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ABSTRACT

This paper presents a contribution to the automation and integration of topology optimization meth-
ods (TOM) with CAD, in the context of the design of statically loaded mechanical structures and parts.
Starting from an initial CAD model with relevant engineering data, the goal is automatically generating
an optimized CAD model with respect to engineering objectives and constrains. Though many opti-
mization methods are now available, their complete and efficient integration into the design process
faces several problems. After introducing the basic steps involved in the whole process and identi-
fying the challenges inherent to this integration, this paper presents our contribution in addressing
these challenges. The paper is focused on the specification of design and non-design sub-domains, on
automatic mesh generation problems induced and on the adaptation of TO concepts in the context of
3D unstructured meshes. TO itself is adapted from a SIMP scheme, which is an arbitrary choice as any
other optimization method could also have been used. Sets of results are presented to illustrate the
potential and difficulties inherent to integrating TOM into the product design process with CAD.

Keywords: topology optimization, B-Rep, CAD/FEA integration, SIMP method, mesh generation,
multiple domains.

1. INTRODUCTION: THE TOPOLOGY
OPTIMIZATION PROCESS

Finite element analysis (FEA) has proven its potential
when trying to optimize stiffness of parts assem-
blies and structures. Optimizing stiffness is usually
performed with the objective of minimizing weight,
which means modifying an initial geometry, while
insuring to sustain prescribed loads, applied on this
evolving geometry. Several methods have been intro-
duced to automate this optimizations process. These
methods are mainly based on applying FEA to shapes
that are evolving automatically. Input data required
at the beginning of the optimization process typically
stands as an initial 3D geometry added with the spec-
ification of material which should not be affected by
the optimization process (referred to as non-design
material) and loads, boundary conditions (BC) and
material data. From this starting point, the objective
is automating the transformation of the initial shape
and topology into an optimized shape and topology
with respect to size, weight, strength and eventually
stiffness. Towards this objective, topology optimiza-
tion methods (TOM) [1,2,4,6,12,15,16] has been a field
of promising and active research for the last fifteen

years. The great potential of TOM is that the evolution
of shape and topology is not necessarily constrained
by the topology of the initial domain. Thus, the result-
ing topology obtained at the end of the process is not
known a priori, which somehow tends to automate the
production of new design ideas. Bringing this technol-
ogy to maturity is likely to open a new era for product
development with computer aided design (CAD). In
fact, the evolution of geometric modeling, automatic
mesh generation and TOM now allows foreseeing the
actual integration of TO into the product design pro-
cess and by the way, sets up the conditions for its
wider use. Fig. 1 presents a general framework for the
integration of TO technology into the CAD world and
the overall process can be synthesized by considering
the following basic steps.

It starts with providing the automatic optimization
process with the input data required (initial geome-
try, loads, BC and material properties). In the context
of TO, the initial geometry must me defined in a
specific way because the optimization process must
globally affect its shape and topology while respecting
the functional integrity of some subsets of this ini-
tial geometry. For example, material around fastening
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Fig. 1: A scheme of the topology optimization process.

holes or, more generally, material around geometric
features on which loads or BC are applied should
not be modified by the TO process. All these sub-
sets of the initial geometry, that must be kept intact
for whatever reason, are referred to as the non-design
sub-domain. The remainder of the initial geometry
is composed with material which is likely, on the
contrary, to be remodeled by TO and it is referred
to as the design sub-domain. Of course, for a given
case, the Boolean union of design and non-design sub-
domains results in the whole initial domain and the
Boolean intersection between design and non-design
sub-domains is a null volume. Then, as explained in
the following sections, this specific partition of the
initial geometry implies using specific mesh genera-
tion procedures so that the mesh of the initial geom-
etry is also partitioned into design and non-design
finite elements. Consequently, during the TO process
itself, elements tagged as non-design elements will
not be affected while the process will only operate on
elements tagged as design elements. Then, the result
provided by the TO process itself is a 3D shape com-
posed with the union of the non-design sub-domain
and an evolution or optimization of the design sub-
domain. It must be underlined here that some TO
processes only remove design material from the ini-
tial design domain while others both remove and add
design material.

This paper brings about some new ideas and
tools intended to contribute to the objective of fully
automating the optimization of statically loaded 3D

mechanical parts and structures. We will basically
present how geometric modeling and mesh genera-
tion concepts can be successfully adapted and inte-
grated with TOM towards this objective. In this work,
this integration is basically performed through spe-
cific adaptations of advancing front automatic mesh
generation and transformation algorithms and adap-
tations of boundary representation (B-Rep) concepts.
Also, TO in itself is based on the solid isotropic mate-
rial with penalization (SIMP) method [1,2,16], which is
a very standard optimization method. It is very impor-
tant to underline that this choice is arbitrary and that
many other optimization methods could have been
considered instead. The authors are well aware that
commercial codes and systems are developed towards
similar objectives (ex.: TOSCA by FE-Design GmbH,
OptiStruct by Altair Engineering Inc.). However, none
of the research work behind these products is avail-
able in the literature. Our approaches and research
results are therefore presented in this paper for the
benefit of the larger scientific community.

