
459

Scalable Integration of Commercial File Types in Multi-User CAD

Ammon I. Hepworth1, Thomas Nysetvold2, Joshua Bennett3, Glen Phelps4 and C. Greg Jensen5

1Brigham Young University, ammon.hepworth@gmail.com
2Brigham Young University, tom.nysetvold@gmail.com

3Brigham Young University, joshjb17@gmail.com
4Brigham Young University, wilysword@yahoo.com

5Brigham Young University, cjensen@byu.edu

ABSTRACT

Current commercial computer aided design (CAD) tools limit a parallel engineering design workflow by
only allowing a single user in the CAD model at a time. The NSF Center for e-Design at BYU has recently
developed multi-user CAD tools which enable a parallel design workflow by allowing multiple users to
simultaneously contribute to the same CAD model in real time. The combined challenges of consistent
distributed naming and robust interoperation with commercial file types have created scalability and
usability issues for previous multi-user CAD implementations. This paper presents persistent naming
methods and a file-based architecture that address these challenges. An implementation of these
methods shows that multi-user design within commercial CAD is increasingly scalable.

Keywords: collaborative design, concurrent engineering, multi-user CAD, CAE.

1. INTRODUCTION

Current commercial computer aided design (CAD)
tools limit concurrent engineering, or the ability of
product development teams to work in parallel, by
only allowing a single user in the CAD environment
at a time [16]. The NSF Center for e-Design, Brigham
Young University (BYU) has developed multi-user CAD
tools which enhance concurrent engineering capa-
bility by allowing multiple users to simultaneously
contribute to the same part or assembly in real time.
This includes the ability to view, add and modify the
same part concurrently in the same environment. As
each user adds to, removes from and/or edits a part,
each user visualizes contributions made by all other
collaborators to that part in real time. The ability to
allow multiple users to simultaneously contribute to
the creation of the part truly enables a parallel work
environment in the CAD system [16].

The implementation of such a multi-user collab-
orative environment requires a system architecture
to support data transfer between various users. The
system implemented by BYU utilizes a strong client
and thin server in a client-server architecture. Each
client runs a CAD system with a multi-user plugin. As
one client performs an operation in the collaborative

session, the data for that operation is uploaded to the
server, which distributes it to the other clients. The
server also maintains a record of all operations per-
formed by each user. When the other clients receive
the operation data, functions are automatically called
to perform the operation on that client’s session. In
this way, all clients have a representation of the same
shared CAD model in which multiple users can con-
currently contribute. Fig. 1 shows a system diagram
of the multi-user CAD architecture.

This architecture has been implemented using the
application programming interfaces (API) of commer-
cial CAD systems, including Siemens NX 8.0, Dassault
Systemes CATIA and Autodesk Inventor. Doing this
has enabled these single-user CAD systems to become
concurrent multi-user applications [20].

Extending a single-user CAD system to be multi-
user requires the definition of a format for data
exchange, so that the most up-to-date state of the
model can be stored on the server and so that oper-
ations performed on one user can be transmitted
to other users. The server uses a database to store
this data, as shown in Fig. 1. Each type of operation
requires its own explicitly defined database represen-
tation and so feature types must be made multi-user

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

mailto:ammon.hepworth@gmail.com
mailto:tom.nysetvold@gmail.com
mailto:joshjb17@gmail.com
mailto:wilysword@yahoo.com
mailto:cjensen@byu.edu

460

Fig. 1: Multi-user CAD architecture.

one by one. In practice, given the huge and growing
variety of data types within any given CAD system,
explicitly creating database representations for all of
them is very time consuming. Therefore, attempting
translation has almost always resulted in some degree
of data loss. Because of these and other challenges,
no prior system has allowed a real-time, multi-user
experience with commercial file types. BYU’s early
approaches have shown to directly operate with com-
mercial file types with small parts and assemblies.
However, it has challenges scaling to large parts
and assemblies due to issues with unreasonable load
times. This paper presents a scalable methodology
and implementation that overcomes this and other
related challenges associated with previous multi-
user implementations for commercial CAD.

