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ABSTRACT

Volumetric parameterization problem refers to parameterization of both the interior and boundary of
a 3D model. It is a much harder problem compared to surface parameterization where a parametric
representation is worked out only for the boundary of a 3D model (which is a surface). Volumetric
parameterization is typically helpful in solving complicated geometric problems pertaining to shape
matching, morphing, path planning of robots, and isogeometric analysis etc. A novel method is pro-
posed in which a volume parameterization is developed by mapping a general non-convex (genus-0)
domain to its topologically equivalent convex domain. In order to achieve a continuous and bijective
mapping of a domain, first we use the harmonic function to establish a potential field over the domain.
The gradients of the potential values are used to track the streamlines which originate from the bound-
ary and converge to a single point, referred to as the shape center. Each streamline approaches the
shape center at a unique polar angle (θ) and an azimuthal angle (ψ). Once all the three parame-
ters (potential value φ, polar angle θ , azimuthal angle ψ) necessary to represent any point in the
given domain are available, the domain is said to be parameterized. Using our method, given a 3D
non-convex domain, we can parameterize the surface as well as the interior of the domain. The pro-
posed method is implemented and the algorithm is tested on many standard cases to demonstrate
the effectiveness.
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1. INTRODUCTION

With the advent of powerful 3D scanning techniques,
there is an abundance of 3D shape data available to
the research community involved in geometric anal-
ysis of shapes. The next important issue is: how to
mathematically represent the shapes and use them
for various applications such as morphing, texture
mapping, shape matching and remeshing etc.? For all
these applications, a continuous parameterization of
the complete model is necessary. Volumetric param-
eterization provides a continuous representation of
both the boundary and interior of the domain. This
is accomplished by establishing a bijective mapping
between the given model and a convex domain. Volu-
metric parameterization is vital for many applications
involving the physics of the model. For example,
structural analysis, heat transfer and fluid flow analy-
sis etc. A recent approach called isogeometric analysis
for accurate analysis involves developing an exact
geometric model using parameterization techniques.

Though several methods have been developed for
parameterization of surfaces in 3D, not many meth-
ods are proposed for parameterization of the entire
volume of a 3D model. Most of the surface param-
eterization methods cannot be extended to volume.
Not even twenty articles exist in the literature on volu-
metric parameterization. In the following section, sur-
face parameterization techniques are reviewed briefly
followed by the existing method for volume parame-
terization.

1.1. Surface Parameterization

The surface parameterization domain is thoroughly
explored and a summary of the published works
can be found in a set of review articles [4,8,19,22].
Many methods for surface parameterization involve
partitioning the surface into simpler patches using
cuts. Such methods suffer from inherent problems
because of the continuity issues along cuts and their
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junctions [20]. A spherical parameterization method
was introduced by Praun and Hoppe [18] which
directly parameterizes the entire domain to a spher-
ical domain by minimizing stretch based measure.
This method was extended by Asirvatham et al. [2]
so that multiple objects can be parameterized simul-
taneously without losing any properties of mapping.
Brechbuhler et al. [3] used parameterization as a tool
for shape description of 3D objects. Posing it as an
optimization problem, they expanded the parame-
terized surfaces into spherical harmonics and pro-
posed methods to parameterize the surfaces which
are invariant to translation, rotation or scaling. Map-
ping a genus-0 mesh onto a spherical surface by
minimizing discrete harmonic energy is the most
common technique used in spherical parameteriza-
tion. A spherical parameterization method targeting
surface fitting was developed by Li et al. [14] where
parameterization is obtained by minimizing the dis-
crete harmonic energy. Friedel et al. [5] used a triangle
energy minimization technique to establish spherical
parameterization for a given domain.

Though all these methods provide surface param-
eterization with some variations in the energy terms
involved, distortion of the domain, computational effi-
ciency and applicability to applications etc, none of
them are directly applicable to the case of parameter-
ization of an entire volume. Hence there is a need for
development of such methods. Some of the attempts
to tackle this more difficult problem are summarized
below.