The paper is organized as follows. Section 2 lists
the challenges of automating the TO process and inte-
grating it into the design process with CAD. Section 3
presents our contribution to this integration through
several sub-sections which are related to the succes-
sive steps of the overall process and section 4 illus-
trates, with several practical examples, the potential
and challenges encountered in integrating this tech-
nology with CAD. The paper ends with a conclusion
and perspectives.
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2. AUTOMATION OF THE TOPOLOGY
OPTIMIZATION PROCESS

Even if several papers [7,11,19] can be found in the
literature, aimed at integrating TOM into the CAD pro-
cess, the solutions presented are either limited to 2D
shapes or fragmentary and lots of problems remain
to be solved. Ideally, the process should automatically
derive a 3D optimized CAD model from the input of
an initial CAD model with relevant data (typically the
non-design sub-domain, BC and relevant engineering
data). This objective is very ambitious for different
reasons and the full automation of the process pre-
sented in the previous section faces the following
challenges:

• The easy and efficient definition of the non-
design sub-domain: the specification of non-
design material should be made by using a
combination of automatic processing with inter-
active selection. In fact, the material located
around geometric features of the initial CAD
model on which some of the BC are applied
can be automatically derived into subsets of the
non-design sub-domain. However, the designer
should also be provided with an efficient and
interactive interface, allowing an easy selection
of non-design geometry, directly on the initial
CAD model. It will be shown in section 4.4
that the specification of non-design material
with respect to BC applied is a key and sen-
sitive issue in using TOM effectively because
it has a direct and very significant impact on
optimization results obtained at the end.

• The representation of the design and non design
sub-domains: once specified the non-design sub-
domain, design and non-design sub-domains
must be saved and the representation used
should be consistent with both requirements
inherent in the partition of geometry applied
(into design and non-design sub-domains) and
requirements inherent in the specific mesh gen-
eration procedures used afterwards.

• The automatic generation of the initial geom-
etry’s mesh and its automatic partition into
design and non-design finite elements. The par-
tition of geometry (into design and non-design
sub-domains), along with constraints on this
partition, imply using specific adaptations of
automatic mesh generation procedures. Also,
even if many algorithms and approaches have
been introduced to limit this impact [2,18], the
mesh of the initial design sub-domain has a
impact on optimization results, especially with
respect to the degree of refinement of the final
shape and topology. Consequently the prob-
lem is not simply generating a mesh (with the
constraints aforementioned) but it is also gen-
erating a “good” mesh for obtaining “good”
optimization results at the end.

• Integrating the TOM used (in our case the SIMP
method) into the process. Since many optimiza-
tion methods are introduced in 2D on structured
meshes, the first challenge faced is adapting
theses methods to 3D on unstructured meshes,
which is a requirement towards automation
of the whole process for 3D solid models.
Another important issue is calibrating the opti-
mization method used in order to obtain, at
the end of the whole process, good optimiza-
tion results with respect to practical engineering
objectives. TOM involve many parameters and
the optimized shape and topology obtained are
strongly influenced by some of these parame-
ters. Automation of the process requires a thor-
ough study of these parameters’ influence on
the final result of the optimization process so
that these parameters can then be automatically
calibrated with regard to practical engineering
concerns (the type of geometry and BC involved,
the optimization’s objective, manufacturing per-
spectives, etc.).

• Capturing a 3D shape and by the way practi-
cal design intent from results provided by TOM.
Some TOM [6,15] try to incorporate explicit or
implicit CAD geometry directly into the opti-
mization problem but it at this point it is limited
to 2D geometry. In fact, the result provided by
3D TOM does not directly and explicitly take
the form of an optimized 3D shape. For exam-
ple, the SIMP method (which is used in this
paper) results in a 3D relative density distribu-
tion, which requires to be processed in order
to obtain an actual 3D shape. Moreover, the
challenge is wider than simply deriving an opti-
mized 3D volume. Indeed, the main objective is
capturing “load paths” (identified by the opti-
mization process) that are likely to be derived
into an optimized CAD model at the very end
of the process. The way these “load paths” are
modeled is fundamental because it has a direct
impact on the way the final CAD model can be
automatically built.

• Last but not least, the optimized 3D shape has
to be derived automatically into an optimized
3D CAD model. This represents a very ambitious
challenge because, to be consistent with the
product development process, the optimized
CAD model needs to be built with respect to
its manufacturability. This means that optimiza-
tion results must be transformed into smoothed
and functional boundaries and that the final
shape must be likely to be manufactured at a
reasonable cost. Obviously, a significant com-
promise has to be made between the degree of
optimization and the cost induced. Indeed, the
optimal topology is likely to be very complex
which is in contradiction with the objective of
reducing manufacturing costs.
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Fig. 2: A first topology optimization example: (a) the initial design with loads and BC, (b) the non-design
sub-domain, (c) the result obtained with our topology optimization platform.

The work presented in this paper contributes to
provide solutions to some of these challenges.

3. OUR CONTRIBUTION TO THE PROCESS

In sections 1 and 2 we have presented the basic
steps of the optimization process and the challenges
related to its automation. The next sections will
describe with details our main contributions to this
process which are:

• Defining and modeling design and non-design
domains easily and efficiently.

• Setting up specific automatic 3D mesh genera-
tion and transformation tools. These tools are
used upstream to TO (for the conformal mesh-
ing of design and non-design sub-domains) and
downstream to TO (for the transformation of
raw optimization results into a smooth and
continuous optimized shape)

• Adapting the SIMP method to the context of 3D
unstructured tetrahedral meshes.

• Studying the interaction between the specifi-
cation of non-design sub-domains and BC and
studying its impact on SIMP results.

• Studying the impact of SIMP parameters on 3D
shapes and topology derived.

3.1. Modeling the Initial Geometry and Applying
Loads, BC and Material Properties

This step is a priori straightforward as it consists
of building an initial geometry in a CAD system and
applying BC and material properties to this initial
geometry. Practically, as this initial geometry has a
major impact on the final result, building a “good”

initial geometry is not so easy. Moreover, TOM are
likely to be used in the two following contexts:

• Fig. 2 illustrates an example for which TO is
used to refine an initial design that already fea-
tures a certain level of detail. The central hole is
loaded vertically (in purple) and the four mount-
ing holes are attached (null displacements are
imposed in green). The initial design and final
optimization result are respectively shown in
Fig. 2a and Fig. 2c. Fig. 2b illustrates the mate-
rial of the initial design that must not be affected
by the optimization process (referred to in this
work as the non-design sub-domain).

