
417

Solving Under-constrained Assembly Problems Incrementally Using a
Kinematic Method

Yong Liu1,2,3,4, Hai-Chuan Song1,2,3,4 and Jun-Hai Yong1,3,4

1School of Software, Tsinghua University, Beijing 100084, P. R. China
2Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P. R. China

3Key Laboratory for Information System Security, Ministry of Education of China, Beijing 100084, P. R. China
4Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P. R. China

ABSTRACT

In this paper, an incremental method is proposed for solving under-constrained assembly problems
under interactive environment. During an assembling process, a designer adds or removes some con-
straints, changes the design parameters, or maneuvers some bodies frequently. For each operation,
we identify and solve the affected biconnected subgraph in the constraint graph using the cut-joint
method. A strategy is provided to construct the joint reference frames from the former assembly con-
figuration. After solving the biconnected subgraph, rigid transformation is utilized to propagate the
changes until all subgraphs are visited. Examples are provided to illustrate the effectiveness of the
method proposed in the paper.

Keywords: assembly constraint, assembly modeling, kinematic joint, constraint solver.

1. INTRODUCTION

Assembly design plays an important role in prod-
uct design activities, for most manufactured products
are assemblies of individual parts. After part design,
a designer constructs assembly models that contain
information about the relative positions of parts,
obtained by specifying assembly mating conditions
between parts in a CAD system, which will solve those
assembly constraints to find out the positions and
postures of parts.

A common approach to solving geometric con-
straint problems is to use a decomposition-
recombination scheme based on graph algorithms
and numerical solvers [2–5,11,14,16,18,20,23]. These
decomposition schemes often rely on breaking
a system into rigid (also called well-constrained)
subsystems. There exist two definitions of rigid-
ity: geometric rigidity and structural (combinatorial)
rigidity. A geometric constraint system is called as
geometric rigidity if the system has finite solutions.
A structurally rigid subsystem is characterized by
some combinatorial properties of its corresponding
geometric constraint graph. For a 2D bar-and-joint
geometric problem, composed of universal joints con-
nected by fixed length bars, i.e., point–point distance
constraints, Laman proved that it is geometrically

rigid if and only if its geometric constraint graph is
(2, 3)-sparse [10]. Tay et al. [22] and Lee et al. [12]
studied a special case of 3D geometric problems, i.e.,
body-and-bar structure and discussed the combinato-
rial property of its constraint graph. However, for a
general 3D geometrically rigid problem, there does
not exist a nice combinatorial property to be used
to identify a geometric rigid subgraph. Some spe-
cial approaches to solving 3D geometric problems
have been proposed. Kramer [9] utilized a degree-
of-freedom (DOF) analysis to determine the solution
sequentially, but his approach is applied to an open
loop or closed loop that can be solved sequentially. Li
et al. [13] used a max-matching algorithm of digraph
to decompose an assembly problem into small well-
constrained subproblems. Peng et al. [19] proposed
a decomposing algorithm by repeatedly reversing the
directions of the edges in a constraint graph to get a
better decomposition. Also, since a subproblem has
always multiple solutions and a constructive solver
should be able to navigate the solution space to select
appropriate ones to synthesize a solution of the total
system, which normally requires the solver can enu-
merate all solutions of a subproblem, which is too
expensive to an interactive CAD system. Kim et al.
[8] presented an assembly modeling system which

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

418

divides an assembly into several independent groups
and uses numerical method to solve all equations
involved in each group separately. Kim et al. [7] pro-
posed a kinematic method to handle closed loops with
under-constrained states, which first converts the
geometric constraints into joint relations, cuts a joint
from the closed loop, and obtains the final configura-
tion of the closed loop by solving inverse kinematics
of the open loop. Based on similar thought, Xia et al.
[24] converts an assembly problem into a constraint
multigraph, and designates each mating constraint a
weight representing the difficulty. A minimum weight
spanning tree is generated, then the residual con-
straints converted into equations denoted by a recur-
sive form of generalized coordinates, will be solved
simultaneously.

