
399

Streamlining Function-oriented Development by Consistent Integration of
Automotive Function Architectures with CAD Models

Moritz Cohrs1, Stefan Klimke2 and Gabriel Zachmann3

1Volkswagen AG, Germany, moritz.cohrs@volkswagen.de
2Volkswagen AG, Germany, stefan.klimke@volkswagen.de
3University of Bremen, Germany, zach@cs.uni-bremen.de

ABSTRACT

A primary challenge in the automotive industry is the increasing complexity of modern cars caused by
the high amount of vehicle electronics respectively vehicle functions which are implemented as mecha-
tronic systems. A promising solution is the relatively new function-oriented development approach
that focuses on the interdisciplinary development of such functions and which helps to handle the
high complexity in automotive development. At this stage, however, a function-oriented development
does not fully exploit the capabilities of virtual technologies which are fairly well-established technolo-
gies in the automotive product development. One reason in particular is that function-oriented data
is not yet integrated with geometric CAD data. The authors’ main contributions begin with an analysis
of the data structures of function architecture data and CAD data and they provide a definition of
the requirements for a consistent mapping of named data structures. Moreover, they also develop a
meta-format that enables a system-independent description and exchange of function architectures.
In addition, the authors carry out a prototypical implementation that shows the applicability of the
proposed data integration approach and they derive new methods that can assist a function-oriented
development. Finally, the authors evaluate these methods by means of actual use cases. Summarizing,
their research focuses on the interdisciplinary integration of function architectures with CAD models
to create synergies and to enable new, beneficial methods for the spatial visualization and utilization
of such data.

Keywords: function-oriented development, virtual technologies, virtual prototyping, systems engi-
neering, digital mock-up

1. INTRODUCTION

Today, the increasing complexity of modern cars is
one of the primary challenges in the automotive
industry [7],[12]. One significant driver of complexity
is the high amount of vehicle electronics respec-
tively vehicle functions, like Park Assist, Dynamic
Light Assist or Start-Stop Automatic. Such functions
are implemented as mechatronic systems, consisting
of sensors, actuators and controllers. A function-
oriented approach to development addresses the
interdisciplinary implementation of such systems.
This approach can complement component-driven
development by extending the overall focus on func-
tions rather than on single components and it pro-
vides a fundamental solution to handle the rising
complexity in automotive development [7],[11],[17].
In addition, another significant complexity driver is
the high amount of different variants due to different

engines, transmissions, steering controls and markets
and the possible configurations including multiple
customizable options. For instance, in Germany, a VW
Golf 7 is currently available with options for different
engines, transmissions, assistance systems and more
than 100 optional features resulting in a total of mul-
tiple thousand possible configurations only for the
German market.

Virtual technologies are computer-based methods
for the processing of virtual product prototypes [16]
and are an important resource in the automotive
product lifecycle management [10],[13],[18]. More-
over, virtual technologies help to master the increas-
ing product complexity and they can be beneficial
in many aspects like product quality, time-to-market
and cost competiveness. At this stage, however,
the capabilities of virtual technologies are not yet
fully exploited for a function-oriented development

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

mailto:moritz.cohrs@volkswagen.de
mailto:stefan.klimke@volkswagen.de
mailto:zach@cs.uni-bremen.de


400

Fig. 1: Our approach integrates function architecture data with CAD data to create synergies and to enable new
beneficial methods for the spatial visualization and utilization of function architectures.

because function-oriented data structures are not yet
integrated with geometric CAD data. Consequently,
our research focuses on the interdisciplinary integra-
tion of automotive function architectures with CAD
models to create synergies and to enable new, benefi-
cial methods for the spatial visualization and utiliza-
tion of such data. Fig. 1 illustrates our approach of
data integration.

2. RELATED WORK

In this section, we review related work in the fields of
virtual prototyping and CAD data synthesis, exploring
an increasing need for interdisciplinary data integra-
tion, standards and interfaces due to the increasing
complexity and cross-linking of mechatronic systems
in the automotive industry.