• Fig.3 illustrates a case where TO is applied on
a very coarse initial shape, which demonstrates
its potential in creating new design ideas “from
scratch”. Loads and BC are the same as in the
previous example and the initial design and
final optimization result are respectively shown
in Fig. 3a and Fig. 3c. Fig. 3b illustrates the
non-design sub-domain.

For both of these two examples, the final amount
of material is the same but the optimized results
obtained at the end are obviously quite different.
These two examples illustrate that TO can be used
in very different contexts and that being in one or
another context usually has a major impact on final
optimization results obtained.

3.2. Specifying Non-design Sub-domains

As mentioned previously the optimization process
improves the shape and topology of an initial domain
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Fig. 3: A second topology optimization example: (a) the initial design with loads and BC applied, (b) the
non-design sub-domain, (c) the result obtained using our integrated topology optimization platform.

while maintaining intact some subsets of this initial
domain throughout the whole process. Sets of 3D sub-
volumes of the initial geometry, referred to as the
non-design sub-domain, have to be specified and pro-
cessed differently. This involves a significant increase
of complexity when trying to integrate the optimiza-
tion process itself with CAD and as illustrated in
section 4.4, it has a major impact on optimization
results obtained at the end. At this stage of our
research, the non-design sub-domain for a given part
is defined using a specific boundary representation (B-
Rep) model, which is added to the B-Rep associated
with the entire domain. B-Rep is a very classical data
structure aiming at a concise representation of solid
geometry [14] and it is widely used in the contexts
of 3D modeling and visualization. Fig. 4 illustrates
our way of specifying non-design sub-domains. A first
B-Rep structure (Fig. 4a) describes the entire geome-
try and a second B-Rep structure (Fig. 4b) describes
the non-design sub-domain. The design sub-domain
is shown in Fig. 4c but it is not defined explicitly.
In fact, it does not have to be defined explicitly. In
our work indeed, the design sub-domain is implicitly
defined through a specific mesh generation process
(introduced in the next section). As shown in Fig. 4b
for the non design sub-domain, it appears in general
that both design and non-design sub-domains B-Rep
structures are likely to feature several separate bod-
ies even if the initial B-Rep structure of the whole part
is usually composed of a unique body (except in some
specific cases such as multi-material parts).

3.3. Meshing Multiple Sub-domains in Contact

As mentioned in the previous paragraph, design
and non-design sub-domains are defined using two

separate CAD models, one associated with the entire
model and the other one with non-design geometry.
This specific and mandatory definition of geometry
implies using of specific mesh generation procedures
so that finite elements generated (linear tetrahedrons
in this work) can be tagged as design elements and
non design elements. This identification of elements as
design and non-design elements allows the optimiza-
tion process itself to apply on design elements only
and to keep non-design elements unchanged. Also,
the mesh of design and non-design geometry must be
performed so that continuity and conformity of the
mesh, at the interface between design and non-design
geometry, should be guaranteed. These two require-
ments (tagging tetrahedron elements and insuring
mesh conformity at interfaces) make that standard
automatic mesh generation procedures [9] have to
be adapted, which is referred to, in the literature,
as mesh generation over multiple domains in con-
tact or as mesh generation for domains with multiple
materials [8,13,20]. In this work, automatically fill-
ing multiple domains in contact with tetrahedrons is
performed using specific mesh generation procedures
as developed by our research team. Basically, these
procedures consist of extending standard advancing
front mesh generation (AFM) principles to the con-
text of meshing multiple domains in contact. The
overall mesh generation process (see reference [8]
for the details) is divided into 14 basic steps, which
are intended to make sure that the mesh of each
sub-domain is performed with respect to constraints
imposed by the mesh of the other sub-domains. The
principle that underlies this process is transferring
mesh elements (nodes, lines, triangles and tetrahe-
drons) from one B-Rep model to the other one and
so on. At the end, this back and forth process insures
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Fig. 4: Definition of design and non-design sub-domains: (a) the entire domain, (b) the non-design sub-domain,
(c) the design sub-domain.

Fig. 5: (a) A bike suspension rocker with loads and BC, (b) the non-design sub-domain, (c) the resulting mesh,
(d) Implicit definition of the design domain.

the conformity and continuity of the resulting mesh.
Fig. 5c illustrates the mesh obtained on a bike sus-
pension rocker. Fig. 5a presents the initial model
along with loads and BC and Fig. 5b presents the
non-design model, which is composed with zones
of the rocker that are in contact with other parts
in the assembly of the suspension. As mentioned
before, geometry of the design sub-domain is not

defined explicitly and it does not have to. Indeed,
once this specific mesh generation algorithm applied,
the design sub-domain is implicitly defined as the
volume filled with design tetrahedrons, as shown in
Fig. 5d. This heterogeneous and unstructured mesh
along with loads, BC, material data and optimization
parameters, is transferred, as input, to the TO process
itself.
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3.4. An Adaptation of the SIMP Method to 3D
Unstructured Meshes