In a realistic interactive CAD assembly system, a
designer constructs an assembly step by step from
scratch. The operations include bringing into or delet-
ing from the assembly a part or mating condition,
maneuvering (moving, revolving) a part with respect
to the constraints, etc. In most circumstances, the
constraint graph is in an under-constrained state.
All those operations could invoke necessary re-
computations to reflect the changes to the constraint
graph many times in a complete assembly design
process, then it’s necessary to reduce the expen-
sive computing as much as possible. We note that
a typical product composed of many parts can be
settled part by part sequentially, while only a few
closed loops are required to be solved simultane-
ously. To reduce unnecessary computation, we use
the DOF analysis [9] geometrically to analyze the
residual degrees of freedom between two parts and
maintain such information for the next operations
incrementally. When a change in the constraint graph
occurs, the affected biconnected subgraph is solved at
first using the cut-joint method [6,17,24,25], and such
changes are spread out only using rigid transforma-
tions. A strategy is proposed to construct the joint
reference frames from the initial positions, which
make the solver generally produce a result close to
the configuration of the assembly before changes
occurred.

The rest of this paper is organized as follows. In
Section 2, we introduce some definitions of geometric
constraint graph. In Section 3, we describe the details
of the entire procedure. Two practical assembly exam-
ples are illustrated in Section 4. Finally, conclusions
are made in Section 5.

2. GEOMETRY REPRESENTATION AND
CONSTRAINT GRAPH

2.1. Geometry Representation

In the assembly design, the mating conditions of a
base part and moving part can be represented by the
relationships (distance, angle, etc.) of planes, lines,
and points. All those constraints can be equivalently

converted to a composition of some primitive con-
straints. Five primitive constraints were presented
in [6], called dot-1 constraint (�d1), dot-2 constraint
(�d2), spherical constraint (�S), distant constraint
(�dist), and angle constraint (�ang), to convert a sub-
set of mating conditions. To completely represent the
relationships (distance, angle, tangency, superpose,
etc.) of any two primitives of planes, lines and points,
we introduce a new primitive constraint, called cylin-
drical constraint. Let ai and aj be unit vectors fixed on
bodies i and j, respectively, and dij be a vector from a
point pi fixed on body i to a point pj fixed on body j.
All primitive constraints are defined as below.

1. Dot-1 constraint requires ai and aj to be orthog-

onal. �d1(ai , aj) = aT
i aj = 0

2. Dot-2 constraint requires ai and dij to be

orthogonal. �d2(ai , dij) = aT
i dij = 0

3. Distant constraint requires the length of dij to
be equal to a constant d0.

�dist(dij , d0) = (dij , dij) − d2
0 = dT

ij dij − d2
0 = 0

4. Angle constraint requires the angle of two vec-
tors equal to a constant α.

�ang(ai , aj) = aT
i aj − cos α = 0

5. Cylindrical constraint requires �cyl(dij , vi) =
dT

ij dij − (dT
ij vi)

2 − d2
0 = 0

A spherical constraint requires �S (pi , pj) = pi −
pj = 0. Let e1 = [1 0 0]T , e2 = [0 1 0]T , e3 = [0 0 1]T .
The spherical constraint can be converted equiva-
lently into 3 dot-2 constraints �d2(ek , pj − pi)(k =
1, 2, 3). Therefore, the spherical constraint can be
removed from the primitives. The conversions of
some usual mating conditions into primitive con-
straints can be found in [24].

2.2. Geometric Constraint Graph and Biconnected
Property

First, the definitions of a constraint graph and its
biconnected property are given as follows.

Definition 1 A constraint graph is a simple graph
G = G(V , E), where V and E are the sets of nodes and
edges, respectively. In this graph, a node represents a
rigid body, and an edge e = (vi , vj) exists if and only if
there’s at least one mating condition between vi and vj .

The definition of biconnected property of a graph
is recalled from [21].

Definition 2 A connected graph G = G(V , E) is
biconnected if for each triple of distinct vertices u, v
and w in V , there exists a path p : u → v such that w is

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

419

not on the path p. If there is a distinct triple u, v and w
such that w is on every path p : u → v, then w is called
a separation node (or an articulation node) of G.

That is, once we remove an articulation node from
a connected graph, the graph will be split into sev-
eral biconnected components. In this paper, we note
that different biconnected components of a constraint
graph are independent in a sense of solving. That
is, once the parts or constraints in a component are
changed, the parts’ positions and postures in other
components will only be determined by rigid trans-
formations if all constraints in other components are
satisfied before the changes, which will save much
computation.