Another issue related to implementing a multi-
user environment within an existing commercial
single-user CAD tool, as mentioned by Red et al., is
that CAD APIs generally do not easily facilitate pass-
ing design changes between multiple users. This is
illustrated by the fact that when a CAD object is
queried on a client’s CAD system, it returns a memory
address specific to that client, which is not consistent
between clients [16]. When an object on one client
is changed, the client must be able communicate to
the server which object changed so that all other
clients can identify, in their own CAD system, which
object the change refers to. Each object must there-
fore be uniquely and consistently identified across all
clients and the database. As memory address pointers
for given objects differ across clients, they cannot be
used as a consistent identifier. Object location in the
part tree is also not a unique, consistent identifier,
because two users could create objects in the same
position, and objects may be moved within the part
tree. These methods are not guaranteed to be unique,
but a system of unique identifiers is essential to a
multi-user CAD solution. Methods must exist for find-
ing the unique identifier corresponding to an object
in a part and for finding the object corresponding
to a unique identifier. This paper discusses a robust

method and implementation for supporting topology
identification in a multi-user CAD system.

2. BACKGROUND

The background section briefly discusses existing
methods in literature related to previous multi-user
CAD systems which use non-commercial file types. It
also discusses BYU’s previous limited success with
commercial file type integration. Previous literature
pertaining to single and multi-user persistent naming
schemes is also discussed, as are its shortcomings in
the context of a commercial CAD implementation.

2.1. Commercial File Compatibilities

Various simultaneous multi-user design systems have
been developed over the last decade. These systems
have primarily relied on a cloud-based data storage
system and a central server where all of the modeling
operations are performed. Graphical and interaction
data is transmitted to and from the clients and server,
thus implementing a thin client architecture. These
multi-user cloud-based systems include WebSPIFF [3],
NetFeature [13], CADDAC [14] and WebCOSMOS [21].
None of these systems integrates with commercial
CAD file formats. One system has allowed merging
of commercial part files for an asynchronous multi-
user experience [17], but its solution does not apply
to synchronous multi-user CAD.

Prior BYU systems have also failed to achieve com-
plete interoperability with commercial file formats.
NXConnect, a multi-user CAD system currently being
developed at the NSF Center for e-Design, BYU, uses
the NX 8.0 API and the previously discussed architec-
ture to allow NX to act as a simultaneous multi-user
application [4], [11,12], [15,16], [20]. NXConnect has
always been able to export models in NX’s standard
“.prt” format. NXConnnect has also had a limited abil-
ity to convert NX part files to its database format.
However, the resulting database representation loses
all data not yet explicitly supported by NXConnect.
BYU’s InventorConnect and CATIAConnect multi-user
CAD systems have offered the same functionality,
with the same challenges. Thus, no prior system we
are aware of has allowed synchronous multi-user CAD
to completely interoperate with commercial file types.

Since pre-existing corporate data is typically
stored in commercial CAD file formats, the abil-
ity to interoperate with these file types is a neces-
sity for companies with a large amount of pre-
existing CAD data. Furthermore, a server-based multi-
user representation may not easily interoperate with
pre-existing PLM software (i.e. Siemens Teamcenter,
Dassault Systemes ENOVIA). The divide between com-
mercial files and server-based multi-user representa-
tions is thus a serious problem for potential users of
multi-user CAD.

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

461

Server-based file representations can also exhibit
scalability problems: loading a model from the server
by re-running the commands to generate it is unrea-
sonably slow. For one test assembly including 19
files totaling 43 megabytes, downloading the files
from a local server would take seconds and open-
ing the assembly in NX takes approximately 8 sec-
onds. Because running commands programmatically
is much more expensive than reloading their recorded
results, loading the same model in NXConnect by
re-running every command takes over 15 minutes.
Larger assemblies would load even more slowly. This
loading behavior is very undesirable for practical
commercial use; an ideal system for multi-user files
would facilitate fast loading of assemblies.

2.2. Single User Persistent Naming

The problem of persistent naming dates back to the
original history-based parametric solid modeling CAD
systems [8]. The central issue at that time was iden-
tifying the topological entities of the solid geometry
upon reevaluation from the history tree. Since direct
pointers are not persistent upon reevaluation, they
could not be used. Simple enumeration methods were
also not valid, because model edits may change topol-
ogy and invalidate the original enumeration [10]. Sev-
eral authors have presented various solutions to this
problem [1,2], [5,7], [10], [19].

2.3. Existing Multi-User Persistent Naming

Jing et al. state that, although in single user CAD
systems the topological entities can be named from
the modeling history, this does not work in a col-
laborative multi-user CAD system. This is because
operations at various sites may be ordered differ-
ently, resulting in an inconsistent modeling history.
They present methods to persistently name topologi-
cal entities including faces, edges and vertices on the
level of the geometry kernel. This is accomplished by
traversing the topological entities generated by a fea-
ture and naming them with a consistent method. They
successfully implemented and tested these methods
in a prototype collaborative solid modeling system
using the ACIS CAD kernel [9].