3.4.1. The SIMP method

In this work, as presented in the next section, TO
is adapted from a classical solid isotropic material
with penalization (SIMP) scheme. This is an arbitrary
choice as many other optimization methods could
also have been used successfully (ESO, BESO, SINH,
level-set based, etc.). The foundation principle of the
SIMP method is computing an iterative evolution of
the spatial distribution of material porosity across
the design sub-domain. The global amount of poros-
ity (or void) is prescribed as an input of the SIMP
process and it is kept constant throughout the iter-
ations. Thus, explained with very simple words, the
SIMP method optimizes the distribution of a pre-
scribed quantity of porosity (or void) that is removed
from the initial design towards the objective of max-
imizing the design’s stiffness. The distribution of
porosity is mathematically represented by a relative
density field ρ(x, y, z). Relative density varies from
0 (no material) to 1 (“full” or actual material) and
it is derived into the distribution of a virtual elas-
tic modulus Ẽ(x, y, z), according to the penalisation
law Ẽ(x, y, z) = E .ρ(x, y, z)p (E is the actual material’s
elastic modulus and p an integer penalization coef-
ficient that is usually chosen between p = 1 and p =
3). As we will use it in the following equations,
a classical convention in the mathematical descrip-
tion of the SIMP method is that all objects that are
affected by the relative density field ρ(x, y, z) are
noted using a . Also, as non-design material should
not be affected by the optimization process, ρ = 1 is
imposed inside the non-design sub-domain through-
out the iterations. The objective of the SIMP process
is iteratively searching for a distribution of ρ(x, y, z)

that maximizes stiffness or in other words, that min-
imizes the domain’s global compliance C̃. Using a
finite element discretization and introducing the equi-
librium equation [K̃].{Ũ } = {F}, the global compliance
is defined (with for the virtual material distribution)
as the scalar:

C̃ = {Ũ }t .{F} = {Ũ }t .[K̃].{Ũ }
{Ũ } is the global displacement vector (affected by
ρ(x, y, z)) and [K̃] the global stiffness matrix (also
affected by ρ(x, y, z)). {F} is the global vector associated
with forces applied (not affected by ρ(x, y, z)).

If we consider that the mesh is composed with N
elements and that the local stiffness matrix of ele-
ment e for ρ = 1 (full or actual material) is [Ke], then
we can define for this element a modified stiffness
matrix [K̃e], due to the impact of the relative density
ρe inside the element:

[K̃e] = (ρe)
p .[Ke]

By the way, the global stiffness matrix [K̃] is [K̃] =∑N
e=1[K̃e] = ∑N

e=1(ρe)
p.[Ke]

Thus, the global compliance C̃, once applied the
relative density field, can be written as:

C̃ = {Ũ }t .[K̃].{Ũ } = {Ũ }t .
⎛
⎝ N∑

e=1

(ρe)
p.[Ke]

⎞
⎠ .{Ũ }

=
N∑

e=1

(ρe)
p.{Ũ }t .[Ke].{Ũ }

Practically, this global compliance is computed using
the total strain energy W̃ as C̃ = 2.W̃ .

As already mentioned, a constraint imposed on the
global amount of porosity, while trying to minimize
C̃. This constraint is practically applied on the total

volume fraction f , defined as f = Ṽ
Vd

Ṽ is the design material volume affected by “poros-
ity” and Vd is the total design material volume,
which means the actual volume (without “porosity”)
of design material before beginning the SIMP process.

Thus the optimization problem can be formu-
lated as:

minimize C̃ =
N∑

e=1

(ρe)
p .{Ũ }t .[Ke].{Ũ }

with
Ṽ
Vd

= f

[K̃].{Ũ } = {F}
0 ≤ ρ ≤ 1

3.4.2. Adaptation of the SIMP method for 3D
unstructured meshes

As mentioned in the introduction, our work is focused
on integrating TOM in the product development pro-
cess with CAD. As introduced in the previous section,
it is easy to understand that automating the genera-
tion of a conformal mesh over design and non-design
sub-domains of reasonable complexity can only be
achieved through 3D unstructured mesh generation.
The SIMP method has been initially introduced in the
context of regular structured meshes (with constant
or nearly constant sized and shaped quadrangles in
2D and hexahedra in 3D) and using it with unstruc-
tured meshes requires several adaptations on the one
hand. On the other hand, this adaptation allows using
meshes with steep variations in element sizes. This
is practically very interesting because being able to
use unstructured meshes with non-constant element
sizes allows a local control on TO results (for example
locally refining or coarsening the level of geometric
details desired). With this objective, we have adapted
the SIMP scheme presented in [2] to 3D unstructured
tetrahedral meshes. First, at each iteration in the SIMP
process, the field ρ is modified using the Optimality
Criteria (OC) algorithm. ρe is modified through the
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Fig. 6: Evolution ρ(x, y, z) for the example in Fig. 5, after (a) 1 iteration (b) 2 iterations (c) 3 iterations (d) 4
iterations (e) 5 iterations (f) 6 iterations (g) 7 iterations (h) 12 iterations (with no filter applied).

following equation:

ρnew
e =

⎧⎪⎪⎨
⎪⎪⎩

max(ρvoid, ρe − m) if ρeβ
η
e ≤ max(ρvoid, ρe − m)

ρeβ
η
e if max(ρvoid, ρe − m) < ρeβ

η
e

< min(1, ρe + m)

min(1, ρe + m) if min(1, ρe + m) ≤ ρeβ
η
e

⎫⎪⎪⎬
⎪⎪⎭

where ρe is the previous relative density inside element
e and ρnew

e is the updated (or new) relative density
inside element e
m is a threshold on the variation of ρe and conse-
quently |ρnew

e − ρe| ≤ m (practically, we used m = 0.2
for the examples presented in section 4
η = 1

2 is a damping coefficient
ρvoid corresponds to a “numerical” void (for the results
presented, the practical value of ρvoid is 10−3).
βe is calculated using the following equation:

βe =
− ∂C̃

∂ρe

λ ∂Ṽ
∂ρe

∂C̃
∂ρe

is the global compliance’s sensitivity with respect
to ρe, calculated from:

∂C̃
∂ρe

= − p
ρe

.{Ũ }t .[K̃e].{Ũ }

Practically, {Ũ }t .[K̃e].{Ũ } is provided by FEA results,
using the total strain energy inside element e, W̃e as
{Ũ }t .[K̃e].{Ũ } = 2.W̃e and consequently:

