

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

965

Robust Slicing Procedure based on Surfel-Grid

Di QI1, Long Zeng2 and Matthew M. F. Yuen3

1The Hong Kong University of Science & Technology, qdxaa@ust.hk
2The Hong Kong University of Science & Technology, mejackyzeng@ust.hk

3The Hong Kong University of Science & Technology, meymf@ust.hk

ABSTRACT

The trade-off between accuracy and efficiency is of major concern in rapid prototyping
(RP), where STL is the most commonly used format to present a CAD model. A STL
model needs to be sliced into layered contours before it is used to build a RP object.
The challenge to achieve the accuracy/efficiency trade-off becomes critical when a STL
model contains a large number of triangles. Previous work by Zeng et al. [19] proposed
an efficient slicing method that speeded up the layer decomposition of the STL model
by adopting a one-dimensional LDNI sampling, which is independent of geometric
complexity. However, the accuracy of the generated contours is not entirely
satisfactory for the model with sharp features, even by adopting a high sampling
resolution. Therefore, the objective of this work focuses on achieving accurate layer
contours in a more effective manner without scarifying the high efficiency. In this
paper, a grid-structured point representation with neighborhood information
embedded, Surfel-Grid, is proposed, which consists of a Grid (formed by two in-plane
orthogonal rays), and surfels (sampling points with normal vectors) located on the
edges of the Grid. After discretization of a STL mesh model into layers of Surfel-Grid,
loop construction is then applied to each of the Surfel-Grid layer. The accuracy of
resulting layered contours is improved due to the adoption of two dimensional
sampling and the generation of new reconstructed features. Taking advantage of the
neighborhood information and cell validity of Surfel-Grid, each surfel can find and
connect with its neighbor surfel directly, guaranteeing high efficiency in the loop
construction process. Examples are used to illustrate the higher accuracy and better
efficiency obtained using this approach.

Keywords: rapid prototyping, contouring, point model, grid structure.
DOI: 10.3722/cadaps.2013.965-981

1 INTRODUCTION

Rapid prototyping (RP) is an important layered fabrication method because it is simple and efficient.
Compared with most conventional prototyping techniques, RP is much faster since the geometric
complexity of a CAD model has less impact on its slicing process. A CAD model cannot directly
interface with RP machines, which need to be sliced into layered contours before it can be used to
build a RP object. The trade-off between accuracy and efficiency is of major concern in rapid

mailto:qdxaa@ust.hk
mailto:mejackyzeng@ust.hk
mailto:meymf@ust.hk

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

966

prototyping, where STL (STereoLithography) [7], a triangular faceted model, is the most commonly
used representation of input CAD model. Traditional slicing algorithms slice the STL model directly by
computing the intersection curves between triangular facets and layers of parallel planes, which
generally suffer from numerical stability problem [1]. Moreover, when the STL model contains a large
number of triangles or is of great geometric complexity, the challenge to achieve the trade-off between
accuracy and efficiency becomes more critical. Slicing on a volumetrically-represented model, in
contrast, is mathematically compact and robust.

Previous work by Zeng et al. [19] (denoted as Zeng’s work in the sections below) proposed an
efficient slicing method that speeded up the layer decomposition of the STL model by adopting a one-
dimensional LDNI sampling [18], which is independent of the geometric complexity or mesh density.
The loop construction algorithm is then applied to the generated layered point model. For every point
on one ray of each layer, in order to find the next point to connect, it needs to traverse all points of
the same type on the adjacent ray, which is time-consuming when the point density is high. Besides
that, due to the single sampling direction, the accuracy of the slicing contours is not entirely
satisfactory for models with sharp features (see Fig. 1(a)), even by adopting a high sampling resolution
(grey lines present sampling rays, see Fig. 1(b)). Therefore, the objective of this work focuses on
increasing the accuracy of layer contours in a more efficient manner without scarifying the high
efficiency, and not that sensitive to the point density at the same time.

Fig. 1: Sharp feature is cut-off by Zeng’s work: (a) Sparse sampling, (b) Dense sampling.

In this paper, a 2D grid structure based slicing algorithm is proposed. Firstly, a STL model is converted
into layers of Surfel-Grids by adopting two dimensional LDNI sampling. Surfel-Grid, a new grid-
structured point model, which consists of Grid (formed by two in-plane orthogonal rays), and surfels
(sampling points with normal vectors attached) located on the edges of the Grid. The concept of surfel
was first proposed by Pfister et.al [14] for rendering purpose. In this structure, surfels are used to
preserve sharp features while Grid provides neighborhood information for each individual surfel;
Assume the STL model is closed with good connectivity, which should occupy a set of consecutively
connected cells, that the loop construction upon the Surfel-Grid can be simply decomposed into line-
segment connection within each cell. To complete line connection inside one cell, a surfel should only
connect with its neighbor within the same cell, and the same connecting procedure will ‘marching’ to
their neighboring surfels in the next cell, until the preceding loop is closed. The resulting slicing
model is fully compatible with layered fabrication.