In the crafting industries, a typical and established
application of virtual prototyping is a digital mock-up
(DMU), which describes the utilization of CAD models
for geometric analyses. Solutions like such proposed
by Song et al. [15] show how challenges of hetero-
geneous, collaborative CAD assembly can be handled
by DMU approaches. In addition, approaches like [8]
and [13] assist in streamlining interfaces between
CAD data and virtual reality applications to benefit
in design review processes.

A functional (digital) mock-up (FMU/FDMU) enhances
traditional DMU by integrating numerical simulation
models, like such created with MATLAB/SIMULINK,
with CAD data to enable functional simulation of
product properties [5],[9]. For instance, an FMU frame-
work has been proposed by Schneider et al. [14] which
helps to shorten development times of multi-domain
systems and which allows integration tests at early
stages of development.

In addition, Farkas et al. [6] proposed an inter-
disciplinary approach to functional prototyping. The
authors developed a framework that couples differ-
ent simulators to address the necessity of timely
simulation, review and debugging of multiple mecha-
tronic components in complex automotive systems.
The results indicate that the authors’ work allows
early functional design reviews and assists in the
specification and evaluation of mechatronic systems.

Blochwitz et al. [3] reported a lack in independent
standards for model exchange and co-simulation and
therefore introduced the Functional Mockup Inter-
face (FMI). This tool-independent standard focuses on
the exchange of dynamic models and on streamlin-
ing co-simulation to improve collaboration between
suppliers and OEMs. Having been started under the
MODELISAR project, the FMI has recently arrived at
the 2.0 standard (beta) [2] and is continued under the
Modelica Association Project.

Differences, advantages and disadvantages of both
concepts, FMU and FMI, have been explored by Enge-
Rosenblatt et al. [4]. The authors highlight the FMU
focus on interactive 3D visualization including func-
tional simulation and the FMI focus on efficient co-
simulation and model exchange. By the proposal of
three options, the authors argue that these concepts
can be complementary combined for comprehensive
investigation of multi physical systems with promis-
ing results.

While virtual prototyping is beneficial in multi-
ple areas, it concurrently generates many challenges
due the diversity of heterogeneous systems, domains
and collaborators involved in automotive design pro-
cesses. Recent proceedings in related work, how-
ever, clearly indicate benefits for product life cycle
management due to interdisciplinary approaches and
novel data integration. The approach we propose in
this paper contributes in this field by focusing the
synthesis of automotive function architectures with
CAD/DMU data.

3. INTEGRATING FUNCTION ARCHITECTURES
WITH CAD DATA

In this section, we propose our approach of inte-
grating automotive function architectures with CAD
models. Our main contributions begin with an anal-
ysis of relevant data structures and a derivation of
requirements for a consistent data mapping. More-
over, we develop an XML-based meta-format for the
system-independent description of function-oriented
data. In addition, we carry out a prototypical imple-
mentation by which we derive new methods for the

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



401

processing of such data. Finally, we evaluate these
methods by means of actual use cases.

3.1. Definition of Relevant Data Structures

3.1.1. CAD data

In our work, the term CAD data is understood as
a set of data that includes a geometric representa-
tion of a virtual product prototype [16] as well as
some product properties. The data is originally cre-
ated by CAD engineers in a source CAD system like
CATIA and afterwards stored in a data management
system (DMS) for further applications like a digi-
tal mock-up. We use the Siemens Teamcenter data
management system because it is an established and
leading system in the field of automotive product life-
cycle management. Moreover, the system enables an
export of CAD data with two complementary file for-
mats: JT (Jupiter) and Siemens PLM XML. Hereby, the
geometric data is kept in the JT file while structural
information and product attributes of the CAD data
are separately stored in the PLM XML file. The main
advantage of the PLM XML format for our integration
approach is that it enables an integration of custom
metadata into a set of CAD data while maintaining
compatibility with established system standards and
processes.

In the Teamcenter data management system, the
CAD data is stored in predefined sets whose content
can be related to vehicle projects, assembly zones, car
configurations and other extents. Such volumes can
include car segments like front end or cockpit, com-
plete car configurations (100% models) and configura-
tions which include multiple variants and derivatives
(150%+ models). A 100% model represents a specific
car configuration as it can be assembled in the real
world.

We use the term of granularity to describe the
degree of segmentation of the geometric parts within
a set of CAD data. A low granularity means that parts
of the CAD data are merged as shown in Fig. 2 (left).
Especially wires might be merged to simplify DMU

applications which focus on geometric analyses and
therefore do not require a high granularity.