Although not explicitly mentioned by the author,
one main assumption in the method presented by
Jing et al. is that topological entities generated by a
specific feature are returned in a predictable order.
Since some CAD kernels (i.e. Siemens Parasolid ker-
nel) do not return entities in a predictable order, this
method can’t be applied because it does not incorpo-
rate a method to uniquely identify faces, edges and
vertices based on criteria other than order [18]. Thus,
existing persistent naming methods are inadequate
for multi-user CAD implementations using at least
one kernel critical to industry today. An identifica-
tion method based on geometric, topological, and/or

feature uniqueness must be employed for robust
persistent naming to occur in this situation.

3. PERSISTENT NAMING METHODS

We first present a general method for generating
unique identifiers (names) for features and topolog-
ical entities. A file-linked, multi-user feature nam-
ing method is then presented to allow robust, scal-
able interaction with commercial parametric CAD
files. In addition, a unique topology naming method
addresses the problem of naming faces, edges and
bodies with a CAD kernel that does not return geom-
etry in a predictable order.

3.1. General Naming Methodology

Our method to generate unique identifiers on features
and topological entities is as follows:

1. A prefix, ‘$’, identifying the feature as having
been named

2. The user’s unique username, guaranteeing that
each user’s features will have names distinct
from other users’ features

3. The feature type which describes the feature for
convenience and readability

4. A sequentially generated integer id, guarantee-
ing uniqueness from all features on the same
client

So, the 57th feature created by a user with username
Ivan would receive the name “$Ivan_FeatureType_57,”
on his client, in the database, and on all other clients.
Similar naming conventions apply to all other named
entities.

3.2. Hybrid File Multi-User Feature Identification
Method

In order to use commercial CAD files with a cloud
based multi-user CAD system, a new method has
been developed to store database associativity within
a CAD file. The method developed takes advantage
of user-defined object attributes that are supported
in many CAD systems. Instead of creating a system
to map memory handles to unique identifiers and
storing that map in the client plugin, the unique iden-
tifier is instead stored in a user-defined attribute that
is directly associated with each object in the CAD
part. Storing the unique identifier in the CAD sys-
tem’s native part file makes it possible to restore the
state of the multi-user CAD tool, including associ-
ation data, just by opening a commercial part file.
This removes the need to recreate the part object-
by-object. This method also applies to assemblies,
implementing the same identification method with
parts and constraints in the assembly. The new pro-
cess increases part scalability in multi-user CAD tools

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

462

by drastically reducing load times in parts contain-
ing several objects. Thus, a part which may have
taken several minutes to load using the previous
method would only take a few seconds using the
new method.

This method provides a solution to many of the
challenges previously faced by multi-user CAD sys-
tems. Instead of only using a cloud-based file (neces-
sary for multi-user functionality) or a commercial file
(necessary for compatibility), the two files are com-
bined in a hybrid. This file is of the same file type as
an ordinary part file of the CAD system it was cre-
ated in, and is fully compatible with the original CAD
system with no need for a multi-user plugin.

Fig. 2: Hybrid sync associations vs. previous associ-
ations.

The new architecture (see Fig. 2) no longer stores
data about feature associations (i.e. maps from CAD
system object pointers to database identifiers) in the
plugin layer. It takes advantage of a capability in many
commercial CAD systems which allow users to define
their own feature-associated variables within the CAD
system, which are then saved in standard CAD files.
For example, a user could take a sketch object and
attach to it a new variable called “CloudSketchID” that
would store the unique identifier of the correspond-
ing sketch object in the cloud. This maintains the
association that was formerly managed by the plu-
gin, but in a way that is not affected by closing and
reopening the CAD system and/or plugin. In the new
architecture, the plugin essentially consists of proce-
dures for relating the CAD data to the cloud data and
stores only incidental state data.

Since all data is stored either in the database or in
the part file, with none in the multi-user client plugin,
this method makes the multi-user client both lighter
and more fault-tolerant. If the client crashes, is closed,
loses connectivity, etc., no data is lost and simply
re-opening the plugin restores its original function-
ing state with no need to reload the file. Without this
method, a time-consuming full file reload is required

if the client crashes or becomes out of sync. Therefore
this method significantly reduces the reload time for
the part to sync with the database.