Compared with Zeng’s work, this work contributes in two aspects:
• The accuracy of layered contours is improved significantly, since two-dimensional sampling

directions are employed in this work, and sharp features are reconstructed by using normal
vectors of surfels;

• Instead of scarifying efficiency for the sake of accuracy, profit from the neighborhood
information and cell validity criteria of Surfel-Grid, the efficiency of loop construction is
improved and not much affected by point density: each surfel can access its neighboring
surfels effortlessly, so that line-segments inside each cell can be generated directly.

Related work overview - Since this is a slicing algorithm based on a grid-structure point model -
Surfel-Grid, some discretized representation based contour slicing methods have been reviewed.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

967

Point clouds can be sliced directly into a RP slice file. Lee et al. [8] reorganize and reduce the initial
scan data to produce the contour data, which can be categorized and fabricated directly as a RP part.
Liu et al. [9] proposed an error-based segmentation approach from random point cloud, by first
subdividing the points into several regions, in each region, feature points will be detected for
constructing an intermediate point-based curve model, where the RP layer contours are extracted from.
Qiu et al. [15] demonstrated a method to extract topological structure from the point cloud, and apply
that structure into a MLS (Moving-Lease Squares) surface-based direct slicing process to capture some
important features near the positions of topological transitions. Compare with unorganized point
cloud, which is lack of layered distribution and topological information, surfels on Surfel-Grids are
layered distributed and placed orderly on a Grid structure, with neighborhood information attached.

Huang et al. [3] extract 2D contours on binary images by employing an MC-like contouring method.
The binary image, whose pixels present nodes of 2D cells, is sampled from an implicit solid
represented by LDNI [18]. The initial contour line inside each cell can be constructed by connecting the
middle point of each edge with different node statuses, in respect to a certain pattern in the MC-like
look-up table. However, the middle points are not exact positions of intersections, although two extra
operations are employed to smooth the generated contours, sharp feature inside a cell is still not
preserved properly. By contrast, the positions of surfels on Surfel-Grids are more accurate, and sharp
features are reconstructed during the loop construction process as well.

The loop construction method of this work distinguished from the other grid/voxel based
contouring approaches. Marching squares, an algorithm to extract contours for a two-dimensional
scalar field, is a 2D form of Marching cubes method that shares a similar contouring strategy.
Marching cubes (MC) [10] is probably the most popular isosurface algorithm, which performs
triangulation cube-by-cube from scalar volumetric data sets. The triangulation pattern in each cube is
determined from a pre-defined look-up table, which includes all of topologically unique isosurface-
cube-intersection patterns. In order to find a matching pattern, each corner status (in/out) needs to be
evaluated for that cube first. After that, to calculate the exact intersection positions for the
corresponding pattern, linear interpolation is applied along the boundaries of that cube. The process
steps that build the resultant isosurface can be considered as an assembly of triangulation patterns
from a sequence of cubes. The original MC method has two limitations. Since the triangulation inside
each cube is processed independently, topologically inconsistent decisions may be made for the
ambiguous cubes. Many work have been done to resolve this problem [2],[12],[16]. The other drawback
is feature-preserving problem. Dual contour methods [5],[16],[17] are presented to achieve a better
feature estimation by using Hermite data (i.e., accurate intersection points associated with normal
vectors) [6]. In brief, The MC-like loop construction method is pattern based, to identify a particular
pattern for one cell, whose node status need to be evaluated first. By contrast, using the
characteristics of Surfel-Grid, this contour method is simpler without cell node status pre-evaluation,
pattern distinction and matching from the look-up table. Each surfel can access its neighboring surfels
effortlessly, and the contour line inside each cell can be connected directly. Meanwhile, the efficiency
of loop construction is not sensitive to the point density. Sharp features of the generated contour can
be preserved properly during the loop construction process, and topologically consistent decisions
will be made for the cells with ambiguous configurations as well. Contours with multiple loops have
less impact on the whole efficiency of this work, since only active cells [11] are visited during loop
construction process.

The remainder of this paper is organized as follows. The algorithm overview is presented in
section 2. The detail algorithm which includes two major steps, i.e., Surfel-Grid generation includes
introduction to Surfel-Grid representation, and loop construction are proposed in section 3 and
section 4 respectively. Two approximation error criteria, i.e., Maximum Chord Error e

max
 and Chord

Area e
area

,, which are used to evaluate the accuracy for the slicing contours, are introduced in section 5.
Experiment and comparison results can be found in section 6. Finally, conclusion and future work are
given in section 7.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

968

2 ALGORITHM OVERVIEW

There are two procedures for this grid-based slicing algorithm: the Surfel-Grid generation and the Loop
construction based on Surfel-Grid. Fig.2 gives an overview for the whole algorithm. We suppose that
the input mesh model is closed with good connectivity.

The Surfel-Grid generation process (section 3) converts the STL mesh model (see Fig. 2(a)) into
layers of Surfel-Grids (see Fig. 2(b)). For a Surfel-Grid structure, surfels (see orange and blue points in
Fig. 2(c)) preserve sharp features while Grid (grey grid in Fig. 2(c)) provides neighborhood information
for each surfel, both plays an important role in guaranteeing the efficiency and topologically
consistency for loop construction in the next step.