As depicted in Fig. 1, the graph G can
be decomposed into four biconnected compo-
nents G1(v0, v1, v2), G2(v2, v3, v4, v5), G3(v2, v6, v7) and
G4(v7, v8, v9). Suppose v0 be the fixed base. If the con-
straints represented by the edge (v1, v2) are changed
(such as adding a new constraint, modifying the value
of some design parameters), the geometric satisfac-
tion proceeds as follows: first we recalculate the sub-
graph G1 to get its configuration. Then we solve the
subgraph G2 and G3 independently. At last G4 is re-
solved. Noting that the adjacent biconnected compo-
nents are connected by only one body, we can simplify
the solving procedure by getting the configurations of
G2, G3 and G4 with rigid transformation.

Fig. 1: A constraint graph with biconnected compo-
nents.

We introduce the definition of a propagation tree
as follows:

Definition 3 A propagation tree is a rooted tree,
of which each node represents a biconnected compo-
nent of a constraint graph G. A propagation tree is
constructed recursively:

1. The root node represents the biconnected com-
ponent the fixed base belongs to.

2. A node vj is a child of a node vi if the components
represented by vi and vj share a common body,
and vi is the node of this propagation tree.

For example, the constraint graph in Fig. 1 can be
converted into a propagation tree depicted in Fig. 2.

Fig. 2: The propagation tree.

3. SOLVING THE GEOMETRIC CONSTRAINT
GRAPH

Based on the concepts discussed in the previous
section, we propose an incremental method for solv-
ing the constraint graph. The main flow is listed as
follows:

1) Construct the propagation tree from the con-
straint graph.

2) Identify the biconnected subgraph where the
solving process will start, and solve it using the
cut-joint method if closed loops exist.

3) Propagate the changes down the propagation
tree using rigid transformation.

3.1. Construction of the Propagation Tree

Before building the propagation tree, we first use a
biconnected decomposition algorithm presented in
[21] to get all the biconnected components. An arbi-
trary subgraph which includes the fixed body is cho-
sen as the root of the propagation tree. Then we
construct the propagation tree recursively as follows:
suppose a subgraph to be taken into the propagation
tree, and then all other subgraphs adjacent to this
subgraph (having an articulation node shared with it)
are seemed as the children of the node corresponding
to this subgraph in the propagation tree. The recur-
sion continues until all the biconnected components
are visited. The construction algorithm of a propaga-
tion tree from biconnected components is listed in
Algorithm 1.

The time complexity can be analyzed as fol-
lows. Suppose the constraint graph G = G(V , E). In

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

420

Algorithm 1, according to [21], the biconnected
decomposition algorithm can be performed in the
time O(|V | + |E |). The count of the biconnected com-
ponents is at most |V |. During all the loops pro-
ceeded above, each biconnected component is visited
exactly once. Thus the total time complexity of the
construction algorithm is O(|V | + |E |).

3.2. Solving the Biconnected Subgraph

The solving process is composed of the following
steps: 1) all the geometric constraints are converted
to kinematic joints; 2) multiple parallel joints are
merged into a single joint; 3) a minimum spanning
tree is generated and the cut constraints are solved
simultaneously using a numerical method.

3.2.1. Generalized coordinate representation of
reference frames

The pose of body i in an assembly system can be
described by the origin ri and an orthogonal cosine
transformation matrix Ai from the body reference
frame to the global reference frame. Using the rela-
tive generalized coordinates, the global coordinates
of each body are constructed recursively. The rela-
tions of two connected bodies are depicted in Fig. 3.
Let body i be the inboard of body j, (xyz) represent the
global reference frame, and (x′

ky ′
kz′

k){k = i, j} represent
body reference frames, (x′′

ky ′′
kz′′

k){k = i, j} represent the
joint reference frames fixed on each body. Orthogonal
matrices Cij , Cji and A′′

ij are transformations from the
joint definition frames to the body frames on bodies
i and j and from the joint definition frame on body j
to the joint definition frame on body i, respectively.
From Fig. 3, we have:

rj = ri + sij + dij − sji = ri + sij + AiCijd
′′
ij − sji

= ri + Ais
′
ij + AiCijd

′′
ij − Ajs

′
ji (1a)

Aj = AiCijA
′′
ijC

T
ji (1b)

where s′
ij and s′

ji are fixed vectors on each body frame

separately. In Eqs. 1, A′′
ij and d′′

ij are expressed only
by relative generalized coordinates qij . For an open-
loop system, there exists a unique path 0 → 1 → · · · →
i − 1 → i from the base 0 to body i. Using Eqs. 1, ri and
Ai are derived recursively in terms of relative gen-
eralized coordinates q0,1, · · · , and qi−1,i . In the next
subsection, we will show how to construct the joint
reference frame from the initial input for both the
open loop system and the numerical solving phase.

