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This paper presents planar quasi-log-aesthetic curves in polynomial Bézier form.  Log-
aesthetic curves are curves that can be considered as the generalization of the 
Clothoid, Nielsen’s spiral, logarithmic spirals and circle involute.  By deriving the 
Taylor polynomials of log-aesthetic curves and converting the basis to Bernstein basis, 
we obtain quasi-log-aesthetic curves in polynomial Bézier form.  We show the 
implementation results with logarithmic curvature graphs and a 1G  Hermite 
interpolation method. 
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1 INTRODUCTION 

Planar log-aesthetic curves [3,4,5,8] are curves with linear logarithmic curvature graphs (LCGs)[12].  
The curves were originally proposed for the shape design of highly aesthetic objects.  However, log-
aesthetic curves are only computed by integrating the equations and they are not compatible with 
freeform curves such as Bézier, B-spline or NURBS curves.  This paper proposes a method for 
approximating log-aesthetic curves in terms of polynomial Bézier curves.  Thus as the degree gets 
higher, the curve gets closer to log-aesthetic curves.    

There are several related works for approximating some special cases of log-aesthetic curves by 
free-form curves.  Baumgarten and Farin proposed a method for approximating logarithmic spirals 
(log-aesthetic curves with 1α = ) by rational cubic Bézier curves [1].  Wang et al. have presented a 
method for approximating the Clothoid curve (log-aesthetic curve with 1α = − ) by polynomial Bézier 
curves using Taylor series [7].  Both of these methods have only dealt with the specific cases log-
aesthetic curves. 

Yoshida and Saito have proposed a method for approximating log-aesthetic curves by rational 
cubic Bézier curves [10].  They showed that the linearity of the logarithmic curvature graph is well-
preserved by the approximation except when log-aesthetic curves include nearby point of 0ρ =   or ∞ .  
Miura et al. have proposed a method for approximating log-aesthetic curves with polynomial curves by 
discritizing the equations of log-aesthetic curves [6].  Miura’s work was motivated by class A Bézier 
curves [2] proposed by Farin.  Yoshida et al. have found that typical class A Bézier curves gets closer 
to a logarithmic spiral, which is a log-aesthetic curve with 1α = , as the degree gets higher [9].  Miura et 
al. have generalized this to log-aesthetic curves.    
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This paper proposes quasi-log-aesthetic curves in polynomial Bézier form and compares them 
with the curves generated by Miura’s method [6] and quasi-log-aesthetic curves in rational cubic Bézier 
form [10].  We show that quasi-log-aesthetic curves are better approximation than the curves 
generated by Miura’s method.  We also propose a method for 1G  Hermite interpolation by specifying 
two endpoints and their tangents.. 

2 REVIEW OF PLANAR LOG-AESTHETIC CURVES 

Log-aesthetic curves are curves that can be considered as the generalization of the Clothoid, the 
logarithmic spiral, the circle involute, and a circle.  Harada et al. have originally proposed log-aesthetic 
curves [3,4].  The curves were originally called aesthetic curves but now the name of log-aesthetic 
curves is used.  The word “aesthetic” is used because log-aesthetic curves are based on Harada’s 
analysis of many aesthetic curve segments of the natural and artificial objects.  Harada et al. have 
shown that the logarithmic curvature graphs(LCGs) of these aesthetic curves segments can be 
approximated by straight lines.  The curves with linear logarithmic curvature graphs are called log-
aesthetic curves.  The linearity of LCG guarantees that the curvature is monotonically varying. 

Logarithmic curvature graphs are graphs whose horizontal and vertical axes are log ρ  and 

( )log  d / dsρ ρ , respectively.12].  The slope of the LCG is called α , which determines the shape of the 

curve.  When 1,0,1,2α = −  or ±∞ , the log-aesthetic curve becomes the Clothoid, Nielsen’s spiral, 
logarithmic spiral, circle involute, or circle, respectively.  

Log-aesthetic curves can be represented in terms of tangential angle or arc length.  For the 
derivation of the equations, refer to [8].  The equation of log-aesthetic curves ( )θP  in terms of 

tangential angle θ  is 
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Here, ( )ρ ϕ  is the radius of curvature at the tangential angle ϕ .  Λ  is the parameter that performs the 

similarity transformation when 1α ≠ .  When 1α =  , changing Λ  changes the shape of the curves.  See 
[8].  Note that Eqn. (1) (and also Eqn. (3)) is the standard form [8].  This means that a certain point of 
the curve, which is determined by Λ , is translated to the origin, rotated so that the tangent becomes 

[ ]T1 0  and scaled so that the radius of curvature becomes 1 at the origin.  