After Surfel-Grid generation, a 2D grid-based loop construction algorithm is performed on the
Surfel-Grid of each layer (section 4). Since the input mesh model is closed with good connectivity, it
should occupy a set of continuously connected cells for each layer. Therefore, the loop construction
upon the Surfel-Grid can be simply decomposed into line-segment connections within each cell. To
improve the accuracy of layered contours, sharp features can be reconstructed by using normal
vectors of surfels. Taking advantage of the neighborhood information and cell validity of Surfel-Grid,
those line segments can be joined in sequence efficiently. The resulting slicing model is fully
compatible with layered fabrication (see Fig. 2(d)).

Fig. 2: Surfel-Grid based slicing algorithm overview.

3 SURFEL-GRID GENERATION

This section defines, Surfel-Grid representation, how to discretize and represent a mesh model with it,
as well as the criteria to guarantee its validity will be introduced.

3.1 Surfel-Grid Representation

Surfel-Grid is a combination of a Grid and surfels (see Fig. 3(a)).
• Grid is formed by two orthogonal in-plane rays, made up with nodes, edges and cells. An edge

aligns on the boundary of the Grid, denoted as boundary edge, and shared by only one cell; the
other edges are simply called edge, shared by two neighboring cells (see edge e and its
neighboring cells C

0
 and C

1
 in Fig. 3(b)).

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

969

• Surfel is a sampling point associated with normal vector, generated by intersecting the
boundary of input model and an edge of the Grid.

• Neighborhood information
Different from the point-based geometry that presents a 3D model discretely, Surfel-Grid preserves
original neighborhood information during the sampling procedure. Since the mesh model is closed
with good connectivity, it should occupy a set of consecutively connected cells for each layer. As
shown in Fig. 3(b), each surfel (say, p in dark blue) associated on an edge (e, thick edge in orange), can
find its neighboring surfels (q and r in light blue) effortlessly by the neighboring cells (i.e., C

0
 and C

1
) of

that edge (i.e., e).
• Validity of a Surfel-Grid

Validity of a Surfel-Grid is critical to guarantee the efficiency of loop construction and topological
correctness of the generated contour in the next step. A Surfel-Grid is considered to be valid, when
each non-empty cell (i.e., cell associated with surfels) is valid, and every surfel can find its neighboring
surfels by neighboring cells of the edge that surfel associated with.

Cell validity - two criteria are derived to identify the validity of a non-empty cell: 1) there are even
number of surfels inside the cell; 2) there is no more than 1 surfel associated on each edge. Since
Surfel-Grid is a sampling-based representation, features of the original model, whose size is smaller
than the cell size, cannot be precisely presented by this representation. In general, only a 2-surfel cell
(two surfels associated on different edges of a cell, see top of Fig. 3(c)) and a 4-surfel cell (four surfels
associated on the different edges of a cell, see bottom of Fig. 3(c)) are valid by definition. Blue dashed
curves indicate the 2D illustration for the boundary of the original model in all of the figures below.

Fig. 3: (a) Surfel-Grid representation, (b) neighboring surfels q, r can be accessed by surfel p through the
neighboring cells C

0
, C

1
 of e, (c) Cell validity: only 2-Surfel Cell and 4-Surfel Cell are valid by defination.

Blue Dashed curve presents the original boundary of the input model.

Surfel-Grid representation presents the boundary of 3D model with layers of grid-structured surfels,
and all of surfels are generated by adopting LDNI discretization technique in this work. However,
Surfel-Grid is proposed mainly for the slicing purpose, whose two particular characteristics (i.e.,
neighborhood informaiton and cell validity criteria discussed above) are dedicated to improve the
slicing performance, which can also be used to make distinction from LDNI representation [18]. Besides
presenting the geometric shape discretely like LDNI, the initial neighborhood information of original
model can be reserved as well during the process of constructing Surfel-Grid, so that each surfel can
access its neighboring surfels effortlessly. To speed up and guarantee the topological consistent
contours generated during the loop construction process, the cell validity of Surfel-Grid needed to be
fulfilled before performing loop construction.

3.2 Surfel-Grid Construction

This section includes LDNI sampling and Surfel-Grid construction.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

970

In order to improve the contour accuracy and speed up the mesh model discretization, the 2-
dimensional LDNI technique is employed in this paper. After LDNI sampling, two orthogonal in-plane
rays form a Grid for each layer, at the same time, surfels are generated along each ray randomly.

To construct a Surfel-Grid, surfels should be mapped onto corresponding edges of Grid properly,
according to their depth values. As illustrated in Fig. 4, the yellow line is a 2D illustration of the view
plane for each sampling direction. The depth value of each surfel to the view plane can be retrieved
from the depth buffer supported by OpenGL. To determine which edge a surfel (circled in green) with
depth d (green arrow) should be mapped to, simply refer to Eqn. (3.1) and Eqn. (3.2).

Fig. 4: Surfel-Grid construction: mapping each generated surfels to one proper edge according to its
depth value d.

As shown in Fig. 4, res_x and res_y are the number of cells along the x-axis and y-axis respectively; W
and H are the width and height of Grid respectively. An edge of index (i, id_y) means that it is the id_y-
th edge on the i-th ray (green dashed line with arrow) along the y-axis.