∂C̃
∂ρe

= −2.p.W̃e

ρe

From Ṽ = ∑N
e=1 Ṽe = ∑N

e=1 ρe.V e we calculate ∂Ṽ
∂ρe

=
∂Ṽe
∂ρe

= Ve which leads to βe = 2.p.W̃e
λ.ρe.Ve

In this equation, λ is a Lagrange multiplier, cal-
culated using a bisection algorithm which aims at
adjusting the value of λ so that the volume fraction
constraint is satisfied:

Ṽ (ρ) =
N∑

e=1

ρnew
e .V e = f .Vd

At each iteration, element densities ρe are updated
and a FEA is performed to calculate the updated
global compliance C̃i (C̃i is the global compli-
ance at iteration i). The iterative process stops

when a threshold on �i = C̃i−C̃i−1

C̃i−1
, the relative vari-

ation of C̃i between two consecutive iterations is
reached.
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Fig. 7: For the example in Fig. 6 (a) Evolution of C̃i along SIMP iterations (b) Evolution of �i along SIMP iterations.

Fig. 8: Evolution ρ(x, y, z) for the example in Fig. 5, after (a) 1 iteration (b) 2 iterations (c) 3 iterations (d) 4

iterations (e) 6 iterations (f) 8 iterations (g) 11 iterations (h) 16 iterations (with a filter on ∂C̃
∂ρe

applied).

Fig. 6 illustrates, using the color scale shown at
the bottom, 8 stages in the evolution of ρ(x, y, z) for
the example introduced in Fig. 5. Fig. 7a illustrates,
for this example, the evolution of C̃i and Fig. 7b the

evolution of �i along SIMP iterations. In this case, con-
vergence is achieved after 12 iterations when �i is less
than 0.5 %. It is obvious that the global compliance
(Fig. 7a) and the distribution of ρ(x, y, z) (Fig. 6) do not
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Without With a filter With a filter
filtering on ∂C̃

∂ρe
on ρe

Number of 12 16 21
iterations
Final compliance 11 16.4 28.3
(Joules)

Tab. 1: The effect of filtering on the speed of
convergence and on the final compliance

change much after 5 or 6 iterations, which means that
the optimized shape and topology is reached after
very few iterations.

3.4.3. Adaptation of SIMP results filtering for 3D
unstructured meshes

The result shown in Fig. 6 illustrates a typical exam-
ple of the checkerboard effect obtained in the final
distribution of ρ(x, y, z) when no filtering is applied.
This effect tends to create micro-structures in the
optimized material (due to the FEA discretization
scheme used) and it has been intensively studied and
illustrated in the context of 2D structured meshes.
It is interesting to see the checkerboard effect in the
context of 3D unstructured meshes. Several methods
have been introduced in the literature to avoid it for
structured meshes [2–4,17]. Among these methods,
the following two main approaches can be mentioned:

• Filtering the compliance’s sensitivity ∂C̃
∂ρe

• Directly filtering the relative density distribu-
tion ρe

Both methods consist of locally calculating and using
(around a given finite element e) a weighted average

of the quantity to be filtered ( ∂C̃
∂ρe

or ρe) for the next

iteration of the SIMP process. Filtering ∂C̃
∂ρe

or ρe are
usually considered as two distinct alternatives even if
they can easily be combined. As for the SIMP method
itself, these filtering methods require adaptations
in the context of unstructured meshes. The major
adaptation required concerns the way the aforemen-
tioned weighted average is calculated. In both cases
the weighted average around a given finite element
e is calculated from the values associated with a list
of finite elements v surrounding e. This list of finite
elements surrounding e is based on a sphere, with

a radius noted rminc in the case of filtering ∂C̃
∂ρe

and

noted rmind in the case of filtering ρe. These radii can
be changed independently to locally enlarge or shrink
the associated filter. It is important to underline that
these filters are applied on design elements only and
that non-design elements located inside a sphere and
are not taken into account in weighted average.

Thus, if Ne elements are surrounding element e

(including element e itself), the filtered value of ∂C̃
∂ρe

,

noted ∂C̃
∂ρe

is calculated as ∂C̃
∂ρe

= 1
ρe
Ve

.
∑Ne

v=1 Hv . ρv
Vv

. ∂C̃
∂ρv∑Ne

v=1 Hv

Where the weight Hv is given by the linearly decaying
function: Hv = (rminc − rv)

k

rv = dist(e, v) is the distance between the centers of
elements e and v.
k is a empiric coefficient used to intensify the effect of
rv . (k = 1 has been used for all results presented in this
paper).
Ve is the actual volume of element e.
Filtering of ρe, designed as ρ̄e is performed using

ρ̄e =
∑Ne

v=1 ωv .ρv∑Ne
v=1 ωv

Where the weight ωv is Gaussian and given by ωv =

Vv .

exp

⎛
⎜⎝− r2

v

2.
(

rmind
3

)2

⎞
⎟⎠

2.π .
(

rmind
3

)

Vv is the actual volume of element v.

If compared with the equations used in the context of
structured meshes, the main difference relies on the
fact that, due to significantly varying element sizes,
we had to introduce the element volumes Vv in these
two filters. Fig. 8 shows 8 stages in the evolution of
ρ(x, y, z) for the same example as in Fig. 6, with fil-

tering applied on ∂C̃
∂ρe

(with rminc = 1.25 δ where δ is
the local value of the tetrahedron size, which is nearly
constant across the mesh in this case).

Then, Fig. 9 also shows 8 stages in the evolution of
ρ(x, y, z) for the same example, with filtering applied
on ρe (with rmind = 1.25 δ).

A comparison between these results (Fig. 6, Fig. 8,
Fig. 9 and Table 1) leads to the following general con-
clusions in the context of 3D unstructured meshes:

• The relative density distribution ρ(x, y, z) and by
the way the optimized shape and topology is
significantly influenced by filtering

• Results obtained using one or the other type of
filter can be quite different

• When a filter on ρe is applied, the final distri-
bution of ρ(x, y, z) becomes more diffuse or less
“binary” but as well it becomes smoother.