 The equation of log-aesthetic curves ( )sQ
 
in terms of tangential angle in the standard form is 
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Note that Eqn. (1) and Eqn. (3) represent the same curve.   Tangential angle θ   and arc length s  are 
related by 
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When we work with log-aesthetic curves, we have to be careful that s  and θ  may have bounds 
depending on α  and Λ .  See [8] for the detail of the bounds.  
 

3 QUASI-LOG-AESTHETIC CURVES IN POLYNOMIAL BÉZIER FORM 

To represent log-aesthetic curves in polynomial Bézier form, we will use the Taylor series of log-
aesthetic curves up to the user-specified degree n .  Given a function ( )f x  , the Taylor polynomials of 

degree n  about x a=  is 
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As was shown in Section 2, the equation of log-aesthetic curves can be represented either by the 
function of tangential angle or by the function of arc length.  We will first derive the Taylor polynomial 
of log-aesthetic curves in terms of tangential angle.  Let ( ) ( ) ( ) ( )cos , sinx yg gθ ρ θ θ θ ρ θ θ= = , where ( )ρ θ   

is defined in Eqn. (2).  Using Eqn. (6), the Taylor polynomials of Eqn. (1) about aθ  is 
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where ( ) ( )n
x ag θ  and ( ) ( )n

y ag θ  are the n-th derivatives of ( )xg θ  and ( )yg θ  evaluated at aθ , respectively.  

Since ( )Taylor θP  is a polynomial of degree n , replacing θ  with t  and converting the power basis to 

Bernstein basis, we can get a Bézier curve ( )tθP : 
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and ib  are the control points computed from Eqn. (7) by the basis conversion.  We will call Eqn. (8)  

quasi-log-aesthetic curve in polynomial Bézier form in terms of tangential angle.   

The Taylor polynomials in terms of arc length can be derived in the similar manner.  Let 

( ) ( )( ) ( ) ( )( )cos , sinx yh s s h s sθ θ= = , where ( )sθ  is define in Eqn. (4).  The Taylor polynomials of Eqn. (3) 

about as  is 
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where ( ) ( )n
x ah s  and ( ) ( )n

y ah s  are the n-th derivatives of ( )xh s  and ( )yh s  evaluated at as , respectively.  

Replacing s  of ( )Taylor sQ  with t  and changing to the Bernstein basis, we get quasi-log-aesthetic curve 

in polynomial Bézier form in terms of arc length: 

( ) ( )
0

n
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s i i
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= ∑P b .    (11) 

Fig. 1 shows log-aesthetic curves and quasi-log-aesthetic curves ( )tθP  and ( )s tP of degree 5 about 

0aθ = .  In Fig. 1(a) where 1, 0.5α = − Λ = , log-aesthetic curves and ( )s tP  is almost the same and ( )tθP  is 

close to the log-aesthetic curve.  In Fig. 1(b) where 1, 0.5α = − Λ = , we can see that ( )tθP  is a better 

approximation of log-aesthetic curves than ( )s tP .  In this research, we use quasi-log-aesthetic curves 

( )tθP  (Eqn. (7)).   

Eqn. (7) is dependent on aθ .  To see how the approximate curve behaves, we have changed aθ .  Fig. 

2 shows the quasi-log-aesthetic curves with 0aθ = (Fig. 2(a)) and 1aθ = (Fig. 2b)) and their LCGs.  In the 

figure, “slp” means the slope of the LCG computed by the least squares and “var” means the variance.  
As Fig. 2 shows, when 1α < , the linearity of the LCGs of 0aθ =  is better than the linearity of the LCGs 

of  1aθ = .  When 1α ≥  , the linearity of the LCGs of 1aθ =  is better.  Thus we use 0aθ =  when 1α <  and 

1aθ =  when 1α ≥ .    
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(a) 1, 0.5α = − Λ =     (b) 1, 1α = Λ =  

Fig. 1: Log-aesthetic curves and quasi-log-aesthetic curves ( )tθP  and ( )s tP . 
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(a) Taylor polynomials of 0aθ =  

 
(b) Taylor polynomials of 1aθ =  

Fig. 2: Changing aθ . 