1.2. Volume Parameterization

Unlike surface parameterization, volume parameter-
ization involves parameterization of both boundary
and interior. In 3D, the boundary of the domain is
a surface. Hence surface parameterization can be
interpreted as a subproblem of volume parameter-
ization. In fact, there are some methods like Patro
et al. [17] which develop parameterization for the
surface in the first stage and use it as a boundary con-
dition for obtaining volume parameterization. Such
methods are suitable both for surface and volume
parameterization. The drawback of such methods is
that they involve partitioning the boundary and hence
associated issues mentioned in Section 1.1.

Another group of methods use the theory of har-
monic functions to establish a potential field over a
given domain. Harmonic functions are a good choice
of potential functions because of their elegant prop-
erties including maximum principle and mean-value
property. Li et al. [13] developed a harmonic volume
mapping method. Given a boundary mapping, they
develop volume mapping using fundamental solu-
tion method. But the quality of mapping depends on
the given boundary mapping. Wang et al. [27] devel-
oped two techniques which focus on computer graph-
ics and medical imaging. This method also involves

boundary mapping and then volume mapping using
heat flow method. But such mapping is difficult when
the boundary surface is highly convoluted.

A mapping between two reference free-form mod-
els was established using volumetric parameteriza-
tion by Wang et al. [26] while keeping the spatial
relationship between the two models intact. Recently,
isogeometric analysis has become an important area
of application for volume mapping which may accel-
erate research in volume mapping. Martin et al. [15]
developed yet another method based on harmonic
function and subsequently designed an algorithm for
B-spline modeling of the given model. Such a model
is directly useful in isogeometric analysis. A method
called Cubecover involving user intervention is pro-
posed by Nieser et al. [16] for parameterization of 3D
volumes with cubes which is similar to the Quadcover
for surfaces [9].

In this paper, we present a novel approach for the
problem of volumetric parameterization of genus-0
3D regions. We use harmonic functions to establish
a uniform potential field across the domain. Then
the streamlines are tracked using the potential gra-
dient within the domain. Due to the property of the
streamlines, they approach the shape center at unique
angles. When combined with the computed potential
of the internal points, the three parameters estab-
lish volumetric parameterization. Our approach is
analogous to a heat conduction phenomenon. Our
method ensures bijective mapping of complex non-
convex shapes and it is demonstrated using several
typical shapes such as a star-fish, the human face and
biomolecules.

The paper explains the principle and required
mathematical background for volumetric parame-
terization. In Section 2, we present the definitions
pertaining to convex and non-convex domains. In
Section 3, a detailed analogy between the volumet-
ric parameterization problem and the heat transfer
phenomenon is drawn. The harmonic function and
its associated properties are discussed in Section 4,
which is followed by a step-by-step algorithm for
volumetric parameterization in Section 5. Finally the
results are presented in Section 6 and concluding
remarks in Section 7.

2. CONVEX AND NON-CONVEX DOMAINS

A convex domain is one in which a straight line
joining any two points in the domain is completely
contained within it. The interior of a circle is an exam-
ple of a convex domain in two dimensions because,
given any two points inside the circle, they can be
joined by a straight line, no part of which lies outside
the circle. In three dimensions, the above example can
be extended to a sphere. Contrary to convex domains,
a shape in which a straight line segment connect-
ing two arbitrary points contained in it need not lie
completely inside, is called non-convex.
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(a) (b)

Fig. 1: Boundary points subtend different angles at the shape center O for convex domains, while two boundary
points (A and B) subtend the same angle at the shape center in a non-convex case. (a) Convex domain: Circle, and
(b) Non-convex domain.

The motivation behind mapping a non-convex
domain is to be able to uniquely parameterize the
interior and boundary points of the domain. For
example, different points on a circle can be parame-
terized using the polar angles. In Fig. 1(a), the radial
lines OA, OB and OC make different angles with the
horizontal OX. In a similar manner, parameterizing
any convex domain is a trivial problem. But if we
follow the same procedure to parameterize a non-
convex domain, by considering some point within
the domain as center, the problem of non-uniqueness
emerges, which means that two or more points have
the same set of parameters. Unlike the convex case, in
Fig. 1(b) radial lines OA and OB corresponding to two
distinct points A and B make same angle with hor-
izontal OX. Thus, the above mentioned problem of
non-uniqueness is illustrated. To address this prob-
lem, a method is developed with the objective of
representing the non-convex domains also in a way
similar to a sphere i.e. every point of the domain is
expressed by three unique parameter values. Once
this is achieved, a domain is said to be parameter-
ized. To achieve this, straight radial lines are replaces
by curved lines and concentric spheres by potential
shells. The proposed method is originated from the
observations of the properties of potential field and
streamlines in the analysis of heat transfer problems.