On the i-th ray of the y-axis, a surfel (in blue) with depth d, should be mapped to an edge of that
ray, whose index is id_y, which can be calculated by Eqn. (3.1), integerized by means of chopping the
decimal value to the nearest integer.

_

_ =integerized()
d res y

id y
H

 (3.1)

Similarly, for a surfel (in orange) on the j-th ray along the x-axis, the index of the edge (i.e., id_x) can be
calculated by Eqn. (3.2):

_x

_x=integerized()
d res

id
W

 (3.2)

ambiguous Surfels – As illustrated in Fig. 6(a), a surfel (circled in blue) may locate close to a node such
that it become an ambiguous surfel that could be mapped to either of the edges (vertical edges pointed
by arrows) sharing that node. In order to make sure the Surfel-Grid is valid, ambiguous Surfels are only
mapped after performing the Harmonize operation.

3.3 Surfel-Grid Processing

Since the validity of the Surfel-Grid is essential to the efficiency and correctness of loop construction,
the cell validity of non-empty cells should be checked after the Surfel-Grid generation. According to the
criteria of cell validity, a cell is invalid if it is neither a 2-surfel cell nor a 4-surfel cell. There are two
operators created to handle the invalid cells: Merge and Harmonize.

3.3.1 Merge
There may be more than one surfel associated on one edge of a cell, when the size of a feature to be
presented is smaller than the cell size. The surfels on one edge need to be merged according to the
number of surfels on that edge is even or odd:

• Even number of surfels (see Fig. 5(a)): all of the surfels on that edge should be removed;

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

971

• Odd number of surfels (see Fig. 5(b)): only one surfel is kept for that edge.

Fig. 5: Merge operator for edge with more than one surfels associated with: (a) even number of surefls,
(b) odd number of surfels.

3.3.2 Harmonize
The mapping of ambiguous Surfels to the grid is suspended during the Surfel-Grid construction
process, and can be continued after the mapping of the other non-ambiguous Surfels has been finished.
As illustrated in Fig. 6(a), the ambiguous Surfel (circled in blue) locates very close to the node that
could be associated to either the upper or lower edge along that vertical ray. The number sign in each
of the four related cells states how many surfels are being attached without counting ambiguous
Surfel. After placing that ambiguous Surfel onto a proper edge (i.e., upper edge in Fig. 6(b)), every
related non-empty cell is fulfilled with cell valid (i.e., either 2-surfel cell or 4-surfel cell).

Fig. 6: Harmonize operator for ambiguous surfels: (a) Before mapping the ambiguous surfel (highlighted
in blue circle, (b) After performing Harmonize, each non-empty cell is valid. Blue surfels are associated
on the vertical rays, while orange ones are on horizontal rays.

After Surfel-Grid processing, the Surfel-Grid of each layer is valid, i.e., every non-empty cell is either a
2-surfel cell or 4-surfel cell, and every surfel can find its neighboring surfels by neighboring cells of the
edge that surfel associated with.

4 LOOP CONSTRUCTION

The original mesh model is converted into layers of valid Surfel-Grids after Surfel-Grid generation.
Based on a valid Surfel-Grid of each layer, loop construction can be simply decomposed into line-
segment connections within each cell. Take advantage of the neighborhood information extracted
from Surfel-Grid, those line segments can be joined in sequence efficiently. In order to increase the
accuracy of the slicing contour, feature points are estimated within the cells that contain sharp
features. With Fig.7 as reference, terminologies used in the algorithm are introduced below.

Terminologies:
• seed surfel (highlighted in the pink circle) – starting point of an individual loop;
• inactivated edge – an edge associated with a surfel that has not been connected to any loop yet;
• unaccomplished cell – a cell contains inactivated edge;
• current surfel (highlighted in the green circle) – a starting point of line-segment to be

connected inside its neighboring cell, which is also the end point of the line-segment has
already been connected inside the other neighboring cell, if it is not a seed surfel;

• pair cell (highlighted in yellow) – a neighboring cell of current surfel, which is also an
unaccomplished cell;

• pair surfel –the end point of line-segment to be connected in the pair cell, which is associated
on an inactivated edge of pair cell;

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

972

• neighbor –each surfel has and only has two neighbors to connect directly in a loop. A neighbor
can be either a surfel or a feature point. For example, a pair surfel is a neighbor of current
surfel and vice versa, if there is no feature point generated inside the pair cell (see Fig. 8(b));
otherwise, the feature point is a neighbor for both current surfel and pair surfel (see Fig. 8(a)).
Note that neighbor is not identical with neighboring surfel mentioned above.

Fig. 7: Illustration of loop construction process.

To prevent self-intersection occurring, each surfel should participate in one loop only. There are two
steps for loop construction: finding seed surfel and finding pair surfel. The pseudo-code for the whole
loop construction procedure refers to Algorithm 4.1.

4.1 Finding seed surfel

As illustrated in Fig. 7, a seed surfel can actually be any surfel on that loop, since the loop is closed. In
this work, a seed surfel can be found on the first inactivated edge when traversing each edge along each
vertical ray from left to right. The procedure of finding seed surfel is carried out several times for
multiple loops. To start a new loop, seed surfel is set as current surfel and then passed into next step.