3.1.2. Function data

Many vehicle functions are implemented as mecha-
tronic systems which can be considered as sets of
its related elements including components and con-
nections. Components can be of the type sensor, actu-
ator or controller. Connections between components
may include but are not limited to signal wires, CAN
busses, ground cables and supply lines. We use the
system PREEvision for the development and visual
modeling of such function architectures which we
shortly call function data in this paper. Function
architecture descriptions are used by various vehicle
manufacturers in many areas of automotive product
lifecycle management including development, qual-
ity assurance, production, research, customer service
and the legal system. Fig. 3 illustrates an example
of the function architecture of a vehicle Headlamp
Flasher.

The actual system implementation of a vehicle
function can be different, depending on the particular
car configuration. For instance, the Seat Heating func-
tion could be implemented in the Body Control Module
or within another dedicated controller, depending
on the configuration or vehicle project. Moreover,
function architectures may include different variants
as illustrated in Fig. 3 where the Headlamp Flasher
function either uses standard headlights or Bi-Xenon
lights.

3.2. Requirements for a Consistent Data Mapping

The data integration that is approached in our work
aims for a connection between two types of data: func-
tion data and CAD data. This connection requires an
assignment of elements of the function data to cor-
responding geometric parts of the CAD data which is
called mapping. In that regard, consistent mapping is

Fig. 2: Different granularity of CAD data based on the example of wiring harness.

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



402

Fig. 3: Example of a proposed architecture diagram of a vehicle Headlamp Flasher.

understood as a complete and explicit data assign-
ment. We briefly identify the following proposed
requirements for a consistent data mapping:

• Identifiers. Identifiers are necessary to enable
an explicit description and allocation of all data
objects that are to be mapped.

• Completeness. The data volume of the CAD data
needs to include all geometric parts which are
required to completely assign all configuration-
relevant function elements.

• Granularity. A sufficient level of CAD data gran-
ularity is required for a proper data assign-
ment, especially for the mapping of connec-
tions/wires.

• Relations.
• Each function component is mapped to

exactly one geometric part for a particular car
configuration.

• Each function connection is mapped to at least
one geometric part if the connection is not a
controller-internal connection.

In the following, we explore and discuss the above
requirements and their derivation. A primary ques-
tion of the data mapping is how to make function
elements know to which geometric parts they are
related to. In terms of data structures, the answer to
this question is the use of clearly defined identifiers
which are implemented as explicit key fields. In addi-
tion, the implementation and maintenance of such
key fields needs to be considered in related process

management. In that regard, it is reasonable to con-
sider the use of identifiers that are already existing
and utilized in established system standards and/or
processes. For instance, in the development environ-
ment of our work, function identifiers are defined
in a system containing a function catalog so we use
these identifiers to avoid redundancy and additional
complexity along the data integration.

An obvious yet important requirement for a con-
sistent mapping is a sufficient integrity and level
of completeness of the CAD data so that all
configuration-relevant function elements can be suc-
cessfully associated with geometric parts. We need
to consider that particular functions may not be
available in all car configurations and that the imple-
mentation of functions can be different along such
configurations. If the function data contains variants
as in our example in Fig. 3, a complete mapping theo-
retically requires a set of CAD data that includes these
variants as well. However, it also is a common use case
to map a single variant only with the CAD data. There-
fore, we consider a mapping as complete if at least
one function variant is completely mapped.

Another requirement for a consistent mapping is
the granularity of the CAD data. In practice, such
granularity is not necessarily available in all CAD data
volumes because geometric parts might be merged
as illustrated in section 2.1.1. A proper mapping
of function data, however, requires a level of gran-
ularity that is sufficient to assign all function ele-
ments to related geometric parts. This requirement
is particularly crucial for the mapping of function

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



403

connections which are usually mapped to multiple
separate wire-segments.

Finally, a logical requirement of the mapping is the
definition of relations between function elements and
geometric parts of the CAD data. A single function
component is always mapped to a single geometric
part. However, it is also possible that multiple compo-
nents refer to the same geometric part. For instance,
an instrument cluster physically is a single vehicle
assembly part and likewise it is represented in the
CAD data as a single geometric part. However, in a
functional view, it might be separately represented as
two components, a controller as well as an actuator
(see Fig. 3).