• Both types of filters, if applied with cor-
rect parameters, tend to eliminate checker-
board effects but they also seem to weaken
the results obtained as the final compliance
increases. These filters a priori seem to move
the solution away from the theoretical optimum
(with the lowest compliance) which involves
checkerboard effects, but this is not true. This
type of optimum is indeed not physical (in
addition to not being practical). As very well
explained by Bensoe [2], checkerboard solutions
feature artificially high stiffness because, in

Computer-Aided Design & Applications, 11(2), 2013, 120–140, http://dx.doi.org/10.1080/16864360.2014.846067
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



130

Fig. 9: Evolution of ρ(x, y, z) for the example in Fig. 5, after (a) 1 iteration (b) 2 iterations (c) 3 iterations (d) 5
iterations (e) 7 iterations (f) 11 iterations (g) 15 iterations (h) 21 iterations (with a filter on ρe applied).

the SIMP process, they are analyzed using FEA
discrete formulations for which the Babuska-
Brezzi numerical stability condition is not
satisfied.

3.5. Generation of an Optimized 3D Geometry

As mentioned in the previous section, the raw result
of the SIMP method is a relative density distribu-
tion across the initial mesh. This distribution has, in
itself, only little significance for design purposes and
it requires further processing. Two main approaches
can be identified when trying to generate an opti-
mized 3D geometry from raw SIMP results:

• Considering a threshold ρmin on the distribu-
tion of ρ(x, y, z) and keeping all finite elements
(tetrahedrons here) for which 1 ≥ ρ(x, y, z) >

ρmin. In this case, as illustrated just below, the
exterior boundary of the optimized design is
composed with a very irregular triangulation,
which requires the removal of non-manifold pat-
terns along with a significant smoothing (not
detailed in this paper). At this point of our
work, this smoothing is based on the algorithm
presented in [5]. When applied on distributions

of ρ(x, y, z) featuring checkerboard effects (with-
out smoothing), this alternative leads to very
fascinating images (see Fig. 10) that illustrate
the final impact of the checkerboard effect on
3D unstructured meshes and by the way, why
they have to be avoided. Fig. 11 shows, for
2 values of ρmin on the result illustrated in

Fig. 8h (with filtering applied on ∂C̃
∂ρe

), 3D opti-
mized shapes obtained using this alternative,
before and after removing non-manifold pat-
terns and smoothing. For comparison, Fig. 12
shows the optimized shapes obtained on the
result illustrated in Fig. 9h (with filtering applied
on ρe).

• Computing iso-density (iso-ρ) surfaces from
a continuous approximation of ρ(x, y, z). This
alternative first require transforming the origi-
nal distribution ρ(x, y, z) into a continuous dis-
tribution ρ∗(x, y, z). Indeed, due to Young’s Mod-
ulus penalization, ρ(x, y, z) is classically con-
stant across each finite element. A continuous
field ρ∗(x, y, z) can be easily computed using lin-
ear piecewise interpolation inside each finite ele-
ment from nodal values of ρ(x, y, z) calculated
with a weighted average of surrounding ele-
ments’ relative density. Once ρ∗(x, y, z) obtained,
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Fig. 10: Two examples of the final impact of checkerboard effects on 3D unstructured meshes.

Fig. 11: First alternative: final shapes derived from ρ(x, y, z) in Fig. 8h before and after smoothing (a) and
(b) ρmin = 0.2 (c) and (d) ρmin = 0.4.

Fig. 12: First alternative: final shapes derived from ρ(x, y, z) in Fig. 9h before and after smoothing (a) and
(b) ρmin = 0.2 (c) and (d) ρmin = 0.4.

iso-density surfaces defined by ρ∗(x, y, z) = ρmin
can be computed as a triangulation. Even if
boundary triangulations derived this way are a
lot smoother than those derived with the first
alternative, they are also smoothed using the
algorithm presented in [5]. Obviously, as this

second alternative is based on computing a con-
tinuous distribution of ρ(x, y, z), it leads to much
better results when a filter on ρe is applied.
Fig. 13 shows the optimized shapes obtained
using this second alternative for the same 2
values of ρmin on the example shown in Fig. 9h.
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Fig. 13: Second alternative: from ρ(x, y, z) in Fig. 9h (a) The distribution of ρ(x, y, z) (b) The distribution of
ρ∗(x, y, z) and final shapes derived (c) with ρmin = 0.2 (d) with ρmin = 0.4.

The comparison between shapes introduced in
Fig. 11 and Fig. 12 shows that filtering ρe leads to
smoother and in general more compact optimized
shapes. Practically, the major drawback of filtering

ρe instead of ∂C̃
∂ρe

is that setting up ρmin is a lit-
tle more delicate because, as mentioned earlier, the
distribution of ρ(x, y, z) is more diffuse. Indeed, the
final objective remains fulfilling the condition Ṽ (ρ) =
f .Vd and consequently, the value of ρmin should be
adjusted so that the actual optimized design volume
equals f .Vd . In most cases the adjusted value of ρmin is
close to ρmin = 0.4. When no filtering is applied along
the SIMP process, the final distribution of ρ(x, y, z)

is close to binary. Consequently, the effect of ρmin
on the optimized design volume is negligible in this
case but we have seen that it leads to unpractical
results due to checkerboard effects. An interesting
study of the effect of ρmin on optimization results for
2D shapes can be found in [11]. Then, the compari-
son between Fig. 12 and Fig. 13 illustrates that, when
applied to SIMP results where ρe has been filtered, the
two alternatives (applying a threshold on ρ(x, y, z) or
computing iso-ρ surfaces) lead to very similar results.