4.2 Finding pair surfel

As mentioned before, each surfel only connect with its neighbors in a loop. For each given current
surfel, the process of finding pair surfel is also a process of finding a neighbor to connect and then
generate new line-segments inside a pair cell. The pair surfel is first set as current surfel, and the whole
procedure is repeated till the loop is finally closed.

To improve the accuracy of generated contours, sharp features are preserved by Surfel-Grid, and
reconstructed in 2-surfel cells that contain sharp features in this work. Since the Surfel-Grid is valid,
the pair cell is either 2-surfel cell or 4-surfel cell. Pseudo-code for this step can be found in Algorithm
4.2.

4.2.1 2-surfel cell
As shown in Fig. 8, a pair surfel (i.e., q) for 2-surfel cell is always the one attached on an inactivated
edge. Instead of directly connecting the current surfel p (circled in green) with the pair surfel q, a
feature point (red point) is obtained as suggested by Kobbelt et al. [6] to reduce the approximation
error.

Fig. 8: Finding pair surfel in a 2-surfel cell: (a) cell with sharp feature, (b) cell without sharp feature.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

973

Feature Estimation – as illustrated in Fig. 8(a), if a 2-surfel cell contains a sharp feature, the
intersection of two tangent vectors (dashed lines in red) of those two surfels yields a point inside this
cell, denoted as feature point (red point), which is closer to the real sharp feature (peak point along the
blue dashed curve) than directly connecting those two surfels (purple dashed line). The tangent vector
of one surfel can be computed by using the projection of its normal vector on the grid plane. Since
this is a contour extraction problem in 2D, the computation process is quite straightforward, i.e.,
resolving two linear functions with two unknown variables, those two variables are actually 2D
coordinates of the feature point on that grid plane.

However, Feature Estimation calculation is not performed for every 2-surfel cell. In this work, a 2-
surfel cell is identified as containing a sharp feature only if the angle between two surfel normal
vectors is larger than a user defined threshold (e.g., 5 degree in this work).

If there is no feature point generated in a 2-surfel cell (see Fig. 8(b)), then current surfel and pair
surfel are neighbors to each other, and there is only one line-segment generated inside this cell;
otherwise, their neighbors will be the new generated feature point, and two line-segments are
generated: current surfel - feature point and feature point - pair surfel (see Fig. 8(a)). Therefore, a pair
surfel can be a neighbor of current surfel, only if there is no feature point inside that cell (see Fig. 8(b)).

4.2.2 4-surfel cell
Similar to the problem occurs in MC-like methods, the loop topology inside the 4-surfel cell is
ambiguous due to inadequate sampling resolution.

Ambiguous topology in 4-surfel cell - as shown in Fig. 9, any one of those candidate neighboring
surfels (highlighted in orange) in the 4-surfel cell, could be a pair surfel for the current surfel
(highlighted in green circle), however, different configurations present different contour topologies
inside that cell, one is ‘thin-shell’ (see Fig. 9(a)), the other is ‘gap’ (see Fig. 9(b)), In order to generate
topologically consistent contours, as suggested by Wang and Chen [17], one configuration should be
chosen consistently. The configuration (see in Fig. 9(b)) of producing a ‘gap’ is selected by this work.
This separate-loops preferring choice denoted as ‘separate loops preference’.

Fig. 9: Ambiguous topologies in 4-surfel cell: (a) thin-shell, (b) gap.

Separate loops preference - As illustrated in Fig. 10, In order to make sure the two line-segments
generated in the 4-surfel cell belong to two separate loops, the candidate neighboring surfels of current
surfel in the 4-surfel cell are needed to be classified into IN/OUT states. A surfel will be identified as
‘IN’ when it locates at a position where the ray enters the boundary of the original model, while as
‘OUT’ when the ray goes out. No matter what state the current surfel is, its pair surfel is always the one
with ‘OUT’ state among those two candidate neighboring surfels (which are always with opposite states).
Therefore, the generated contours are topologically consistent by following this preference. For the
current surfel of 4-Surfel cell, its pair surfel is always its neighbor that connected with directly.

Fig. 10: Separate loops preference. Rules of generating two line-segments which belong to two separate
loops: (a) ‘OUT’ current surfel connects with ‘OUT’ pair surfel, (b) ‘IN’ current surfel connects with ‘OUT’
pair surfel.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

974

Algorithm 4.1 – Loop Construction
Input: Surfel-Grid
while(1)
1. Find seed surfel

if (cannot find any seed surfel)
 break;

2. current surfel = seed surfel;
while (1)

3. pair surfel = FindPairSurfel(current surfel);
 if (pair surfel is seed surfel)
 break;

End
End
Output: Loop(s)

Algorithm 4.2 – FindPairSurfel
Input: current surfel
1.1 if (current surfel is seed surfel)

pair cell <- one of the neighboring cells of current surfel;
1.2 else

 pair cell <- the neighboring unaccomplished cell;
2. check sub-case of the pair cell:
2.1 if (2-surfel cell)
3.1 pair surfel <- neighboring surfel on the inactivated edge of pair cell
4. Feature Detection (2-surfel cell)
4.1 if (contains sharp feature)
5. feature point <- Feature Estimation (current surfel, pair surfel)

 neighbor of current Surfel <- feature point
 connect current surfel with feature point, add line-segment into Loop(s)
neighbor of pair Surfel <- feature point
connect feature point with pair surfel, add line-segment into Loop(s)