3.2.1. Existing Files and File Management

The method also allows multi-user cloud editing sup-
port to be added to pre-existing single user com-
mercial CAD files. This is accomplished through the
translation system which identifies all of the features
in the file that are compatible with the multi-user plu-
gin, creates database representations for them, and
adds a user-defined attribute to each feature associat-
ing it with its database analogue. Even features that
are not fully supported may at least be identified,
with user-defined variables and database analogues.
This allows some limited support for features without
their own explicit database representations. Features
that are not fully multi-user supported will not be
editable, but will at least be visible and will never
be lost in translation to or from the multi-user file
type. Since even non-multi-user supported features
are cloud-associated and consistently identified, they
can in some cases even be referenced by new multi-
user supported features. For example, a sheet body
that could not be created or edited in multi-user mode
is still able to be used by reference to split a new
multi-user solid body.

This method supports a variety of options for
file/data management. One option supports having
a copy of the CAD file (containing both the file
and the database content) automatically saved and
maintained on the cloud. Another option supports a
seamless integration with commercial PLM/data man-
agement systems. In this option, when the part is
closed a database dump of the cloud material can
be stored in a user variable within the part file,
which can then be checked in to the data manage-
ment system. This is done by either the data man-
agement system’s normal check-in method for CAD
files or by automatically using integration with the
data management system’s API. This method can also
save a simple stand-alone file in the format of the
original CAD system, with no cloud or multi-user
dependency.

3.2.2. Offline Editing

Since the method allows a seamless integration
between a part file and multi-user cloud data, the
part file can be edited offline by a single user using
only the original CAD system (no need for a multi-
user client plugin). That user can then perform any
action supported by the original CAD system, without
regard for the limitation of what is multi-user sup-
ported. In addition, he can also edit features that are
represented in the database. The next time the part is
loaded for a multi-user edit session, it will automati-
cally upload the added multi-user supported features
and tag its unsupported features using the same

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

463

functionality as previously discussed. Pre-existing fea-
tures are compared to the original multi-user feature
information attached to them to identify differences
and then modify the database feature instance if
necessary.

Obvious modifications to this same functional-
ity potentially allow multiple users to independently
edit a part file offline and then merge their changes;
although this approach requires a robust method-
ology to resolving conflicting edits. The ability to
take a part off-line and add or modify non-multi-user
supported features facilitates industrial workflows,
where a large majority of features are multi-user sup-
ported but a few unusual features are occasionally
needed.

3.3. Topology Identification Method

The general naming methodology discussed in section
3.1 apply trivially to the identification of features,
curves, expressions, dimensions and constraints
because they can be named directly when the object is
created at the client level. In addition to naming these,
the identification of bodies, faces and edges must also
be consistent across multiple clients because they are
referenced in the creation of features, curves, expres-
sions, dimensions and constraints. However, doing
this offers some unique challenges. For example, bod-
ies, edges and faces in the Parasolid geometry ker-
nel are “not returned in any predictable order” [18].
Therefore it requires custom methods to identify the
same bodies, faces and edges in a part across clients
based on their geometric, topological and feature
qualities.

Methods have been developed to identify com-
mon bodies, faces and edges across clients and are
executed in the following order:

1. Edges are identified by querying data on the
edge at discrete values along its length with a
given tolerance (see Fig. 3)
a. Linear edges will only require end point

data
b. Non-linear edges may require more resolu-

tion to uniquely identify
2. Faces are identified by querying data at dis-

crete values across the face with given a tol-
erance (see Fig. 4)
a. Planar faces will not require discretization

if all edges are identified uniquely. This
is because they can be inferred from the
bounds of the edges

b. Non-planar faces may require more resolu-
tion to uniquely identify

3. Bodies are identified by using all of its faces
and edges which are already identified

This approach uniquely identifies bodies, faces
and edges except for in two cases: 1) identical

Fig. 3: Identification of unique edges by
discretization.

Fig. 4: Identification of unique faces by
discretization.

topological entities occupy the same space in the part,
and 2) all data compared on the entities match, but
varies between the discrete samples. The first case
is solved by inferring the topological entity from the
feature it was generated from to identify its unique-
ness. For example, two edges which occupy the same
geometric space will always be a product of differ-
ent feature creation operations. In this way, unique-
ness is determined for identical topological entities
based on the feature that generated it. The second
case is solved by having a sufficiently small enough
sampling discretization for edges or faces so as to
uniquely identify it. However, a fine discretization
resolution may take more computation than is desir-
able. A method optimized to reduce computation time
will provide an iterative approach to refine resolution
as required, adding sampling points to compare the
geometry as needed. However, this case is relatively
unlikely that it may not be worth implementing.