Fig. 3: The representation of relative motions of two
bodies.

3.2.2. Construction of joint reference frame from
constraints

In order to describe the relations of two adjacent bod-
ies, body reference frame and joint reference frame
need to be constructed. For an interactive CAD sys-
tem, each body has its body reference frame built up
by the user. When a body is brought into the assem-
bly, as described above, its posture can be identified
by a vector r0 pointing from the global origin to the
local origin, and an orthogonal matrix A0.

However, when we start to solve the constraint
system, to respect the user’s intent as much as pos-
sible, we construct a new body reference frame and
joint reference frame for the sake of solving. First,
the new local reference frames of all bodies are set-
tled down initially coincident to the global reference
frame. Thus, those initial postures with respect to the
global frame are zeros and identical matrices. And
the joint reference frames are created from the ini-
tial positions. For example, two bodies constrained
by a plane-cylinder tangency can be constructed as
depicted in Fig. 4, using the procedure described in
Algorithm 2, where (u, Q) and (v, P, R) denote the
plane and the cylinder, where u represents the nor-
mal vector of the plane, Q is an arbitrary point on the
plane, v is the vector of the axis, p is an arbitrary point
on the axis, and R is the radius. A′′

ij and d′′
ij are defined

by A′′
ij =

[
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

] [
1 0 0
0 cos φ − sin φ

0 sin φ cos φ

]
, d′′

ij =
[

1 0
0 1
0 0

] [x
y
]
.

Let bodies 1 and 2 have original body reference
frames located at (r0

1 , A0
1) and (r0

2 , A0
2) in the global

reference frame. Body 1 has a plane P (u, Q), where

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

421

(a) (b) (c)

(d) (e)

Fig. 4: The construction of joint reference frame from a plane-cylinder tangency constraint.

u′ = [0 0 1]T and Q′ = [0 0 0]T . Body 2 has a cylin-
der C(v, P, R), where v′ = [0 0 1]T , P′ = [100 100 100]T

and R = 80. Let r0
1 = 0 and A0

1 = I, r0
2 = [0 0 50]T and

A0
2 =

[
0 1 0
0 0 1
1 0 0

]
. Let C be in the positive side of the

plane. The constructed joint reference frame is C12 =
C21 =

[
0 1 0
0 0 1
1 0 0

]
, s′′

12 =
[

100
100
80

]
, s′′

21 =
[

100
100
150

]
. Keep body 1

fixed, let q = 0. From Eqs. 1, we can get the pos-
ture of constructed body reference frame of body 2:
r2 = [0 0 −70]T , A2 = I, which means, to fulfill the tan-
gency constraint, we just keep the posture of the
body 2 invariant, and move body 2 by -70 along the
global z-axis. This is an intuitional solution because
the positions of the bodies change subtly.

In general, the joint reference frames are built up
obeying such simple rule: letting q be the relative gen-
eralized coordinates, the relative postures of two con-
nected bodies are most reasonable while q = 0. The
word reasonable means the changes to the assembly
are as subtle as possible. Consider the cylinder-plane
tangency constraint, for example. As showed above, if
the cylinder and plane are parallel, their postures can
be kept invariant and just translated along the nor-
mal vector of the plane to fulfill such constraint. By
constructing the joint reference frame from the initial
positions carefully, we can get a reasonable solution
for an open-loop system analytically, instead of using
the expensive and unsteady numerical optimization

method in [24]. Moreover, the configuration of the
constraint system at q = 0 is a good initial guess for a
closed-loop assembly problem, which facilitates the

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

422

possible numerical method to solve the close-loop
system. The solution closest to the initial input is
given constantly.