A single function connection is mapped to one or
more geometric parts representing particular contin-
uous wire segments. However, a connection might
also be internal, which means that it is implemented
within a controller. In this case, there is no geomet-
ric representation at all and thus no need for a data
mapping.

3.3. An XML-based Format for the
Interdisciplinary Utilization of Function
Architectures

In this subsection, we describe the development of a
new XML-based format for the description of auto-
motive function architectures. Our format enables
an integration of such data into PLM XML struc-
tures and, in general, it enables an interdisciplinary
exchange and utilization of function data across dif-
ferent systems and domains. The format exploits
many advantages of XML like language- and plat-
form independence, human-readability and validation
using schemas.

Based upon the mapping requirements and the
properties of the function data, prerequisites for our
XML schema can be identified as follows:

• Identifiers are necessary to enable an explicit
data allocation.

• A function is a set of its elements, including
components and connections.

• Components can be of different types (actuator,
sensor or controller).

• Connections can be of different types (signal-
wire, can-bus, etc.).

• Functions comprise 1. . . * components and 0. . . *
connections.

• Mapping references should be optionally speci-
fiable in XML files.

• Support for configurations/variants is required.
• Additional properties should be optionally

specifiable for function elements.

To begin with, the schema is supposed to support
the descriptions of single functions as well as multi-
ple functions in a single XML file to provide a high

grade of flexibility. Therefore, a data element called
Function is defined to include the function data and
in addition, a parental object called FunctionCatalog
is defined which can include any number of Function
elements. Both elements are declared as global ele-
ments so that they both can be used as root elements
in valid XML documents.

The data mapping requires functions and all of
its elements to be referable by explicit identifiers. In
addition, to increase the human-readability of related
XML-documents, such elements should be given a
descriptive name. Finally, functions and its elements
should be optionally relatable to particular car config-
urations. We have implemented these three require-
ments as suggested data fields in a global attribute
group called Header so this data structure can be
reutilized by all data elements of the schema.

The schema uses a complex type called Compo-
nentType that defines the data type for the descrip-
tion of function components. This data type uses a
simple type MechatronicType to define the type of the
component. Enumerations are used to restrict values
to either actuator, sensor or controller. An optional
element Annotations is added for additional descrip-
tive information. Finally, we define an element called
MappingLink which is used to refer to a geometric
part to which the component is mapped to. This ele-
ment is defined as optional because we also want to
allow XML documents as valid which do not include
mapping references.

A complex type ConnectionType is defined for the
description of function connections which also uses
the Header. Annotations are omitted in favor of sim-
plicity because they were not needed in our use cases.
ConnectionType includes a simple type WireTyp to
describe the type of connection and uses enumera-
tions to restrict its values to either can-bus, signal,
ground, supply or other. In addition, we define an ele-
ment called Connector. This element is needed to cre-
ate the logical connection to the components to which
the connection is attached to using a single identifier.
We set up the minimal occurrences of connectors to
2 because a connection needs to be consisting of at
least two connectors. Analogously to components, we
add an optional MappingLink with unbounded maxi-
mum occurrences to allow a connection object to be
assigned to multiple wire segments.

The complex data types ComponentType and Con-
nectionType are implemented in the XML schema as
sub elements Component and Connection of a com-
plex type FunctionType that defines the primary data
structure for functions. The Connection element is
considered optional (0. . . *) because a function the-
oretically can be consisting of one controller only
without any further connections. In addition, the
FunctionType element also uses the Header to provide
a unique identifier, name and configuration key.

Another requirement for the schema is the
optional extensibility of function elements with

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



404

Fig. 4: Our proposed XML-schema enables an interdisciplinary and system-independent utilization of function
architectures across different domains of automotive development.

additional metadata. For example, such metadata
could include additional information like the soft-
ware version or test maturity of controllers. Since the
type of required metadata is significantly depending
on particular functions and applications, the schema
uses a generic data structure to provide a suffi-
cient grade of flexibility. Therefore, a complex type
MetaDataType is defined which uses the attributes
DataField and Value to describe the name and the
value of the metadata element. A function element
can utilize any number of MetaData elements to
enable the inclusion of additional information.