4. IMPLEMENTATION OF METHODS

An implementation of the methods discussed above
has been performed and shows promising results.
These methods are presented as they are imple-
mented into multi-user CAD systems integrated
directly into the commercial CAD systems of NX and
Inventor which are called NXConnect and Inventor-
Connect respectively. Both are multi-user CAD sys-
tems which are currently being developed at the
NSF Center for e-Design, BYU. We discuss the imple-
mentation of the hybrid file feature identification as
it is currently implemented in InventorConnect and

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

464

NXConnect. The topology naming implementation for
NXConnect will be discussed as well.

4.1. Hybrid File Feature Identification
Implementation in InventorConnect

The method of using attributes to uniquely identify
features has been fully implemented in Inventor-
Connect, the multi-user prototype for Inventor. The
attribute interface in Inventor had a lot to do with our
decision to use attributes in the identification of dif-
ferent features in the part. The interface included a
way to find objects based on the attributes attached to
them, and also included a useful tool that allows you
to query any attributes whose parents were deleted
by the user. This allows for robust tracking of any
deletions that occur in the part.

In the InventorConnect implementation, when a
new feature is created by the user, an entry is made
in the database to store this new feature. Upon cre-
ation in the database, the unique identifier from the
database is written to an attribute attached to the
newly created feature, establishing a permanent link
between the feature and its corresponding database
entry. This link persists through different edits of
this feature and through multiple editing sessions in
the part. Any feature that has an attached attribute
linking it to a database entry is recognized by the
InventorConnect plugin as a previously uploaded fea-
ture. Any newly created features not containing an
attribute linking them to the database are uploaded
if they are compatible with the plugin. In addition to
storing a link to the database, additional attributes
were stored to reflect the state of the feature and
its parameters when it was stored in the database.
This was done to allow for simple comparisons of
the old state of the feature with the newest changes
that a user has made, allowing the plugin to check for
user changes without having to query the database.
This essentially provides a history of the last submit-
ted change to any given feature. This is particularly
useful for implementing offline editing of multi-user
CAD files. The stored history will reflect the state
of the part when the user was last connected to the
database. When the part and its offline changes need
to be merged back into the current database ver-
sion, this data will be valuable in determining which
features were modified by the user and in resolving
offline editing conflicts.

In addition to tracking feature creation by the user,
the ability to track feature deletion through attributes
was valuable. In prior architectures, deletions were
easily tracked when event callbacks occurred upon
deletion, but when there were no appropriate event
callbacks the multi-user plugin had to check each
stored pointer for each feature and determine if that
feature had been deleted. With a feature that has
attributes stored to it, deleting the feature does not
delete the attached attributes, but flags them as being
unattached from their parent features. A simple query

of the unattached attributes is performed to detect
deleted features, and these are then marked in the
database as being deleted. This also has broader
implications for offline editing of multi-user parts.
When a user edits a part offline, no event callbacks
are monitored by the plugin, so in order to cap-
ture user deletions, all of the features would have
to be compared to the database when the user
brings their part back in sync with the database.
With the new method, any deletions that occur can
be checked for at any time simply by examining
the attributes that have become detached from their
parent features.

In addition to storing database identifiers on fea-
tures, InventorConnect also stores the revision num-
ber of the database as an attribute. This allows for a
part that has been saved locally but that has become
out of date with the database to be updated with only
the changes that need to occur. Upon opening a part,
all new changes to the database are loaded, rather
than having to load and check every single change
that has occurred in the part.

4.2. Hybrid File Feature Identification
Implementation in NXConnect

Identifying features by attribute has also been fully
implemented in NXConnect. In this implementation,
the saved part files with the unique identifiers are
actually uploaded and stored in the database, allow-
ing users to automatically download and open the
saved files when they wish to load a part. Because
these files contain the unique identifier stored as
attributes, they can be opened on any computer and
used in NXConnect. One additional improvement in
this implementation is the compatibility with the
previous NXConnect architecture. NXConnect stores
dictionaries which hold pointers to every object and
entity in the part, including faces, edges, and bodies.
This allows NXConnect to quickly search and access
any needed objects in the part file.

One difficulty which was overcome during the
implementation of the new loading method is that
these dictionaries needed to be generated upon load-
ing the part file to be available for future use. This
meant that a reference to every object and entity
needed to be accessed every time a part was opened,
which was trivial for features, but time consuming for
faces, edges and bodies due to the large number of
these entities present in a part. In order to further
reduce load times, lazy loading of these dictionaries
was implemented. Upon saving a part file, the cur-
rent dictionaries are serialized and stored as string
attributes attached to each feature in the part. When
the part is again loaded, these strings are parsed
and blank dictionary entries are generated, creating
a placeholder for the face, edge, and body pointers
of each feature. If the user ever uses an operation
requiring one of these pointers, the dictionaries are
loaded on demand for the particular feature needed

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

465

by NXConnect. Upon being loaded on demand, the
data is cached in the dictionary, allowing the point-
ers to be used again in a different context without the
need to load them again.