4. PRACTICAL EXAMPLES AND CHALLENGES

The framework described along this paper has been
successfully implemented through the design of a
TO platform based on C++ code and on the use of
Code_AsterTM as a FEA solver. We used GmshTM [10]
for visualizing meshes and SIMP results. The process
is fully automated, starting from the input of the two
B-Rep models mentioned previously along with loads,
BC, and SIMP parameters, and ending with an opti-
mized 3D geometry (as a triangulated B-Rep or STL
file). In the following paragraphs, in order to illustrate
challenges inherent to the practical integration of TO
with CAD, we present an application of our method to
a set of optimization problems.

4.1. First Example: a “Sitting Device”

The first model is illustrated in Fig. 14. A verti-
cal load (resultant force Fv) and an horizontal load
(resultant force Fh) are applied while the model is
anchored to the ground on 4 locations. Filtering on
ρe is applied, the first alternative is used for comput-
ing the optimized 3D shape and ρmin is adjusted to
fulfil the target on f . Fig. 15a shows the optimized
shape obtained with Fh = 2.Fv and f = 0.03, Fig. 15b
with Fh = 2.Fv and a mesh with smaller elements and
Fig. 15c with Fh = 10.Fv and f = 0.03. This example
illustrates well the potential of the integration of TO
with CAD towards the automatic generation of new
designs but also some of the practical problems that
can be faced. Indeed, the optimized shape obtained
in Fig. 15a is not symmetric despite the fact that
the optimization problem is symmetric and that the
design intent is obviously generating a symmetric
shape. The only potential source of asymmetry in
the problem is the unstructured mesh itself. Fig. 16
illustrates the evolution of ρ(x, y, z) through SIMP iter-
ations on both sides of the domain and the occurrence
of asymmetry in the solution. Thus, a very tiny differ-
ence in the mesh between the right and left sides of
the domain is likely to result in a significant differ-
ence in the final solution and by the way in the final
design.

This example illustrates how sensitive the opti-
mization process can be with respect to the mesh
used, specifically to the element size and quality
distribution. This type of problems can usually be
avoided using a mesh with smaller elements. Indeed,
Fig. 15a shows the asymmetric solution obtained with
a constant mesh size equal to 0.5 while Fig. 15c
shows a symmetric solution obtained with a constant
mesh size equal to 0.35. Moreover, like in FEA in
general, overcoming asymmetry problems can be eas-
ily done by modeling one half of the domain. This
approach is used by commercial optimization soft-
ware (Inspire by for example) for the implementation
of manufacturing constraints such as symmetry,
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Fig. 14: First example (sitting device): (a) the entire domain with loads and BC, (b) the non-design sub-domain,
(c) the resulting heterogeneous mesh.

Fig. 15: First example (a) The optimized shape with Fh = 2.Fv and f = 0.03 (b) The optimized shape with
Fh = 2.Fv , f = 0.03 and smaller elements (c) The optimized shape with Fh = 10.Fv and f = 0.03.

pattern repetition and cyclic repetition (as referred to
in Inspire). This example also shows (when comparing
Fig. 15a with Fig. 15b) that, as it could be anticipated,
the optimized shape is strongly influenced by the
balance of loads applied.

4.2. Second example: a “supporting device”

The second model (Fig. 17) is anchored to the ground
on 4 locations and a vertical load is applied on 4 loca-
tions. Filtering on ρe is applied, the first alternative
is used for computing the optimized 3D shape and
ρmin is adjusted to fulfill the target on f . The results
(Fig. 18) illustrate well how powerful the integration
of TO can be towards the automatic creation of new
designs. However, the results obtained cannot be used

practically as the optimized designs, if used as is, are
likely to fail by buckling. Potentially irrelevant results
like these derive from the fact that standard FEA, on
which SIMP iterations are based, does not a priori take
buckling (or other phenomenon) into account. In this
type of situations, further investigations should be
made, which represents challenges towards the full
automation of design creation through the integration
of TO with CAD.

4.3. Third Example: a “Mounting Device”

For the third example (Fig. 19) the central hole
is loaded and the four mounting holes attached.
Filtering on ρe is applied, the first alternative is used
for computing the optimized 3D shape and ρmin is
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Fig. 16: ρ(x, y, z) at iterations 8,9,10 for the first example (a) (b) (c) (d) On the right side of the domain (e) (f) (g)
(h) On the left side of the domain.

Fig. 17: Second example (supporting device): (a) the entire domain with loads and BC, (b) the non-design
sub-domain, (c) the resulting heterogeneous mesh.

adjusted to fulfill the target on f . The final result
obtained with f = 0.1 and a constant mesh size equal
to 0.15 is shown in Fig. 20a. This figure illustrates
another problem when using TO since two mounting
holes are not linked to the central bore. This opti-
mized shape is theoretically viable but not practically

acceptable. This type of situations is related to similar
issues as mentioned in the first example. Indeed, the
unstructured mesh is not perfectly symmetric, which
is likely to bring about uncertainty with respect to
the optimized shape obtained at the end. In fact, at
some point along SIMP iterations, the solution can
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Fig. 18: Second example (supporting device) optimized shapes (a) f = 0.07 (b) f = 0.06 (c) f = 0.04.

Fig. 19: Third example (mounting device) (a) The entire domain with loads and BC (b) The non-design sub-domain
(c) The resulting heterogeneous mesh.

Fig. 20: Third example (mounting device), optimized shape (a) f = 0.1 and mesh size = 0.15 (b) f = 0.1 and mesh
size = 0.125.

take one direction or another which may induce a
loss in material continuity. Decreasing element size
can solve the problem as illustrated in Fig. 20b. How-
ever, it is difficult to “a priori” set up mesh size in
order to guarantee avoiding this type of problems.
The fact that, at some point along SIMP iterations,
there is a change in the way the design material is
connected can be detected by looking at the evolution

of �i = C̃i−C̃i−1

C̃i−1
.