3. DOMAIN MAPPING AND HEAT TRANSFER:
ANALOGY

The need for unique mapping has led us to look into
heat transfer mechanisms. We can draw an analogy
between the heat transfer problem and the one per-
taining to volumetric parameterization of non-convex
domains. Fig. 2 shows the heat flow-lines (streamlines)
and the isothermal contours for a 2D non-convex
shape. A constant temperature heat sink is located
at the shape center and the boundary is maintained

at a constant elevated temperature. Under these con-
ditions, a temperature gradient is set up between
the boundary and the heat sink at the shape center,
which decreases as the boundary is approached. It
should be noted that the lines emanating from the
boundary and approaching the shape center (stream-
lines) never intersect each other and approach the
shape center at a unique angle. This angle value is
assigned to all the points of a streamline (i.e. angle
value is constant along a streamline), while the tem-
perature decreases from the boundary to the shape
center along a streamline. Thus, we have two parame-
ters (temperature of a point and the angle subtended
by the streamline at the centre) which can be used to
locate any point within the domain.

Fig. 2: Streamlines in a non-convex domain.

The above analogy can be extended to any non-
convex domain in three dimensions, the only differ-
ence being that, in three dimensions, a pair of angles
(polar and azimuthal angles, similar to a spherical
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coordinate system) is required to completely define
the angle of approach. Therefore, the two angles
along with the temperature value parameterize a 3D
domain.

Identifying this fact, that solving a boundary value
problem to establish a potential field over the domain
directly helps in parameterizing the given domain. We
use harmonic functions to establish the required field.

4. HARMONIC FUNCTIONS

Harmonic functions play a key role in establishing
bijective mapping in our method. A twice differen-
tiable real-valued function φ : U → R, where U ⊆ Rn

is some domain, is called harmonic if its Laplacian
vanishes over U , i.e. if ∇2φ = 0. Mathematically, a
function satisfying the Laplace equation,

∇2φ ≡
n∑

i=1

∂2φ

∂x2
i

= 0, (1)

where xi is the i-th Cartesian coordinate and n is the
dimension of the domain under study, is called a har-
monic function. The mean value and the maximum
value property are the ones which make harmonic
functions useful for many applications [6,11].

4.1. Mean-Value Property

If a sphere B(x, r) with center x and radius r , is com-
pletely contained in the domain U , then the value φ(x)
of the harmonic function at the center of the ball is
given by the average of values of φ on the surface
of the sphere. Interestingly, this average value is also
equal to the average of the values of φ inside the
sphere.

4.2. Maximum Principle

If φ is a harmonic function, then according to the max-
imum principle, φ cannot have local extrema within
the domain U . By definition of harmonic functions,
their Laplacian should be zero. For a local extremum
to exist, all the second order partial derivatives of the
function should have the same sign. If all of them
have the same sign, their sum will never be zero
and thus they will never be able to satisfy Laplace’s
equation.

5. METHODOLOGY

The description of the domain or model is the only
input required. A description can be a set of points,
surface mesh or tetrahedral mesh. Depending on the
input data, an appropriate pre-processing is needed.
When input data is in the form of a surface mesh,
the internal mesh is generated using TetGen [24].
Once the internal mesh is generated, equipotential

shells are created within the domain using harmonic
functions. Then the streamlines are tracked, which
intersect the equipotential shells orthogonally. The
various steps involved in the algorithm discussed in
this paper can be outlined as follows.

1. Generate the tetrahedral mesh from triangular
surface mesh using TetGen.

2. Assign the internal points generated to a 3-
dimensional grid. This process is called dis-
cretization.

3. Separate the external, internal and boundary
points by flagging them and choose the shape
center.

4. Apply the boundary conditions.
5. Compute potential of all the internal points,

using harmonic functions.
6. Compute streamlines.
7. Calculate the polar (θ) and azimuthal (ψ) angles

corresponding to the streamlines. These angles
are the parameters.