4.3. Topology Identification Implementation

The above mentioned topology identification meth-
ods have been implemented into NXConnect using the
NX Open API in three specific ways: the first uses mul-
tiple types of geometric data for the object as a whole,
the second uses only positional data at multiple posi-
tions and the last is a combination of the first two.
Each implementation uses the same general flow, in
which geometric data from the edges, faces and bod-
ies are saved to the database along with the feature
parameters. Just after feature recreation, that data is
compared against each edge, face, or body, until a
match is found, at which point the object is given the
name associated with that data.

The first implementation uses different types of
data for different objects. For edges, that data con-
sists of the endpoints of the edge, and the tangent
vector and curvature at one of the endpoints. Faces
use a face normal and the inverse of the maximum
radius of curvature; to reduce the number of times
that data must be calculated, only faces with the same
number of edges as the target face are compared.
Bodies are then identified by the positive identifi-
cation of all their constituent faces and edges. The
API has a bug, however, which prevents this method
from being completely accurate. The method used
to calculate normal vectors, tangents and curvatures
(the NXOpen.GeometricAnalysis. GeometricProperties
class of the .NET API) sometimes returns garbage
data for objects created using the API (as opposed
to through the GUI). Thus, the method returns cor-
rect data for features being saved to the database, but
incorrect data when attempting to identify them after
recreation.

The second implementation uses only positional
data, but increases the number of samples, using
the somewhat randomly chosen parameter values.
For edges, this leads to four points for comparison,
including the endpoints. Given the additional com-
plexity of faces, only two points are deemed sufficient
to reduce the collision probability to acceptably low
levels, and as in the other method, only faces with
equal numbers of edges are compared. Bodies are
again identified by the constituent faces and edges.
This implementation also has an API-related problem,
in that the parameterization of edges and faces is
sometimes different depending on whether the fea-
ture is being created or edited, or using the API vs.
the GUI. Thus, two samples taken at the same param-
eter values from the same face on different computers
may possibly have different values, and the algorithm
fails to identify the face.

Since both of these implementations work much
of the time, but API bugs cause them each to fail in

certain cases, the last implementation is a combina-
tion of both these cases. Since both approaches are
used together, it offers a safety net so that when one
approach fails the other may catch it. This redun-
dancy reduces the total number of times it fails
overall and appears to be a fairly robust approach as
shown in the results section of this paper.

5. RESULTS

5.1. Hybrid File Feature Identification

The implementation of the hybrid file multi-user
feature identification method in InventorConnect to
uniquely identify features in multi-user CAD appli-
cations has proven to vastly decrease load times. In
one test, a part with 10 features took 47 seconds to
load using the old method of re-creating the part fea-
ture by feature. Opening this same file in the new
implementation of InventorConnect took less than
4 seconds. These results are more pronounced for
larger parts and for assemblies, which can contain
hundreds and thousands of features.

In the NXConnect implementation, significant
results have also been observed. For one part file that
had approximately 100 features, the load time was
reduced from 2 minutes to 3 seconds. In another test,
shown in Fig. 5, a tractor model assembly with 16
components loaded in 7 seconds, which is 1% of the
10 minute load time of the former method. Where the
previous loading implementation prevented the scal-
ability of NXConnect due to unacceptable load times,
the new loading method introduces almost no addi-
tional wait time beyond the time needed to download
the part. Thus it is shown that this new method-
ology provides a scalable approach for commercial
multi-user CAD to be compatible with large, complex
assemblies and parts.

In addition to improving the user experience by
vastly decreasing loading times, it has allowed for a
primitive implementation of offline editing, with the
ability to add new features and delete features offline
and have those changes uploaded the next time you
connect to the database. Another major benefit is
that it allows for part files created in single-user CAD
to be seamlessly integrated into a multi-user CAD
implementation.

5.2. Topology Identification

The persistent topology naming method has allowed
complex geometry associations to be produced within
NXConnect. Despite the fact that the NX API has
known bugs which cause errors to occur in the
NXConnect implementation for this method, the com-
bined implementation of both approaches discussed
above is shown to be reasonably robust. This is shown
by the use of an internal tracking system to observe
the robustness of this implementation. Over a three-
week period, about 22 active users clicked at least

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

466

Fig. 5: Tractor assembly loaded in 7 sec. with new method vs. 10 min. with previous method.