3.2.3. Merging the joints of two connected bodies

Since multiple constraints would possibly be added
into two connected bodies, after each constraint con-
verted into a joint, there will be multiple edges in two
connected nodes. Unlike the direct numerical solving
method proposed in [24], we try to merge the par-
allel edges into single edge analytically, which will
reduce the number of generalized coordinates and
non-linear equations to be numerically solved. For
example, suppose that two coplanar constraints will
be added between two bodies. If we convert each con-
straint into a plane joint, there will be two planar
pairs, each of which has three generalized coordi-
nates. With the cut-joint method discussed later, a
planar pair will be cut, and three non-linear equations
must be solved. However, we know that two copla-
nar constraints can be merged into a prismatic pair,
which only has one generalized coordinates. This will
dramatically reduce the number of non-linear equa-
tions to be solved simultaneously, for a closed-loop
constraint system. Our geometric reasoning exhaust-
edly enumerates the pairs of joints to merge them
into one single joint, until only one joint exists. If
no more pair of joints can be merged, we select the
joint having a minimum number of generalized coor-
dinates as the joint of the two bodies, and convert all
residual joints into equivalent primitive constraints,
which will be solved numerically combined with other
constraints in the next subsection.

3.2.4. Generation of a maximum weight spanning
tree

For a closed-loop system, we adopt the cut-joint
method used in [1,6,17,24,25]. The cut-joint method
removes some edges from the constraint graph to
form a spanning tree. The cut constraints and those
unable to be reasoned should be solved simulta-
neously. Let ei be any edge, reasoned(ei) represent
the number of reasoned constraints, and residual(ei)

represent the number of constraints unable to be rea-
soned. Let n be the count of the equations required

to be solved. C and E represent the sets of cut and
all edges, respectively. Thus, we have the following
equation:

n =
∑
ei∈C

reasoned(ei) +
∑
ei∈E

residual(ei),

in which the second term is invariant. To minimize
n, we just need to minimize the first term. If we take
reasoned(ei) as the weight of each edge, generating a
maximum weight spanning tree will minimize n. Since
the count of the system’s residual DOFs are constant,
the minimization of n means the minimization of the
number of the unknowns of the equations, too.

After generating the maximum weight spanning
tree, the residual equations to be solved can be writ-
ten as �(q) = 0, where q is the collection of gen-
eralized coordinates of the spanning tree. To solve
this set of equations, a numeric iteration method is
indispensable. As stated in the previous subsection,
the iteration starts constantly from the initial value
q0 = 0 in which our construction of joints implies
that the configuration of the assembly at q0 = 0 is
more appropriate intuitionally. The numerical solving
method of these equations can be found in [15,24].

Fig. 5: The solving process of a four-bar linkage.

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

423

Fig. 6: A Sarrus linkage and its constraint graph.

Fig. 7: A bicycle assembly and its constraint graph.

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

424

3.3. Propagation of geometric constraints solving

Once the affected biconnected component is re-
calculated, the changes are propagated down on the
propagation tree. The propagating algorithm is listed
in Algorithm 3. The propagating process is quite
straightforward. We use the breadth-first method to
walk through the entire tree. If the global reference
frame of the base of a subgraph keeps unchanged,
the reference frames of all the bodies in the subgraph
and its children don’t need any adjustment. The pro-
cedure can be proved correct easily. Substituting the
related B′

i and r′
i into the primitive constraints, we can

verify that all the equations still hold.

Joint Abbr. Specification DOC

Cylindrical C two axes are aligned 4
Planar E two surfaces are

coincident
3

Revolute R one rotary motion 5
Prismatic P one translational

motion
5

Slide S two translational
motion

4

Tab. 1: Assembly constraints used in the example.

4. EXAMPLES

The proposed method has been implemented as a
3D assembly constraint solver in interactive CAD
software. Fig. 5 illustrates the solving process of a
four-bar linkage. Fig. 5(a) is the initial guess input by
the user. Adopting the strategy depicted in Section 3,
Fig. 5(b) gives the configuration of the spanning tree
at q = 0 with a revolute joint cut. At last, the final
configuration of the linkage is given in Fig. 5(c). It
takes only several iterations to get a result near to
the initial input. A realization of Sarrus linkage is
depicted in Fig. 6. The Sarrus linkage composed of
only rotational joints has a rectilinear motion, ver-
tically up and down. Fig. 6(a) is the demonstration
of a Sarrus linkage. After solving the geometric con-
straint graph depicted in Fig. 6(b), the final configura-
tion is obtained as Fig. 6(c). Fig. 7 gives an example
of a bicycle assembly which involves 24 parts, and
contains 50 geometric constraints which can be con-
verted into 168 primitive constraints, designated by
the designer. Table 1 lists the constraints used in the
example. Table 2 gives all the joints used in Fig. 7(a).
The original constraint graph is given in Fig. 7(b).
Fig. 7(c) illustrates the reduced constraint graph after
the construction and merging of the joints between
two connected parts. For an entire computing from
scratch, Fig. 7(b) requires solving 75 equations, of
which the maximum number of equations to be solved
simultaneously is 18, but Fig. 7(c) only requires solv-
ing 35 equations, of which the count of equations to

be solved simultaneously is 12. Fig. 7(d) depicts the
propagating process of the constraint graph. If the
user modifies the assembly interactively, say, tries
to add a plane-plane distant constraint between the
parts v′