8. Parameterization is completed through interpo-
lation over these values.

9. Inverse mapping by interpolation.

The angles computed in step 7 are plotted on a
graph. This kind of plot is called the atlas and gives
a visual estimate of the distribution of the boundary
points on the parameterized (θ − ψ) domain. These
angles combined with the potential values of interior
points give the volumetric parameterization of the
domain.

5.1. Pre-processing

A wide range of 3D shapes are available on the
internet at various repositories [1,12]. These mod-
els are only triangulated surface meshes and contain
no information about the internal meshing or nodes.
But, we need to compute the potential of the inte-
rior points. The internal mesh information is gen-
erated using TetGen [24]. Depending on the range
of the coordinates of the domain, a 3-dimensional
grid is constructed. The points within the domain are
assigned to the different grid nodes. This operation is
called discretization and it helps in further potential
computation. The grid nodes are classified as exterior,
boundary and interior points based on neighborhood
information.

An appropriate choice of the shape center is very
important for all computations. The most important
criterion for choosing a shape center is that it should
be located well within the domain so that it is eas-
ily reachable by all or most of the boundary points.
A better location of shape center facilitates better
and more accurate potential distribution within the
domain which leads to a faster and more accurate
computation of the streamlines.
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5.2. Boundary Conditions

After the data is discretized as mentioned above, we
apply the Dirichlet boundary conditions for the bound-
ary and shape center i.e. we assign a potential value
of 1 (φ = 1) to all the boundary nodes and a potential
value of 0 (φ = 0) to the shape center. All other inte-
rior points are assigned random potential values as
initial values. In addition, we also assign a potential
of 1 + ε to the points just outside the boundary, the
next layer of external points is assigned a potential of
1 + 2ε and so on until we have four layers, where ε is a
very small number of the order of 0.0001 or less. We
will see later in the paper that this kind of external
potential assignment prevents the streamlines from
digressing outside the domain of interest.

5.3. Potential Computation

The iterative finite difference method is used to solve
Laplace’s equations. If f (x, y) is a harmonic function,
its second derivative as derived using Taylor series
expansion and neglecting the higher order terms:

∂2f

∂x2
= f (xi+1, yi , zi)− 2f (xi , yi , zi)+ f (xi−1, yi , zi)

h2
,

∂2f

∂y2
= f (xi , yi+1, zi)− 2f (xi , yi , zi)+ f (xi , yi−1, zi)

k2
,

∂2f

∂z2
= f (xi , yi , zi+1)− 2f (xi , yi , zi)+ f (xi , yi , zi−1)

l2
, (2)

where h, k and l are the step-sizes in the x, y and
z directions respectively. We choose equal step-sizes
in all three directions for simplicity. The potential φ
is used as a candidate for harmonic functions. Thus,
using Laplace’s equation, we get

φ(xi , yj , zk) = φ(xi+1, yj , zi)+ φ(xi−1, yi , zi)

6h2

+ φ(xi , yi+1, zi)+ φ(xi , yi−1, zi)

6h2

+ φ(xi , yi , zi+1)+ φ(xi , yi , zi−1)

6h2
. (3)

The above potential values are computed iteratively
until the maximum difference between two succes-
sive computations on any of the nodes is less than
a pre-defined tolerance ζ . Thus, if φj and φj+1 are the
two values of potential (φ) computed in the j-th and
(j + 1)-th iterations, the termination criterion for the
computation will be

max|φj+1 − φj | < ζ . (4)

A wise choice of ζ is important. A very small value
of ζ will increase the accuracy of potential computa-
tion, thus enabling good streamline tracking, but it
will need more computational resources. But a wisely
chosen value of ζ will result in quite acceptable accu-
racy fairly fast. Typically the value of ζ ranges from

10−3 for shapes as simple as, sphere to 10−6 for
complicated shapes.

5.4. Streamlines

Streamlines are flow lines or gradient lines. They are
orthogonal to potential shells. They can be character-
ized with ∇φ. A streamline starts from the bound-
ary and proceeds towards the shape center. Further
because of the inherent property of the streamlines,
they intersect with the equipotential surfaces within
the domain at right angles. In the case of a spherical
shape, the equipotential surfaces are just concentric
spheres within the domain, the shape center being the
same as the geometric center of the sphere, the radial
lines will be the streamlines and they evidently inter-
sect the concentric spheres orthogonally. In the case
of a sphere, they are straight lines, but in the case
of non-convex domains, they may curve in order to
satisfy the orthogonality criterion.