1771 body-generating commands. Each command
could generate multiple bodies, or if the user can-
celled the command, no bodies. The data reflect some
usage of ordinary NX, some debugging of NXCon-
nect, and significant large-scale modeling, including
the tractor demo we discuss above. During this period
of use, only 22 bodies with identification problems
were created. Given reasonable assumptions (most of
the usage was in NXConnect, and an average of one
body was generated per body-generating modeling
command), this suggests the topology naming scheme
is on the order of 99% effective. These numbers reflect
the effectiveness of the naming methodology despite
known API bugs associated with these implementa-
tions; resolving these should further reduce issues
related to topology identification.

6. CONCLUSIONS

The newly developed method to associate CAD
objects directly to the database using CAD object
attributes has shown to increase part and assem-
bly scalability in multi-user CAD tools by dramat-
ically reducing part and assembly load time. This
time reduction grows significantly as object count
increases in parts and assemblies. It has also allowed
for offline editing which enables users to add
and delete features offline and have those changes
uploaded the next time they connect to the database.

Another major benefit is that the methodology inte-
grates single-user commercial CAD parts into a multi-
user CAD implementation.

The persistent topology naming methodology the-
oretically solves the problem of multiple users refer-
encing the same topology entity on separate clients.
Due to limitations in the NX API, the implemen-
tation has required additional redundancy to be
implemented effectively, but has shown to be robust
enough to support modeling of complex parts and
assemblies. The results of these implementations
have been very promising for the future development
of multi-user solutions for commercial CAD.

ACKNOWLEDGEMENTS

Special thanks to all the industry sponsors partici-
pating in the Center for eDesign, BYU who funded
this research: Boeing, Pratt & Whitney, Belcan, PCC
Airfoils, Spirit Aero Systems and CD-adapco.

REFERENCES

[1] Bidarra, R.; Nyirenda, P.; Bronsvoort, W.: A
feature-based solution to the persistent nam-
ing problem, Computer-Aided Design and
Applications, 2(1), 2005, 517–526.

[2] Bidarra, R.; Bronsvoort, W.: Persistent naming
through persistent entities; Geometric Model-
ing and Processing, 2002. Proceedings, 2002;
233–240.

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

467

[3] Bidarra, R.; E. van den Berg; W. F. Bronsvoort.:
A Collaborative Feature Modeling System, Jour-
nal of Computing and Information Science in
Engineering, 2(3), 2002, 192, http://dx.doi.org/
10.1115/1.1521435

[4] Cannon, L.; Nysetvold, T.; Phelps, G.; Winn, J.:
Jensen C. G.: How Can NX Advanced Simulation
Support Multi-User Design?, Computer Aided
Design and Applications, PACE Vol. 2, 2012,
21–32.

[5] Capoyleas, V.; Chen, X.; Hoffmann, C.: Generic
naming in generative, constraint-based design;
Computer-Aided Design, 28(1), 1996, 17–26,
http://dx.doi.org/10.1016/0010-4485(95)
00014-3

[6] Chen, X.; Hoffmann, C.: On editability of
feature-based design; Computer-aided design,
27(12), 1995, 905–914, http://dx.doi.org/
10.1016/0010-4485(95)00013-5

[7] Chen, Z.; Gao, S.; Zhang, F.; Peng, Q.: An
approach to naming and identifying topolog-
ical entities; Chinese Journal of Computers,
24(11), 2001, 1170–1177.

[8] Jing, S.; F. He; S. Han; X. Cai; and H. J. Liu.:
A method for topological entity correspon-
dence in a replicated collaborative CAD system,
Computers in Industry, 60(7), 2009, 467–475,
http://dx.doi.org/10.1016/j.compind.2009.02.
005

[9] Jing, S.; He, F; Cai, X; Liu, H.: Collaborative
naming for replicated collaborative solid mod-
eling system; International Design Engineer-
ing Technical Conferences & Computers and
Information in Engineering Conference, 2008,
141–150.

[10] Kripac, J.: A mechanism for persistently
naming topological entities in history-based
parametric solid models, ACM Symposium on
Solid Modeling and Applications, 3, 1995,
21–30, http://dx.doi.org/10.1145/218013.
218024

[11] Marshall, F.: Model Decomposition and Con-
straints to Parametrically Partition Design
Space in a Collaborative CAx Environment,
Brigham Young University, Master’s Thesis,
2011.