4 1G  HERMITE INTERPOLATION 

This section presents a 1G  Hermite interpolation method of quasi-log-aesthetic curves.  We are given 
the slope of the LCG α , the degree of the Bézier curve, two endpoints 0 2,P P  and a point 1P .  The 

tangential directions at 0P  and 2P are determined by ( )0 1 0 1 0/= − −v P P P P  and ( )1 2 1 2 1/= − −v P P P P , 

respectively.  Let ( )0, ,i i n=b …  be Bézier control points and 1i i i+∆ = −b b b .  We assume that quasi-log-

aesthetic curves are represented by tangential angle.  Our method can be easily applied to quasi-log-
aesthetic curves in terms of arc length by using Eqn. (5). 

If we are given α , Λ  and aθ  , we can get the equation of a quasi-log-aesthetic curve.  In case of 

log-aesthetic curves, we can easily know the tangential direction at any point of the curve.  But in Eqn. 
(6), we do not know the tangential direction until we draw the curve because parameter t  does not 
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exactly correspond to θ .  Thus we cannot directly apply the 1G  Hermite interpolation algorithm 
described in [8].   

The 1G  Hermite interpolating quasi-log-aesthetic curve can be found in the following algorithm. 

Suppose that Λ  is known.  We set 0 0t = , translate the curve so that ( )0tθP  goes to 0P  and rotate the 

curve so that the tangent at ( )0tθP  is toward 1 0−P P .  Now the positional and tangential constraints at 

the start point are satisfied.  Then we will find the parameter 1t  such that ( )1tθP  is on the line that 

goes through 0P  and 2P (Fig.3(a)).  This process can be considered as the 2D version of the cone 

intersection method [11].  By scaling the curve by a factor of ( ) ( )2 0 1 0/ t tθ θ− −P P P P  with the scaling 

center placed at 0P , the endpoint constraints at 2P  is satisfied(Fig. 3(b)).  The final process of is 

changing Λ  as was described in [10] so that the tangential constraint at 2P  is satisfied(Fig. 3(c)).  Now 

we can find the 1G  Hermite interpolating quasi-log-aesthetic curve.  Note that each time Λ  is changed, 
we need to recompute 1t  and scale the curve.  Note also that Λ  satisfying the tangential constraint at 

2P  may not be found similarly as in log-aesthetic curves [8].  In such a case, the curve segment is not 

drawn.   

 
(a) 1t  is determined     (b) positional coincidence at 2P      (c) tangential coincidence at 2P  

Fig. 3: The endpoint and the tangential coincidence. 

5 RESULTS 

We compare quasi-log-aesthetic curves with Bézier curves generated by Miura’s method [6] using 
logarithmic curvature graphs.  Miura’s method discretizes log-aesthetic curves, and then using the 
discretized equation, Bézier control points are placed on the curve either by a constant arc length or 
by a constant tangential angle.   

Figs. 4-7 show Bézier curve segments that approximate log-aesthetic curves.  In Fig. 4, 5, 6 and 7, 
log-aesthetic curves with 1α = − , 0, 1 and 2, respectively, are approximated.  In all of the figures, the 
degrees of Bézier curves are 6, 10 and 20 from left to right, and red curves are log-aesthetic curves.  
Figs. 4(a), 5(a), 6(a) and 7(a) show Bézier curve segments generated by the discretization with a 
constant arc length.  Figs. 4(b), 5(b), 6(b) and 7(b) show Bézier curve segments generated by the 
discretization with a constant tangential angle.  Fig. 4(c), 5(c), 6(c) and 7(c) show quasi-log-aesthetic 
curves.  In all the cases, as the degree of Bézier curves gets higher, the curve gets close to the log-
aesthetic curve. 

To the right of the curves, the LCGs of approximated Bézier curves are shown.  “slp” is the slope 
of the LCG computed by least squares.  “var” means the variance from the line of the LCG computed 
by least squares.  For example, in Fig. 4 where the log-aesthetic curve with 1α = −  is approximated, the 
slope of the LCG and the variance should be close to -1 and 0, respectively.  In all of the method, the 
slopes of LCGs get closer to the original α  as the degree gets higher.   
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Fig. 4: Approximated log-aesthetic curves ( 1α = − ). 

 
Fig. 5: Approximated log-aesthetic curves ( 0α = ). 
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Fig. 6: Approximated log-aesthetic curves ( 1α = ). 