Ideally we want the streamlines emerging from the
boundary nodes to end at the shape center. But as
the streamlines reach well within the domain, where
the irregularities from the boundary are smoothened
out, we can terminate the computation, because the
terminating points of the streamlines form a convex
boundary around the shape center which is suffi-
cient to obtain unique angles. The streamline track-
ing problem is essentially equivalent to solving an
ordinary differential equation. If X (t) = [x, y, z]T is a
coordinate vector, then the differential equation for
streamlines is,

Ẋ (t) = −η∇φ[X (t)] (5)

where η is called the normalization parameter. We
have used the adaptive Runge-kutta method for solv-
ing these equations. Using adaptive step-size was
essential as it reduces the computational cost. The
streamlines take large steps and tend to converge
quickly in simple regions of the domain whereas
they take appropriately small steps in the com-
plicated regions. The ordinary differential equation
(ODE) solver requires the potential for the non-grid
points within the domain, i.e., for the intermediate
points. This is achieved by effecting a trilinear fitting
locally. Thus

φ(x, y, z) = p1xyz + p2xy + p3yz + p4zx

+ p5x + p6y + p7z + p8 (6)

gives us the potential value for any point within the
domain. It uses the potential values of the eight neigh-
boring grid-nodes to form the set of equations. This
set of eight equations is solved for pi ’s. using the
Gaussian elimination method. Thus, the potential at
any random point is evaluated.
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5.5. Mapping the Domain: Volumetric
Parameterization

After the streamlines are tracked, the end-points
of the streamlines approach the shape center with
unique sets of angles (polar(θ) and azimuthal (ψ)
angles). The end points of the streamlines are
obtained in the Cartesian coordinate system. We apply
the Cartesian to spherical transformation to obtain
these angles (θ and ψ) desired for the mapping as,

ψ = atan2(y, x), θ = atan2
(√

x2 + y2, z
)

.

Since the genus-0 domains are topologically equiva-
lent to a sphere, once these angles are available, we
can use the set of parameters (r , θ ,ψ) to create a
sphere of unit radius.

x′ = r sin θ cosψ , y ′ = r sin θ sinψ , z′ = r cos θ ;

where r = 1 for unit sphere. In other words, the given
domain is mapped to a sphere. Once these mapped
coordinates are available, the bijectivity of the map-
ping can be demonstrated using the atlas plots in the
next step as mentioned earlier in Section 5.

6. RESULTS AND DISCUSSION

In this section we present the parameterized models.
The 3D models are obtained from the various scan-
ning repositories. The entire algorithm was imple-
mented using the C programming language. In the
following sections, we present the results obtained
after testing our algorithm on several complicated
models. It can be seen that there is no bijectivity loss
in the mapping of a domain, which establishes the
algorithm.

6.1. Case 1: Synthetic Domain

A synthetic domain with 9597 vertices and 30073 tri-
angles is shown in Fig. 3. It is a non-convex domain

Fig. 3: Original domain of a model.

but not very complicated. It has been chosen for
demonstration because the mapping can be seen eas-
ily. A parameterization has been developed for this
model by following the procedure explained in this
paper. As can be seen from the atlas (Fig. 4), the
mapping is bijective. The mapping can also be demon-
strated by plotting the mapped domain i.e., sphere
as shown in Fig. 5. Most of the published papers
show the mapping results using such plots though
it is not the best way because one cannot see the
entire map. The atlas plot is a better way to show
the mapping which we have adapted for the rest of
the paper.

Fig. 4: Atlas of a synthetic domain of a model.

Fig. 5: Synthetic domain model after mapping to a
sphere.
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6.2. Case 2: Starfish

The starfish is one of the models used for testing our
algorithm. It has 2745 nodes and together they make
9761 triangular faces in the domain. A value of 10−4 is
used for the maximum allowed error (ζ ) in potential
computation. As it can be seen, the model shown in
Fig. 6 resembles that of a starfish and the Fig. 7 shows
the plot of the parameterized model. The dense zone
of the atlas is blown up in two stages for better view
and one can see that there is no bijectivity loss even in
such zones. The five lobes of the starfish can be easily
pointed out in the atlas.