0 and v3, the solver identifies the subgraph
(v′

0, v3), and solves it. The changes can be propagated
out only by rigid transformation. As the joints are
created obeying the strategy mentioned previously,
the solution often gives a configuration of the assem-
bly varying from the original configuration as subtly
as possible.

Constraint Abbr. Specification DOC

CoLine a two lines are
superposed

4

CoPlane b two planes are
coplanar

3

ParPlane c two planes are
parallel

2

DistPP d distance constraint
between planes

3

PerpLL e two lines are
perpendicular

1

Tab. 2: Spatial joints used in the example.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, an incremental method is proposed
to solve the assembly constraints especially in the
under-constraint state in an interactive CAD sys-
tem. During the assembling process, a designer fre-
quently adds or removes some constraints, changes
the mating parameter, and maneuvers some body.
Meanwhile, such constraint graph normally mingles
open-loop with closed-loop subgraphs. The proposed
method takes the following steps. First, identifies the
biconnected component where the changes occurred
and solves it using cut-joint method. Then propa-
gate such changes out by rigid transformation. With
such a strategy adopted, the geometric constraints
of other biconnected components don’t need to be
solved. Before using the cut-joint method to solve
the biconnected component, we first use the geo-
metric reasoning to get an optimum relative general-
ized coordinates to reduce the number of constraints
required to cut. Also, we propose a strategy to con-
struct the joint reference frames, with the initial posi-
tions of the bodies considered, which facilitates both
solving open-loop and closed-loop subsystems. By
adopting a maximum weight spanning tree, we prove
that the count of the cut constraints is minimized.
Although a cut-joint method is adopted to solve the
biconnected component in this paper, other methods
to solve geometric constraint problems can be con-
sidered to solve this subproblem if the number of cut
constraints is too large to solve efficiently in a numer-
ical iterative method. A graph-constructive method

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

425

may help to decompose the biconnected component
into some fewer subproblems further. The compari-
son of efficiency and steadiness of cut-joint methods
with those constructive methods is our future work.

ACKNOWLEDGEMENTS

The research was supported by Chinese 973 Pro-
gram (2010CB328001) and Chinese 863 Program
(2012AA040902). The first author was supported by
the NSFC (61035002, 61272235). The second author
was supported by the NSFC (61063029, 61173077).
The third author is also a senior visiting professor at
Jiangxi Academy of Sciences.

REFERENCES

[1] Bae, D.-S.; Haug, E.-J.: A Recursive Formulation
for Constrained Mechanical System Dynamics:
Part II - Closed Loop Systems, Mechanics of
Structures and Machines, 15(4), 1987, 481–506.

[2] Borning, A.: The Programming Language Aspect
of ThingLab, ACM Transactions on Program-
ming Language and Systems, 3(4), 1981,
353–387.

[3] Fudos, I.; Hoffmann, C.-M.: A Graph-
constructive Approach to Solving Systems of
Geometric Constraints, ACM Transactions on
Graphics, 16(2), 1997, 179–216.

[4] Gao, X.-S.; Jiang, K.; Zhu C.-C.: Geometric
Constraint Solving with Conics and Linkages,
Computer-Aided Design, 34(6), 2002, 421–433.

[5] Gao, X.-S.; Lin, Q.; Zhang, G.-F.: A C-tree Decom-
position Algorithm for 2D and 3D Geomet-
ric Constraint Solving, Computer-Aided Design,
38(1), 2006, 1–13.

[6] Haug, E.-J.: Computer Aided Kinematics and
Dynamics of Mechanical Systems: Basic Method,
Allyn and Bacon, Boston, 1989.

[7] Kim, J.-S.; Kim, K.-S.; Lee, J.-Y.; Jung, H.-B.: Solv-
ing 3D Geometric Constraints for Closed-loop
Assemblies, International Journal of Advanced
Manufacturing Technology, 23(9-10), 2004,
755–761.

[8] Kim, S.-H.; Lee, K.: An Assembly Modelling
System for Dynamic and Kinematic Analysis,
Computer-Aided Design, 21(1), 1989, 2–12.