Finally, a namespace can be assigned to the
schema to avoid interferences with other XML docu-
ments. In this paper, however, we have left out the
namespace in favor of a better readability of the
illustrated documents and diagrams.

The proposed schema implementation focuses on
simplicity and on the avoidance of redundancy so that
it can be easily understood by end users. If necessary,
it might become a subject of future work to extend
our implementation by additional elements to adopt
new and/or changing requirements. Fig. 4 shows the
complete structure of the final XML schema using

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



405

a visual diagram created with the Altova XMLSpy R©
schema editor. The actual XML code is to be found
in the APPENDIX.

The following code shows a schema-valid XML
document that describes the function of a hypo-
thetical Headlamp Flasher which has been proposed

<?xml version="1.0"encoding="UTF-8"?>
<FunctionCatalog xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="FunctionSchemaFinal.xsd">

<Function id="f0134"name="Headlamp Flasher">
<Component id="s023"name="Headlamp Flasher (Button)">

<Type>sensor</Type>
</Component>
<Component id="ctr012"name="Steering Pillar Module">

<Type>controller</Type>
</Component>
<Component id="ctr003"name="Instrument Cluster">

<Type>controller</Type>
</Component>
<Component id="ctr002"name="Body Control Module">

<Type>controller</Type>
<MetaData DataField="Test Maturity"Value="40%"/> <!-- Metadata examples ->
<MetaData DataField="Version"Value="1.00"/>

</Component>
<Component id="ac005"name="Display">

<Type>actuator</Type>
<MetaData DataField="Size"Value="8"/>

</Component>
<Component id="ac006L"name="Headlight (L)"configuration="00001">

<Type>actuator</Type>
</Component>
<Component id="ac006R"name="Headlight (R)"configuration="00001">

<Type>actuator</Type>
</Component>
<Component id="ac007L"name="Bi-Xenon Light (L)"configuration="00002"> <!-- Headlight

variants ->
<Type>actuator</Type>

</Component>
<Component id="ac007R"name="Bi-Xenon Light (R)"configuration="00002">

<Type>actuator</Type>
</Component>
<Connection id="cn01"name="Connection1">

<Type>other</Type>
<Connector>s023</Connector>
<Connector>ctr012</Connector>

</Connection>
<Connection id="cn02"name="Connection2">

<Type>other</Type>
<Connector>ctr003</Connector>
<Connector>ac005</Connector>

</Connection>
<Connection id="cn03"name="Connection3">

<Type>can-bus</Type>
<Connector>ctr012</Connector>
<Connector>ctr003</Connector>
<Connector>ctr002</Connector>

</Connection>
<Connection id="cn04"name="Connection4"configuration="00001">

<Type>signal</Type>
<Connector>ctr002</Connector>
<Connector>ac006L</Connector>

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



406

<Connector>ac006R</Connector>
</Connection>
<Connection id="cn05"name="Connection5"configuration="00002">

<Type>signal</Type>
<Connector>ctr002</Connector>
<Connector>ac007L</Connector>
<Connector>ac007R</Connector>

</Connection>
</Function>

</FunctionCatalog>

in section 2.1.2. The code also utilizes hypothetical
metadata by way of example.

3.4. Prototypical Implementation / New Methods
of Application

We carried out a prototypical implementation of our
integration approach to derive new methods for the
utilization of function data and to evaluate the bene-
fits of these proposed methods in the field. Therefore,
we integrated a few function architectures of differ-
ent vehicle functions with CAD data for an exemplar
vehicle. In particular, we exported the function archi-
tecture data from the system PREEvision using a
prototypic interface that creates XML files that are
valid to our schema. In addition, we exported the CAD
data as JT and PLM XML from a data management
system. With the function data available in XML, we

were able to integrate this data into the PLM XML file
so that we could load the merged data in a 3D visual-
ization system. We used the system VisMockup, which
is an established application for digital-mock-ups.

Our prototype enables different kinds of novel
methods for the visualization and analysis of the
function data. A primary application is the highlight
of function architectures in the full car assembly
as shown in Fig. 5. Function components are visual-
ized in colors depending on their type and function-
related wires are marked red within the blue-colored
electrical system.