 
Fig. 7: Approximated log-aesthetic curves ( 2α = ). 
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Concerning the Miura’s method, the linearity of the LCG is better with the discretization of a 
constant arc length when 1α = −  than with a constant tangential angle.  The linearity of the LCG is also 
better with a constant tangential angle when 0,1,2α = .  In this section, when we refer to the 
discretization method, we mean the discretization with a constant arc length if 1α = −  or a constant 
arc length if 0,1,2α =  because they produce better linearity of LCGs.  In cases of degrees 6 and 10, the 
slopes of LCGs of quasi-log-aesthetic curves are closer to the original α  than the discretization 
method and the variance are smaller, except when 0α = .  When 0α = , the discretization by a constant 
tangential angle produces better slopes of the LCGs and variances than quasi-log-aesthetic curves, but 
we can see that Bézier curve segment is not close to the original log-aesthetic curves shown in red.  
This can be considered that in the discretization by a constant tangential angle, a log-aesthetic curve 
with a similarity transformation (log-aesthetic curve with different Λ )  is generated.  The quasi-log-
aesthetic curves can generate better linearity of LCGs than the discretization method when the degree 
is relatively low.  When the degree is 20, the LCGs of quasi-log-aesthetic curves are not significantly 
better than the discretization method.  This is because all of the curves generated by the three 
methods get closer to log-aesthetic curves when the degree gets higher.   

In comparison with quasi-log-aesthetic curves in rational cubic Bézier form [10], the linearity of 
the LCGs of the rational cubic Bézier curves is always better than polynomial curves proposed in this 
paper.  Especially, when log-aesthetic curve gets closer to a circular arc, quasi-log-aesthetic curves in 
polynomial Bézier form behave badly because polynomial curves cannot represent circular arcs.  In 
such a situation, the curvature becomes not monotonically varying.  However, log-aesthetic curves are 
meaningful for aesthetic shape design when they are not close to circular arcs.   Thus quasi-log-
aesthetic curves proposed are meaningful when approximate linearity of the LCG is required or 
polynomial Bézier curves are required. 

 
Fig. 8: 1G  Hermite interpolation. 
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Fig. 8 shows the results of 1G  Hermite interpolation, the curvature plots and the LCGs.  Given 

0 1 2, ,P P P  and α , quasi-log-aesthetic curves in polynomial Bézier curve form of degree 8 are 

interactively generated.  The curves are interactively generated by changing the three points and α .  
The linearity of the LCG gets worse if the curve includes nearby point of 0ρ =  or ∞  or if the curve is 
close to a circular arc.  This is due to the limitation of the representation space of polynomial curves.  
Similarly as in log-aesthetic curves, the curve may not be found depending on the position 0 1 2, ,P P P  and 

α .  Making the degree higher, quasi-log-aesthetic curves get closer to log-aesthetic curves. 
To inspect the geometric quality, we compare the swept surface of quasi-log-aesthetic curve( 0α = ) 

with the swept surface of a curve with not monotonically varying curvature.  Fig. 9 on the left shows 
the zebra mapping of the swept surface a curve with not monotonically varying curvature.  The zebra 
lines are severely distorted and not aesthetically pleasing.  Fig. 9 on the left shows the zebra mapping 
of the swept surface of quasi-log-aesthetic curve (polynomial Bézier curve with degree 8) with 0α =  
using 1G  Hermite interpolation algorithm described in Section 4.   Zebra mappings of the swept 
surfaces of different α  show similar results shown in Fig. 9 on the right, which are more aesthetically 
pleasing than Fig. 9 on the left.  Thus, quasi-log-aesthetic curves have a potential to be used in  

 

   
Fig. 9: Zebra mappings of the swept surface of a curve with not monotonically varying curvature (left) 
and the swept surface of quasi-log-aesthetic curve with 0α = (right). 

6 CONCLUSIONS 

This paper proposed quasi-log-aesthetic curves in polynomial Bézier form using Taylor polynomials.   
We have shown that quasi-log-aesthetic curves are better approximation than the curves generated by 
discretization [6].  Because of the limitation of polynomial curves, quasi-log-aesthetic curves are not 
good approximations when log-aesthetic curves are close to circular arcs.  However, log-aesthetic 
curves are most useful when they are not close to circular arcs.  We also proposed a method for 1G  
Hermite Interpolation. 

There are several directions for future research.  One is to find a better method of approximation 
than our approach.  Theoretically finding a way to switch between tangential angle equations and arc 
length equations depending on α  and Λ  may be possible.  For this purpose, theoretical error analysis 
of the Taylor polynomials may be necessary.  Theoretically finding the best aθ  is also important.  

Another direction is to approximate log-aesthetic space curves [11] in terms of freeform curves 
achieving good linearity of logarithmic and torsion curvature graphs.  The idea of using Taylor 
polynomials cannot be used for log-aesthetic space curves, because they are drawn by solving the 
simultaneous differential equations. 
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