4.2 else
 neighbor of current Surfel <- pair surfel
neighbor of pair Surfel <- current surfel
connect current surfel with pair surfel, add line-segment into Loop(s)

2.2 else if (4-surfel cell)
3.2 pair surfel <- separate loop preference (i.e., candidate neighboring surfel with ‘OUT’ state)
6. Activated the edge where pair surfel is lying
7. the number of remaining surfels of that pair cell -= 2;
8. if (account==0)
 Set pair cell to be accomplished;
Output: pair surfel

5 LOOP ACCURACY ESTIMATION

To estimate the approximation error and compare the slicing accuracy with other slicing algorithms,
two approximation error estimation criteria are used to evaluate the accuracy of the slicing contours:
Maximum Chord Error e

max
 and Chord Area e

area
.

5.1 Maximum Chord Error e
max

Maximum chord error is the maximum Hausdorff distance between the boundary of the original model
and the slicing contour [13]. The Hausdorff distance for a mesh model and its slicing model cannot be
estimated directly. As illustrated in Fig. 11, for each layer, the boundary of the original mesh (green
line-segments) can be obtained from calculating the intersection between the mesh boundary and the
layer plane (black grid). Green dots are intersection points (e.g., V

n
, V

n+1
) between edges of input mesh

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

975

and layer plane, denoted as plane vertices, intersection line-segments are the green lines that connect
adjacent plane vertices (e.g.,

+1n nV V). Blue dots are surfels (e.g., p, q) lying at the intersection position of

intersection line-segments of original mesh (e.g.,
+1n nV V) and the edges of cells. Similarly, pq is a line-

segment on the slicing contour that connects adjacent surfels (i.e., p and q).

Fig. 11: Chord error estimation for mesh model.

Therefore, the vertex chord error for each plane vertex, denoted as chord_error

V
, is the distance from

the vertex (e.g., V
n
 (u

V
, v

V
)) to its corresponding line-segment on the slicing contour pq (i.e.,

 , , ,p p q qx y x y) by using Eqn. (5.1).

 2 2

- - + - -
_ =

- + -

< <

V p q p V p q p

V

q p q p

p V q p V q

u x x x v y y y
chord error

x x y y

x u x or y v y

 (5.1)

The maximum vertex chord error for each layer can be obtained after comparing chord_error
V
 for every

plane vertex of that layer. The final maximum chord error for the whole slicing model e
max

, is the
average value among all of the maximum vertex chord error from each layer.

5.2 Chord Area e
area

Besides maximum chord error, another criterion chord area is derived for estimating accuracy, denoted
as e

area
. As illustrated in Fig. 12, for each layer, chord area is the difference (orange areas) between the

area of the polygon enclosed by the boundary of mesh model (i.e., green polygon) and the area of the
polygon enclosed by the slicing contour (i.e., blue polygon).

Fig. 12: Chord area for mesh model.

The chord area of each layer, denoted as e

area_layer
, can be estimated by using Eqn. (5.2), where M is the

number of plane vertices (u
i
,v

i
), N is the number of surfels (x

j
,y

j
).

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

976

-1 N-1

_ +1 +1 j+1 j+1
=0 j=0

1 1
= (-)- (-)

2 2

M

area layer i i i i j j
i

e u v u v x y x y (5.2)

The final chord error for the whole slicing model e
area

, is the average value of all e
area_layer

 from each layer.

6 EXPERIMENT RESULTS AND COMPARISON

To demonstrate the main characteristic of the proposed algorithm, i.e., achieving more accurate slicing
contours in a more efficient manner, as illustrated in Fig. 16, Fig. 17, and Fig. 18, all of three examples
contains multiple loops and sharp features, are tested respectively by this and Zeng’s work in the
same computing environment, i.e., 64 bit Windows 7 PC (Intel® Core™ i5 CPU 750 @ 2.67GHZ, 2.66GHZ,
and 4.00GB RAM). The accuracy of slicing contours can be demonstrated from two aspects, the
approximation errors (i.e., maximum chord error e

max
 and chord area e

area
) introduced above, as well as

sharp feature preservation. Similarly the slicing efficiency can be presented from two aspects: slicing
time cost on achieving certain accuracy and the efficiency of loop construction under different
sampling resolutions. This section contains two parts: experiment results and comparison between
this and Zeng’s work.

6.1 Experiment Results

Firstly, a set of approximation errors (e
max

 and e
area

) of slicing contours and the total slicing time T
t
 are

recorded during increasing the sampling resolution for each example, and total slicing time T
t
 consists

of two steps: LDNI sampling time T
LDNI

 and loop construction time T
Loop

. In this work, T
LDNI

 is 2
dimensional LDNI sampling, and T

Loop
 is the total time of Surfel-Grid construction and loop construction;

while in Zeng’s work, T
LDNI

 is 1 dimensional LDNI sampling, and T
Loop

 is just for loop construction time.