Our approach also allows for integrating multiple
functions so that it enables a comparison of different
function architectures in a specific car project and/or
configuration. Fig. 6 shows an example that highlights
function components of three different functions in
the car front end from a top down view.

Fig. 5: Our data integration enables a spatial visualization of function architectures. This example shows the
architecture of a vehicle Headlamp Flasher.

Fig. 6: Our work enables a spatial comparison of function architectures in particular vehicle projects. The
example shows related components of the following functions (from left to right): (a) Park Assist, (b) Start-Stop
Automatic and (c) Dynamic Light Assist.

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



407

Fig. 7: Our proposal for data integration enables a function-oriented data hierarchy navigation (right) in addition
to the hypothetical DMS/assembly-based hierarchy (left).

In addition, data integration enables us to create
visual reports that incorporate any attribute values
of the function metadata that can be based on pre-
defined rules and conditions. For instance, all con-
trollers of a function could have a custom attribute
called test maturity with values ranging from 0% to
100%. Based on this example, a simple use case for a
visual report could be a red marking of all controllers,
whose test maturity is below 50%.

Finally, the integrated data adds the possibility
of using a function-oriented hierarchy for data nav-
igation within the CAD data structure. Usually, the
CAD data hierarchy is based on assembly zones
and/or structures that are derived from the data man-
agement system which can be considerably cryptic
(see Fig. 7). The integration of function data pro-
vides the option to use an alternative data hierarchy
that enables a function-oriented data exploration (see
Fig. 7).

3.5. Use Cases and Practical Applications

Our novel approach to consistent data integration
allows engineers to have a simultaneous and consis-
tent view on function-oriented and geometric data
throughout development processes and the product
lifecycle. In this sub-section, we briefly explore a few
use cases to demonstrate the applicability of our
approach in the field.

A key requirement for industrial collaboration
is a proper communication which especially applies
for a function-oriented development due to its high
degree of interdisciplinarity. Our approach enables
a spatial visualization and communication of func-
tion architectures that increases the perceptibility and
understandability of such data as visual experience is
known as being the most dominant learning mode [1].
In automotive application, our work is helpful for all
users of function architecture descriptions like func-
tion supervisors, project managers and many other
engineers whose work is related to such information.

A manufacturer’s module strategy can also signif-
icantly influence electric/electronic development and

a specific challenge is the high diversity of derivatives
and vehicle configurations. As noted in section 3.1.2,
car configurations may also change the actual imple-
mentation of a function. As a result, individual func-
tion components can be differently located across
such configurations. Our approach of spatial visual-
ization allows for making such differences notable
and comparable.

Another benefit of our approach is to be found
in the development and validation of the electrical
system. While two components may be adjacent and
directly linked in an architecture diagram, it does
neither necessarily mean that those components are
implemented next to each other in the actual car
nor that there is a direct connection between them.
Our approach of spatial visualization enables precise
statements on such wiring distribution as well as
related cause-effect relationships so that potential
issues can be detected and enclosed earlier in the
design process.

The increasing electric/electronic complexity of
modern cars also poses a challenge for the customer
service. When a malfunction is detected, it is a typ-
ical task for the service to locate and repair the
concerned part(s). A spatial visualization can assist
technicians in the tracking of components and wires
that are related to particular functions. Our approach
can help to decrease such tracking times, especially
under consideration that assembly positions of com-
ponents can be different, depending on the car model
and/or derivation, or, considering that technicians are
not necessarily familiar with a particular car model.
Moreover, our data integration enables reclusions
about other functions that may be potentially mal-
functioning because of their relationship to a defect
component. Finally, our methods can be used in the
education of new service technicians to illustrate
function architectures and for the creation of service
documents.

Finally, our work assists a functional mock-up
approach because it integrates fundamental function-
oriented data structures that can serve as groundwork
for FMU and other advanced applications that are
related to vehicle functions.