[9] Kramer, G.-A.: A Geometric Constraint Engine,
Artificial Intelligence, 58(1-3), 1992, 327–360.

[10] Laman, G.: On Graphs and Rigidity of Plane
Skeletal Structures, Journal of Engineering
Mathematics, 4(4), 1970, 331–340.

[11] Latham, R.-S.; Middleditch, A.-E.: Connectivity
Analysis: A Tool for Processing Geometric Con-
straints, Computer-Aided Design, 28(11), 1996,
917–928.

[12] Lee-St J. A.; Sidman J.: Combinatorics and
the rigidity of CAD systems. Computer-Aided
Design, 45(2), 2013, 473-482.

[13] Li, Y.-T.; Hu, S.-M.; Sun, J.-G.: A Construc-
tive Approach to Solving 3-D Geometric Con-
straint Systems Using Dependence Analysis,
Computer-Aided Design, 34(2), 2002, 97–108.

[14] Light, R.; Gossard, D.: Modification of Geo-
metric Models through Variational Geometry,
Computer-Aided Design, 14(4), 1982, 209–214.

[15] Liu, Y.; Song, H.-C.; Yong, J.-H.: Calculating
Jacobian Coefficients of Primitive Constraints
with Respect to Euler Parameters, International
Journal of Advanced Manufacturing Tech-
nology, Accepted. doi: 10.1007/s00170-012-
4643-9.

[16] Mathis, P.; Thierry, S.-E.-B.: A Formalization
of Geometric Constraint Systems and Their
Decomposition, Formal Aspects of Computing,
22(2), 2010, 129–151.

[17] Oliver, J.-H.; Harangozo, M.-J.: Inference of Link
Positions for Planar Closed-loop Mechanisms,
Computer-Aided Design, 24(1), 1992, 18–26.

[18] Owen, J.-C.: Algebraic Solution for Geometry
from Dimensional Constraints, in: Proceedings
of the first ACM symposium on Solid modeling
foundations and CAD/CAM applications, 1991,
397–407.

[19] Peng, X.; Lee, K.; Chen, L.: A Geometric Con-
straint Solver for 3-D Assembly Modelling,
International Journal of Advanced Manufactur-
ing Technology, 28(5-6), 2006, 561–570.

[20] Schreck, P.; Schramm, É.: Using Invariance
under the Similarity Group to Solve Geometric
Constraint Systems, Computer-Aided Design,
38(5), 2006, 475–484.

[21] Tarjan, R.: Depth-first Search and Linear Graph
Algorithms, SIAM Journal on Computing, 1(2),
1972, 146–159.

[22] Tay T.-S.: Rigidity of multi-graphs. I. linking
rigid bodies in n-space. Combinatorial Theory
Series B 26, 1984, 95–112.

[23] van der Meiden, H.-A.; Bronsvoort, W.-F.: A Non-
rigid Cluster Rewriting Approach to Solve Sys-
tems of 3D Geometric Constraints, Computer-
Aided Design, 42 (1), 2010, 36–49.

[24] Xia, H.-J.; Wang, B.-X.; Chen, L.-P.; Huang, Z.-
D.: 3D Geometric Constraint Solving Using the
Method of Kinematic Analysis, International
Journal of Advanced Manufacturing Technol-
ogy, 35 (7-8), 2008, 711–722.

[25] Zou, H.; Abdel-Malek, K.; Wang, J.-Y.: Computer-
Aided Design Using the Method of Cut-
joint Kinematic Constraints, Computer-Aided
Design, 28(10), 1996, 795–806.

Computer-Aided Design & Applications, 11(4), 2014, 417–425, http://dx.doi.org/10.1080/16864360.2014.881184
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

	INTRODUCTION
	GEOMETRY REPRESENTATION AND CONSTRAINT GRAPH
	Geometry Representation
	Geometric Constraint Graph and Biconnected Property

	SOLVING THE GEOMETRIC CONSTRAINT GRAPH
	Construction of the Propagation Tree
	Solving the Biconnected Subgraph
	Generalized coordinate representation of reference frames
	Construction of joint reference frame from constraints
	Merging the joints of two connected bodies
	Generation of a maximum weight spanning tree

	Propagation of geometric constraints solving

	EXAMPLES
	CONCLUSIONS AND DISCUSSIONS
	Acknowledgements
	References