Fig. 21 illustrates, for the example in Fig. 20a, the
evolution of �i along SIMP iterations, while Fig. 22
illustrates this evolution for the example in Fig. 20b.
As shown in these two figures, each change in the
design material’s structure is reflected by a signif-
icant increase of �i for a few iterations. Thus, the
appearance of a loss in material continuity in Fig. 20a
is clearly reflected in the evolution of �i in Fig. 25
(iteration 19). Losses in material continuity lead to
irrelevant optimized shapes. With the objective of
automating the whole process, a potential solution

consists of automatically detecting losses of material
continuity and decreasing the element size. Another
solution is introducing a material continuity con-
straint into the TO process itself. This can be done
quite easily when using ESO and BESO topology opti-
mization methods but it is much more delicate with
the SIMP method.

4.4. Fourth Example: a “Bearing Bracket”

The fourth and last model considered is a bear-
ing bracket, which is illustrated with loads applied
(a combination of vertical and horizontal forces) in
Fig. 23. With this example, our intent is showing that
the choice of BC, along with associated non-design
geometry, has a very significant impact on optimized
shapes created. For this, we consider three cases
(referred to as cases 1,2 and 3) depending on the way
displacements are imposed on the model to represent
the flat contact under the bracket’s bottom flange. For
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Fig. 21: The evolution of �i and the optimized shape for the example in Fig. 20a after (a) 3 iterations (b) 5
iterations (c) 6 iterations (d) 18 iterations (e) 19 iterations (f) 21 iterations.

Fig. 22: The evolution of �i and the optimized shape for the example in Fig. 20b after (a) 5 iterations (b) 6
iterations (c) 7 iterations.
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Fig. 23: Fourth example (bearing bracket) and loads applied.

Fig. 24: Displacements imposed to the bearing bracket: (a) first case, (b) second case, (c) third case.

Fig. 25: Bearing bracket, first and second cases: (a) the non-design sub domain, (b) (c) the resulting heterogeneous
mesh.

the three cases, bolting is represented by blocking the
two mounting holes. Considering the flat contact, for
the first case, a null displacement is applied on the
whole inferior face (Fig. 24a) whereas for the second
case, it is only applied on two annular faces around
holes (Fig. 24b). For the third case, the null displace-
ment condition is applied on a sub-face surrounding
the two holes as shown in Fig. 24c.

Fig. 25 and Fig. 26 introduce non-design sub-
domains used for these three cases along with result-
ing meshes. Thus, the flat contact surface under the
bracket’s bottom flange is likely to evolve for the first

case only. It is worth underlining that the second
case is the most conservative because the contact sur-
face considered is smaller than the optimized part’s
actual contact surface. Fig. 27 and Fig. 28 summarize
optimization results obtained for the first two cases
using three values for the target volume fraction f .
For the third case (Fig. 29), due to the non-design vol-
ume increase, the target volume fractions f have been
decreased so that the optimized volumes are the same
as for the first two cases.

Results obtained for the three cases considered are
obviously quite different, which underlines the impact
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Fig. 26: Bearing bracket, third case: (a) the non-design sub domain, (b) (c) the resulting heterogeneous mesh.

Fig. 27: Optimized shapes (bearing bracket) for the first case: (a) f = 0.3, (b) f = 0.2, (c) f = 0.1.

Fig. 28: Optimized shapes (bearing bracket) for the second case: (a) f = 0.3, (b) f = 0.2, (c) f = 0.1.

Fig. 29: Optimized shapes (bearing bracket) for the third case: (a) f = 0.272, (b) f = 0.168, (c) f = 0.064.

of BC on optimized shapes. The choice of BC may be
sensitive for any FEA but St-Venant’s principle makes
that a priori quite different sets of BC may, at the end,

lead to the same FEA conclusions in locations of inter-
est. When using FEA for TO, this is not true anymore
and a priori quite different combinations of BC and
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non-design sub-domains usually lead to quite differ-
ent optimization results. Moreover, as it is the case for
this example, introducing contact conditions along
with specific connectors can be the most appropriate
way to impose BC, which increases analysis complex-
ity by introducing nonlinearity. In general, modeling
loads, BC and non-design geometry mixed with an
evolving shape is part of the most sensitive problems
faced in the practical use of TO.

5. CONCLUSION AND PERSPECTIVES

The integration between geometric modeling, auto-
matic unstructured mesh generation and TO repre-
sents a promising step forward and the examples
presented show its huge potential in the context of
product development. Nevertheless, these examples
also underline that a lot of research work remains
to be done to make this integration actually efficient
with a practical perspective. The practical specifica-
tion of non-design sub-domains can be improved but
this is not a major issue if compared to the problems
pointed out in section 4. Using meshes with varying
element sizes and integrating other TOM could repre-
sent promising ideas towards further developments
and enhancements. Indeed, one of the most impor-
tant drawbacks of the SIMP method is that is does
not explicitly involve the optimization of stress dis-
tribution, which is usually the most sensitive issue
when trying to optimize a mechanical design. The
fact that the framework presented in this paper has
been built with the objective of being able to easily
integrate and mix any shape and TOM, brings about
very interesting perspectives. The automatic (or at
least assisted) creation of a CAD model of the final
optimized shape from the results provided by the
SIMP method is also a natural perspective for fur-
ther research work on the subject. Many approaches
can be foreseen in this objective but automating the
construction of CAD models from TO result is, at
this point, still extremely ambitious and it is clearly
a long term perspective. One of the major challenges
in this latter direction is introducing a manufactur-
ing perspective into the process. Indeed, building a
consistent optimized shape is not only a matter of
compliance and stress distribution but also a matter
of manufacturability.
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