Inter_Patch
and Active_Patchi is bigger than �s, the user
specified arc length increment.

3. Inter_Patch is just one of Active_Patchi , but
the number of intersection points of L2 and
the control polygon of Inter_Patch is more
than that of L1 (In this case, according to the
variation diminishing property of the Bézier
surface, the number of intersection points of

L2 and Inter_Patch is may be more than that of
L1).

4. Inter_Patch is just one of Active_Patchi , but
the distance from any of intersection points of
L2 and the control polygon of Inter_Patch to
the corresponding intersection point of L1 is
bigger than �s.

The “jumping” may happen if any of the four con-
ditions above is satisfied. Under this condition, we
need to compute the intersection points of L2 with
the base surface S(u, v) using line surface intersec-
tion method [15] as we did in Subsection 3.1. For
each intersection point derived, match it with the esti-
mated point (we got in Subsection 3.3) of current
tracing points cur_Qi (each estimated point can only
match to one nearest intersection point within the dis-
tance �s). Each matched intersection point is taken
as the new tracing point of the corresponding projec-
tion curve. And each unmatched intersection point is
taken as a new seed point which is the start point of
a new segment of projection curve.

Another special case of “jumping” is the projection
curve crosses the boundary of the surface, where the
number of intersection points of L2 and S(u, v) is less
than that of L1. This can be detected like this.

1. The estimated point (we got in Subsection 3.3)
of current tracing points cur_Qi exists the
boundary of the surface.

2. The number of intersection points of L2 and
the control polygons of the surface patches is
less than that of L1.

The “jumping” may happen if any of the two con-
ditions above is satisfied. Under this condition, we
need to compute the intersection points of L2 with

Fig. 5: The processing result of jumping.
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the base surface S(u, v) using line surface intersection
method [15] as we did in Subsection 3.1. If L2 does
not intersect the surface at any projection curve, the
tracing of the corresponding projection curve should
be stopped. Fig. 5. shows our processing result of this
“jumping” case.

Recall that the first order algorithm [16] only solve
the first differential equation systems with numerical
method, so it cannot deal with this “jumping” case,
which frequently appears in practical.

4. CONTROLLING THE APPROXIMATION
PRECISION AND THE CONTINUITY OF THE
FINAL APPROXIMATE PROJECTION CURVE

After the construction of the initial approximate poly-
line in the parametric domain of S(u, v), we control
the approximation precision and the continuity of
the final approximate curve with the same method
we used in [13], which adds more sampling points
of Q (t) into the approximate polyline and guaran-
tees that the Hausdorff distance between the final
3D approximate curve and the exact projection curve
Q (t) is less than the user-specified Hausdorff dis-
tance tolerance εD , and the continuity of the final 3D
approximate curve is εT − G1, where εT is the user-
specified angle tolerance. More details can be found
in [13].

With the final approximate polyline in the para-
metric domain of S, we map the polyline to the Bézier
surfaces we get in Subsection 3.1 using blossoming
techniques [6,7], and the corresponding 3D approxi-
mate curve of the exact directional projection curve
Q (t) on S is obtained, which is in Bézier form and
lies completely on S. The degree of the 3D approxi-
mate curve is p + q, where p and q are the u-direction
degree and v-direction degree of the B-spline surface
S, respectively.

5. EXPERIMENTAL RESULTS AND COMPARISONS

We present several examples for the directional pro-
jection. All the experiments are implemented with
Microsoft Visual Studio 2005 with windows XP on
the same PC with Intel Core2 Duo CPU 2.53 GHz,
1 GB Memory. In all of our experiments below ε1 =
ε2 = 10−10, where ε1, ε2 are two convergence tol-
erances for Newton-Raphson method introduced in
Subsection 3.3.

We implement the first order algorithms in [16]
with fourth order Runge-Kutta method (R-K4), which
is also the recommended method in [16]. Compar-
isons between the first order algorithms [16] and our
second order tracing method on efficiency and accu-
racy are performed during the process of generating
the initial approximate polyline in Example 1, where
a cubic B-spline curve P(t) is directionally projected
onto a 5 × 1 order Bézier surface, as illustrated in

Fig. 6: Example 1, Directional projection of a cubic
B-spline curve onto the bicubic B-spline free form
surface where the projection direction is opposite to
z axis.

Fig. 6. Specifically, the 6 control points of P(t) are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 = (0.00, −43.75, 3.86)T

P1 = (0.00, −40.13, −3.86)T

P2 = (0.00, −23.80, −31.58)T

P3 = (0.00, −11.87, 33.86)T

P4 = (0.00, 10.60, 6.40)T

P5 = (0.00, 16.70, −2.27)T

.

And the knot vector is: (0:00; 0:00; 0:00; 0:00; 0:26;
0:68; 1:00; 1:00; 1:00; 1:00): The 6 × 1 control points
of the surface are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P00 = (−98.75, 32.50, −40)T

P10 = (−91.77, 22.86, −40)T

P20 = (−81.48, 1.23, −40)T

P30 = (−86.57, −32.46, −40)T

P40 = (−93.98, −50.36, −40)T

P50 = (−97.84, −57.27, −40)T

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P01 = (−98.75, 32.50, 40)T

P11 = (−91.77, 22.86, 40)T

P21 = (−81.48, 1.23, 40)T

P31 = (−86.57, −32.46, 40)T

P41 = (−93.98, −50.36, 40)T

P51 = (−97.84, −57.27, 40)T

.