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



408

4. CONCLUSIONS AND FUTURE WORK

A holistic development process that integrates
function-oriented development and geometric design
is still a comparatively young concept. In our work we
have shown that it is possible to implement the inte-
gration of function-oriented data with CAD data in
existing development processes. Our research assists
a function-oriented development by the provision of
novel, visual methods for the analysis and commu-
nication of automotive function architectures and
supports an interdisciplinary collaboration between
different domains in automotive development. We
have demonstrated the importance and benefits of
our approach with a few use cases.

Our prototypical implementation has revealed
some challenges that remain for further work. The
utilized visualization system is not able to exploit
all potentials of the data integration because it lacks
optimal interfaces and data processing capabilities.
Such limitations could be overcome, for example,
by a custom plugin that focuses on the utiliza-
tion of the function-oriented data. In addition, the
implementation of our approach into daily work
processes may require changes to established work
processes.

In conclusion, the concept of holistic and interdis-
ciplinary development is beneficial in many aspects
but also raises challenges at interfaces as well as at
the mindsets of developers and our approach shows
much potential for further exploitation.

REFERENCES

[1] Barry, A.: Perception Theory, Handbook of
Visual Communication, Erlbaum, New Jersey,
2005, 45–62.

[2] Blochwitz, T.; Otter, M.; Akesson, J.; Arnold M.;
Clauß C.; Elmqvist, H.: Functional Mockup Inter-
face 2.0, 9th International Modelica Conference,
Munich, 2012.

[3] Blochwitz, T.; Otter, M.; Arnold, M.; Bausch, C.;
Clauß, C.; Elmqvist, H.: The Functional Mockup
Interface for Tool independent Exchange of
Simulation Models, 8th International Modelica
Conference, Dresden, 2011, 20–22.

[4] Enge-Rosenblatt, O.; Clauß, C.; Schneider, A.;
Schneider P.: Functional digital mock-up and
the functional mock-up interface, Proceedings
of the 8th international Modelica Conference,
Dresden, 2011, 748–755.

[5] Enge-Rosenblatt, O.; Schneider, P.; Clauß C.;
Schneider, A.: Functional Digital Mock-up –
Coupling of Advanced Visualization and Func-
tional Simulation for Mechatronic System

Design, ASIM-Treffen STS/GMMS Proceedings,
Ulm, 2010, 41–48.

[6] Farkas, T.; Hinnerichs, A.; Neumann, C.:
An Interdisciplinary Approach to Functional
Prototyping for Mechatronic Systems using
Multi-Domain Simulation with Model-Based
Debugging, Proceedings of the International
Multi-Conference on Engineering and Techno-
logical Innovation, Orlando, Florida, 2008.

[7] Gottschalk, B.; Kalmbach, R. (Eds.): Mastering
Automotive Challenges, Kogan Page, London,
2007.

[8] Kim, S.; Weissmann, D.: Middleware-based inte-
gration of multiple CAD and PDM systems into
virtual reality environment, Computer-Aided
Design & Applications 3(5), 2006, 547–556.

[9] Krause, F.; Franke, H.; Gausemeier, J.: Inno-
vationspotenziale in der Produktentwicklung,
Carl-Hanser Verlag, München, 2007.

[10] Rao, N. R.: Innovation through Virtual Tech-
nologies, Virtual Technologies for Business and
Industrial Applications, Business Science Refer-
ence, Hershey, New York, 2011, 1–13.

[11] Revermann, K.: Function-oriented Develop-
ment, edaWorkshop 09 Proceedings, VDE,
Berlin, 2009. https://www.edacentrum.de/
content/function-oriented-development

[12] SAE-China; FISITA (Eds.): Proceedings of the
FISITA 2012 World Automotive Congress, 6,
Springer, Berlin, 2013.

[13] Schilling, A; Kim, S.; Weissmann, D.; Tang, Z.;
Choi, S.: CAD-VR geometry and meta data syn-
chronization for design review applications,
Journal of Zhejiang Univ. Sci. A, 7(9), 2006,
1482–1491

[14] Schneider, P.; Clauß, C.; Schneider, A.; Stork,
A.; Bruder, T.; Farkas, T.: Towards more
insight with functional digital mockup,
European Automotive Simulation Conference,
2009.

[15] Song, I.; Chung, S.: Synthesis of the digi-
tal mock-up system for heterogeneous CAD
assembly, Computers in Industry 60(5), 2009,
285–295.