In order to obtain similar sampling resolutions w (i.e., total number of rays) for both work, the
resolution interval Res (i.e., distance between adjacent rays in millimeter) of each direction employed in
this work is simply set as twice as the one applied in Zeng’s work, since this work is based on 2
dimensional LDNI sampling while Zeng’s work is 1 dimensional. As the number of layers does not
affect the contour accuracy, the layer thickness is fixed as 0.0762 mm for all examples and for both
work.

Each example is tested by the same set of sampling resolutions in increasing order (i.e., resolution
interval Res are shown in decreasing order), and the experiment results for both work can be found in
Tab. 1.

Example This work Zeng’s work

Res/mm 0.1524 0.1016 0.0508 0.0254 0.0762 0.0508 0.0254 0.0127

 e
area

/mm2 5.981 3.245 0.382 0.203 14.168 13.299 10.890 8.707

 e
max

/mm 0.187 0.089 0.068 0.059 0.786 0.770 0.756 0.752

Fig.
16

T
t
/ms 353 388 500 711 312 358 470 722

 T
LDNI

 T
Loop

 326 27 335 53 393 107 462 249 218 94 233 125 268 202 311 411

 e
area

/mm2 1.252 0.8 0.114 0.021 3.301 2.782 0.829 0.395

 e
max

/mm 0.058 0.055 0.027 0.015 0.083 0.077 0.043 0.022

Fig.
17

T
t
/ms 159 179 232 298 148 172 235 340

 T
LDNI

 T
Loop

 142 17 155 24 179 53 192 106 119 29 125 47 164 71 185 155

 e
area

/mm2 2.722 1.128 0.591 0.472 5.428 3.765 1.181 0.787

 e
max

/mm 0.189 0.119 0.089 0.071 0.954 0.756 0.438 0.245

Fig.
18

T
t
/ms 198 240 325 391 204 243 294 377

 T
LDNI

 T
Loop

 183 15 218 22 280 45 305 86 171 33 196 47 203 91 221 156

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

977

Tab. 1: Experiment results of three examples shown in Fig. 16, Fig. 17 and Fig. 18 for this and Zeng’s
work under similar sampling resolutions w: In order to obtain similar sampling resolutions (i.e., total
number of rays) for both work, the resolution interval Res (distance between adjacent rays in millimeter)
of each direction employed in this work is simply set as twice as the one applied in Zeng’s work (first
row), since this work is based on 2 dimensional LDNI sampling while Zeng’s work is 1 dimensional. A
same set of sampling resolutions in increasing order (i.e., resolution interval Res in decreasing order)
are applied for each example. Contour accuracy is presented by two approximation errors mentioned
above, i.e., chord error e

area
 (second row) and maximum chord error e

max
 (third row). Total slicing time T

t

(forth row) is composed of LDNI sampling time T
LDNI

 and loop construction time T
Loop

 in the fifth row.

From the experiment results recorded in the Tab. 1, we can find that, this slicing method can
achieve a better contour accuracy overall, since smaller approximation errors (i.e., chord area e

area
and

maximum chord error e
max

) can be obtained for each example and under each sampling resolution by
this work. Moreover, the slicing efficiency is not sacrificed by this work for the sake of accuracy, the
total slicing time T

t
 for both work are maintained as similar for each individual sampling resolution,

even though the LDNI sampling time T
LDNI

 of this work is much longer than Zeng’s work (nearly two
times), which illustrates higher efficiency of this loop construction. For each example, the loop
construction time T

Loop
 of this work is nearly half of Zeng’s work under each sampling resolution.

Both of this and Zeng’s work share a similar trends which can be obtained from the Tab. 1 as well:
the smaller the resolution interval Res is, the higher sampling resolution is, the longer the slicing time
T

t
 cost, and better the accuracy (lower approximation errors e

max
 and e

area
) will be achieved.

To demonstrate the trends for both work more clearly, approximation errors e
area

 and e
max

 are
plotted w.r.t. to the total slicing time T

t
 for each example according to the data recorded in Tab. 1, are

shown in Fig. 13, Fig. 14 and Fig. 15 respectively.

Fig. 13: Example in Fig. 16: the trends of approximation errors (e

area
 and e

max
) with respect to the total

slicing time (T
t
) for this and Zeng’s work: (a) e

area
-T

t
, (b) e

max
-T

t
.

Fig. 14: Example in Fig. 17: the trends of approximation errors (e

area
 and e

max
) with respect to the total

slicing time (T
t
) for this and Zeng’s work: (a) e

area
-T

t
, (b) e

max
-T

t
.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

978

Fig. 15: Example in Fig. 18: the trends of approximation errors (e

area
 and e

max
) with respect to the total

slicing time (T
t
) for this and Zeng’s work: (a) e

area
-T

t
, (b) e

max
-T

t
.

Secondly, to demonstrate the main characteristic of this work (i.e., achieving more accurate layer
contours in a more efficient manner) more specifically, a comparison between this and Zeng’s work is
applied from two aspects (i.e., accuracy and efficiency) in the section below.

6.2 Comparison

6.2.1 Accuracy
The Accuracy for this and Zeng’s work is compared from two different angles: approximation errors
e

area
 and e

max
, and sharp feature preservation.