For the purpose of equity, constant parametric incre-
ment strategy, as Runge-Kutta method does, are uti-
lized in both of the two kinds of algorithms. Further,
according to this paper, both of the two kinds of
algorithms generate the initial approximate polyline
by estimating the position of the tracing point. In
order to measure the accuracy of the two kinds of
algorithms, we record the estimation errors, defined
in Eqn. (3.8), for each estimated point of the two
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Time (ms) Errors
Increment
�t R-K4 [16] ours R-K4 [16] ours Number of discrete points

1 × 10−2 1.927 1.486 2.14749e-010 2.1971e-010 101
1 × 10−3 14.443 9.372 1.02919e-012 2.27651e-010 1001
1 × 10−4 151.814 96.347 1.71291e-014 9.19197e-014 10001
1 × 10−5 1698.425 1076.167 1.9516e-014 1.67022e-014 100001
1 × 10−6 17359.394 7194.017 1.49422e-014 1.42424e-014 1000001

Tab. 1: Time cost and error comparison for Example 1.

Fig. 7: Efficiency comparison between our second
order tracing method and the first order algorithms
for Example 1.

kinds of algorithms, and compute the average esti-
mation errors for each parametric increment of the
two kinds of algorithms. And the refinement based
on the Newton-Raphson method introduced in Sub-
section 3.3 is performed in both of the two kinds of
algorithms. The comparison results of the two kinds
of algorithms on Example 1 are recorded in Tab. 1.

As shown in Tab. 1, as we decrease the parametric
increment, the average errors decrease, the time costs
and the numbers of discrete points increase. We first
consider the errors. For each parametric increment,
the average errors of our algorithm are comparable
with those of the first order algorithm with R-K4, and
are even smaller than the first order algorithm when
the parametric increment decreases to 1 × 10−5. As
for the time costs, the difference of the two kinds

Fig. 8: Directional projection of a cubic B-spline
curve onto the bicubic B-spline free form surface
where the projection direction is opposite to z axis,
εD = 1 × 10−3, εT = 10◦: (a) Example 2, surface of the
stomach of Venus; (b) Example 3, surface of woman
face.

of algorithms can be clearly illustrated in Fig. 7. Our
algorithm is about 2 times faster than the first order
algorithms implemented in R-K4 method. And the
gaps are getting larger as the parametric increment
decreases.

Besides the comparisons with the first order
algorithm during the process of generating the initial
approximate polyline, we also test the performance
of our algorithm for the whole projection process,
which uses the constant arc length increment strat-
egy, performs “jumping” checking and controls the
approximation precision and the continuity of the
final approximate projection curve. Fig. 8. shows the
directional projection of cubic B-spline curves onto
the bicubic B-spline free form surfaces. The results of

Example 2 Example 3

Arc length increment �s 0.05 0.05 0.05 0.05
Tolerance (εD/εT ) 10−3/10◦ 10−3/1◦ 10−3/10◦ 10−3/1◦
Degree 6 6 6 6
Number of segments 90 121 97 126
Number of control points 541 723 583 757
Continuity 10◦ − G1 1◦ − G1 10◦ − G1 1◦ − G1

Time (ms) 187.036 215.652 240.406 313.298

Tab. 2: Results of our algorithm for the Examples.
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a b

Fig. 9: “Jumping” case projection.

Fig. 10: The design of the front cover of a car.

our algorithm on Example 2 and Example 3 are shown
in Tab. 2.

As we can see from the results, the efficiency of the
algorithm meets the real-time requirement. Moreover,
the approximation precision and the continuity of the
final approximate projection curve can be controlled.

Then we present two examples for “jumping” case
projection, which we introduced in Subsection 3.4.
Fig. 9(a). and 9(b). plot the “jumping” case projections,
where two cubic B-spline curves are directionally pro-
jected onto a tour (transformed into NURBS form) and
a free form B-spline surface, respectively. The solid
blue curves are the test curve, while the curve with
green break points is the 3D approximate projection
curve. As we can see from the results, the “jumping”
is correctly detected, and new segment of projection
curves are added into the final projection result, and
the projection curve stops at the boundary of the
surface.

Fig. 11: Construction of curves on surface.

Then, more examples of our algorithm are shown
in Fig. 10 and Fig. 11.

6. CONCLUSION

This paper presents an approximation algorithm for
directional projection of parametric curves onto B-
spline surfaces. The second order tracing method is
applied to construct the initial approximate polyline
in the parametric domain of the surface. With the
initial approximate polyline, further sampling on the
exact directional projection curve is performed to
control the approximation precision and the continu-
ity of the final 3D approximate curve.

The main contribution of this paper is the deriva-
tion of the second order differential equation system
of the directional projection, with which we can com-
pute the farthest points and the Hausdorff distances
between the curve segments and their correspond-
ing line segments in the parametric domain using
iteration methods, which enables us to control the
approximation precision and the continuity of the
approximate curve [13].

Experimental results indicate that the accuracy
of our algorithm is comparable with that of the
first order algorithm [16], and at the same time our
algorithm is faster than it. Moreover, our algorithm
can deal with the “jumping” projection case, and con-
trol the approximation precision and the continuity of
the approximate curve, while the first order algorithm
[16] cannot do this.
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