[16] Wang, G.: Definition and Review of Virtual
Prototyping, Journal of Computing and Infor-
mation Science in Engineering, 2(3), 2002,
232–237.

[17] Weber, J.: Automotive Development Processes,
Springer, New York, 2009. DOI: 10.1007/978-3-
642-01253-2

[18] Zachmann, G.: VR-Techniques for Industrial
Applications, Virtual Reality for Industrial
Applications, Springer, Berlin, 1998, 13-38.
DOI: 10.1007/978-3-642-46847-6_2

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

https://www.edacentrum.de/content/function-oriented-development
https://www.edacentrum.de/content/function-oriented-development


409

APPENDIX – COMPLETE CODE OF OUR FUNCTION-ORIENTED XML SCHEMA

<?xml version="1.0"encoding="UTF-8"?>
<xs:schemaxmlns:func="VWFunctionSchema"xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"attributeFormDefault="unqualified">
<xs:element name="FunctionCatalog">
<xs:annotation>
<xs:documentation>Includes any number of functions</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="Function"maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Function"type="FunctionType"/> 4 <xs:complexTypename="FunctionType">
<xs:sequence>
<xs:element name="Annotations"type="textField"minOccurs="0"/>
<xs:element name="Component"type="ComponentType"maxOccurs="unbounded"/>
<xs:element name="Connection"type="ConnectionType"minOccurs="0"maxOccurs="unbounded"/>
</xs:sequence>
<xs:attributeGroup ref="Header"/>
</xs:complexType>
<xs:complexType name="ComponentType">
<xs:sequence>
<xs:element name="Annotations"type="textField"minOccurs="0"/>
<xs:element name="Type"type="MechatronicType"/>
<xs:element name="MetaData"type="MetaDataType"minOccurs="0"maxOccurs="unbounded"/>
<xs:element name="MappingLink"type="keyField"minOccurs="0"/>
</xs:sequence>
<xs:attributeGroup ref="Header"/>
</xs:complexType>
<xs:complexType name="ConnectionType">
<xs:sequence>
<xs:element name="Type"type="WireType"/>
<xs:element name="Connector"type="keyField"minOccurs="2"maxOccurs="unbounded"/>
<xs:element name="MetaData"type="MetaDataType"minOccurs="0"maxOccurs="unbounded"/>
<xs:element name="MappingLink"type="keyField"minOccurs="0"maxOccurs="unbounded"/>
</xs:sequence>
<xs:attributeGroup ref="Header"/>
</xs:complexType>
<xs:attributeGroup name="Header">
<xs:attribute name="id"type="keyField"use="required"/>
<xs:attribute name="name"type="xs:string"use="required"/>
<xs:attribute name="configuration"type="keyField"use="optional"/>
</xs:attributeGroup>
<xs:simpleType name="MechatronicType">
<xs:restriction base="xs:string">
<xs:enumeration value="sensor"/>
<xs:enumeration value="actuator"/>
<xs:enumeration value="controller"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="WireType">
<xs:restriction base="xs:string">
<xs:enumeration value="can-bus"/>
<xs:enumeration value="signal"/>
<xs:enumeration value="ground"/>
<xs:enumeration value="supply"/>
<xs:enumeration value="other"/>
</xs:restriction>

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



410

</xs:simpleType>
<xs:simpleType name="keyField">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:simpleType name="textField">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:complexType name="MetaDataType">
<xs:attribute name="DataField"type="xs:string"/>
<xs:attribute name="Value"type="xs:anySimpleType"/>
</xs:complexType>
</xs:schema>

Computer-Aided Design & Applications, 11(4), 2014, 399–410, http://dx.doi.org/10.1080/16864360.2014.881182
c© 2014 CAD Solutions, LLC, http://www.cadanda.com


	INTRODUCTION
	RELATED WORK
	INTEGRATING FUNCTION ARCHITECTURES WITH CAD DATA
	Definition of Relevant Data Structures
	CAD data
	Function data

	Requirements for a Consistent Data Mapping
	An XML-based Format for the Interdisciplinary Utilization of Function Architectures
	Prototypical Implementation / New Methods of Application
	Use Cases and Practical Applications

	CONCLUSIONS AND FUTURE WORK
	References