[12] Moncur, R.; Jensen, C.; Teng, C.; Red, E.:
Data Consistency and Conflict Avoidance in a
Multi-User CAx Environment, Computer-Aided
Design and Applications, 10(5), 2013, 727–744.

[13] Qiang, L.; Y. F. Zhang; and a. Y. C. Nee.: A Dis-
tributive and Collaborative Concurrent Prod-
uct Design System through the WWW/Internet,
The International Journal of Advanced Man-
ufacturing Technology, 17(5), 2001, 315–322,
http://dx.doi.org/10.1007/s001700170165

[14] Ramani, K.; A. Agrawal; M. Babu; C. Hoff-
mann.: CADDAC: Multi-Client Collaborative
Shape Design System with Server-based Geom-
etry Kernel, Journal of Computing and Infor-
mation Science in Engineering, 3(2), 2003, 170,
http://dx.doi.org/10.1115/1.1582882

[15] Red, E.; Jensen, G.; Holyoak, V.; Marshall, F.;
Xu, Y.: v-Cax: A Research Agenda for Collabora-
tive Computer-Aided Applications, Computer-
Aided Design and Applications, 7(3), 2010,
387–404.

[16] Red, E.; Jensen, C.; French, D.; Weerakoon, P.:
Multi-User Architectures for Computer-Aided
Engineering Collaboration. International Con-
ference on Concurrent Enterprising, 2011.

[17] Shaojin, S.; Jianjun, C.; and Jindou, L.: An Asyn-
chronous CAD Collaborative Design Model,
2010 International Conference on Computer
Application and System Modeling, 6, 2010,
563–568, http://dx.doi.org/10.1109/ICCASM.
2010.5620677

[18] Siemens Corp., Parasolid Documentation.
[19] Wu, J.; Zhang, T.; Zhang, X.; Zhou, J.: A face

based mechanism for naming, recording and
retrieving topological entities; Computer-Aided
Design, 33(10), 2001, 687–698, http://dx.doi.
org/10.1016/S0010-4485(00)00099-3

[20] Xu, Y; E. Red, E.; Jensen, G.: A Flexible Context
Architecture for a Multi-User GUI, Computer-
Aided Design and Applications, 8(4), 2011,
479–497, http://dx.doi.org/10.3722/cadaps.
2011.479-497

[21] Zhou, X.; Li, J.: A Web-based synchronized
collaborative solid modeling system, Chinese
Journal of Computer Integrated Manufacturing
Systems, 2003, 960–965.

Computer-Aided Design & Applications, 11(4), 2014, 459–467, http://dx.doi.org/10.1080/16864360.2014.881190
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1115/1.1521435
http://dx.doi.org/10.1115/1.1521435
http://dx.doi.org/10.1016/0010-4485(95)00014-3
http://dx.doi.org/10.1016/0010-4485(95)00014-3
http://dx.doi.org/10.1016/0010-4485(95)00013-5
http://dx.doi.org/10.1016/0010-4485(95)00013-5
http://dx.doi.org/10.1016/j.compind.2009.02.005
http://dx.doi.org/10.1016/j.compind.2009.02.005
http://dx.doi.org/10.1145/218013.218024
http://dx.doi.org/10.1145/218013.218024
http://dx.doi.org/10.1007/s001700170165
http://dx.doi.org/10.1115/1.1582882
http://dx.doi.org/10.1109/ICCASM.2010.5620677
http://dx.doi.org/10.1109/ICCASM.2010.5620677
http://dx.doi.org/10.1016/S0010-4485(00)00099-3
http://dx.doi.org/10.1016/S0010-4485(00)00099-3
http://dx.doi.org/10.3722/cadaps.2011.479-497
http://dx.doi.org/10.3722/cadaps.2011.479-497

	INTRODUCTION
	BACKGROUND
	Commercial File Compatibilities
	Single User Persistent Naming
	Existing Multi-User Persistent Naming

	PERSISTENT NAMING METHODS
	General Naming Methodology
	Hybrid File Multi-User Feature Identification Method
	Existing Files and File Management
	Offline Editing

	Topology Identification Method

	IMPLEMENTATION OF METHODS
	Hybrid File Feature Identification Implementation in InventorConnect
	Hybrid File Feature Identification Implementation in NXConnect
	Topology Identification Implementation

	RESULTS
	Hybrid File Feature Identification
	Topology Identification

	CONCLUSIONS
	Acknowledgements
	References