Fig. 6: Original domain of a starfish.

With such a systematic parameterization method
for a 3D region in place, one can exploit it for many
applications like path planning. Karnik et al. [10] and
Voruganti et al. [25] have emphasized the utility of
potential field based approaches to path planning.
Hence, it can be seen that volumetric parameteriza-
tion of a domain through mapping is a good approach
to path planning.

6.3. Case 3: Head

The model of a human head is another interest-
ing case that is illustrated here. The human head
presents steep and frequent changes in the surface
normal, near the nose and the eyes, thus making it
a complex example of non-convex domain. It con-
tains 990 nodes, which make 3206 triangular faces.
Fig. 8(a) shows the target model and the correspond-
ing parameterized atlas is shown in Fig. 8(b). Due
to the increased complexity of the model, we face a
problem in choosing an appropriate shape center. The
salient features of the head, such as eyes, nose and
lips can easily be pointed out in the parameterized
atlas plot, which confirms that mapping is bijective.

Apart from path planning, parameterization meth-
ods are regularly used as a geometry processing
methods in applications like remeshing, physical
simulations, animation etc [15]. Physical simulations

Fig. 7: Atlas plot for starfish domain with two close-up views.
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(a) (b)

Fig. 8: Domain Mapping: (a) Original domain of a human head, (b) Atlas of the model after mapping it to a
sphere.

like stress analysis and heat transfer analysis are the
applications where the existing surface parameteriza-
tion methods cannot be used since the entire domain
including its interior is to be parameterized. Since the
proposed method provides parameterization of the
entire volume at one go, it is naturally suitable for
applications involving the physics of the model.

6.4. Case 4: Molecule

A molecule shown in Fig. 9 is a fairly complex and
important domain for parameterization considering
the fact that this kind of parameterization has appli-
cations in many problems in computational biology.
The spherical lobes of the original domain can eas-
ily be figured out in the parameterized atlas shown in
Fig. 10.

Fig. 9: Original domain of a typical molecule.

The surface of a molecule with which it interacts
with solvent or other molecules is usually obtained
by rolling the probe sphere over the constituent

Fig. 10: Atlas of the model after mapping it to a
sphere.

atoms which are modeled as spheres [21]. Hence the
model of a molecule looks like the boundary of the
union of interiors of a set of spheres. A complete
parameterization of this surface is quite useful in
the study of molecular interactions. For example, in
protein-protein docking problem where it is required
to predict whether a given pair of proteins interact
(dock), a continuous representation of protein sur-
faces is required for the shape matching exercise.
A global parameterization scheme would also facil-
itate computation of curvatures and exploitation of
good conformation for docking.

Though there are various other ways to parameter-
ize the boundary of a non-convex domain [4,19,23],
only a handful of them exists for volumetric param-
eterization. Moreover, our approach to this problem
is fairly straight forward and intuitive. Though there
cannot be any loss of bijectivity, it may occur in some
cases because of faults in the input data or its trian-
gulation. Even in those cases, the loss of bijectivity
will be local. A loss in bijectivity on a global scale
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will not occur at all because of the way potentials are
computed. The contours and streamlines themselves
may serve as a mesh for some applications like
isogeometric analysis.

7. CONCLUSIONS

In this paper, a novel approach is presented to param-
eterize the volume of a 3D non-convex domain using
harmonic function theory. Such volumetric parame-
terization can be utilized for path planning and shape
matching applications. It is also to be noted that this
method can be used as a geometry processing tool in
many application problems like robot path planning,
protein-protein docking, remeshing, animation etc.

There is sufficient room for future work in this
area. One of the most important aspects that need
attention is to find a way to quantify the cumulative
distortion of a model in mapping. Once it is quanti-
fied, one can devise a way to minimize it and obtain
a better quality of mapping. One can also extend this
methodology to higher dimensions. For example, in
robot path planning, the dimension of the configura-
tion space is the number joints of a robot. Usually,
path planning is performed in this space. Volumet-
ric parameterization can be used to map this higher
dimensional space and plan paths.
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