• Approximation errors e
area

 and e
max

 – the slicing contour accuracy can be presented by two
approximation errors chord area e

area
 and maximum chord error e

max
 as mentioned above, the

smaller the values are, the more accuracy of the slicing contour is. The contour accuracy
comparison between this and Zeng’s work can be performed by comparing those two errors of
slicing contours, with respect to similar total slicing time Tt. Taking example model in Fig. 17
for example, as shown in the e

max
-T

t
 of Fig. 14, the e

max
 of this work is ~0.027mm while

~0.043mm for Zeng’s work during the same slicing time T
t
, i.e., 230ms. Similar accuracy

comparison results can be addressed from the other figures (see e
max

-T
t
 of Fig. 13 and Fig. 15)

as well. Therefore, higher contour accuracy can be achieved by this work than Zeng’s work
during the same slicing time.

• Feature preserving - from the detailed view of example Fig. 16(c) which shows the zoom-in
area in the yellow circle in Fig. 16(b), the slicing contours (green curves) of the proposed
algorithm fits the original mesh model (red) very well, and all of the sharp features are
preserved properly. In contradiction, the deviation between the slicing contour (in blue) and
the boundary of the original mesh model done by Zeng’s work is quite obvious (see Fig. 16(d).
So for example Fig. 17 and example Fig. 18 in a similar way.

Fig. 16: Example Fig. 13: (a) Original model, (b) Slicing model, (c) detail view of this work, (d) detail view
of Zeng’s work.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

979

Fig. 17: Example Fig. 14: (a) Original model, (b) Slicing model, (c) detail view of this work, (d) detail view
of Zeng’s work.

Fig. 18: Example Fig. 15: (a) Original model, (b) Slicing model, (c) detail view of this work, (d) detail view
of Zeng’s work.

6.2.2 Efficiency
The efficiency comparison for both work are carried out from two parts as well:

• Total Slicing time T
t
 of achieving the same contour accuracy - the slicing contour accuracy can

be presented by approximation errors: maximum chord error e
max

 and chord area e
area

 as
mentioned above. Comparison on slicing efficiency between this and Zeng’s work, can be
executed by comparing which algorithm cost shorter slicing time T

t
 to achieve the same

approximation error e
max

 or e
area

. As illustrated from e
area

 – T
t
 in Fig. 16, Fig. 17 and Fig. 18, we

can find out that, this work takes obvious shorter time to achieve the same approximation
error than Zeng’s work.

• Efficiency of loop construction – as mentioned in the the section 6.1, to make sure the
expriment can be executed under similar sampling resolution w (i.e., total number of rays), the
resolution interval Res (i.e., distance between adjacent rays) employed by this work is simply
set as twice as the one applied in Zeng’s work, since 2 dimentional LDNI sampling is obtained
by this work. Those sampling resolutions can be simiply denoted as w1, w2, w3 and w4 in Fig.
19, which are corresponding to the resolution interverals for both work respectively in the first
row of Tab. 1. The loop construction time T

Loop
 of example Fig. 18 in Tab. 1, are ploted

according each sampling resolution w, and shown in Fig. 19. We can find that, the loop
contructioin time of this work is nearly half of Zeng’s work for each sampling resolution w,
which demenstrate a better loop construction efficiency of this work.

Fig. 19: Loop construction time comparison of example Fig. 18 between this and Zeng’ work under the
same sampling resolution w.

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

980

7 CONCLUSION AND FUTURE WORK

As shown in Fig. 13, Fig. 14 and Fig. 15, both e
area

-T
t
 and e

max
-T

t
 follow a similar trend in this and Zeng’s

work - slicing accuracy is improved while the computational time becomes longer. However, this work
presents an improved accuracy with both the errors e

area
-T

t
 and e

max
-T

t
 showing better results.

Experiment results in Tab. 1 demonstrate that this slicing algorithm can achieve higher accuracy than
Zeng’s work [19] during the same period of time. Moreover, this work took 15% to 50% less time than
Zeng’s work to achieve the same accuracy, which means we have indeed achieved higher accuracy and
better efficiency.

To increase the accuracy of slicing contours as well as maintain an overall high efficiency in the
proposed work, sharp features are estimated in the 2-surfel cells only. The future work may preserve
the sharp features in the 4-surfel cells as well to further improve the slicing accuracy.

During testing, it was also found that most of the slicing time (near 80%) costs are on LDNI
sampling procedure, since LDNI sampling was adopted for each sampling direction separately.
Therefore, future work may consider further reducing the sampling time by employing parallel
sampling technique.

8 ACKNOWLEDGEMENT

The example model 1, 2 and 3 in Fig. 13, Fig. 14 and Fig. 15 are exported from the data base of
JewelCADPro software [4], the first author would like to acknowledge the support by Innovation and
Technology Fund UIM/210 and Jewellery CAD/CAM Ltd.

REFERENCES

[1] Hoffmann, C.-M.: Robustness in geometric computations, ASME Journal of Computing and
Information Science in Engineering, 2001.

[2] Ho, C.-C.; Wu, F.-C: Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction
from Volume Data, Computer Graphics Forum, 24(3), 2005, 537-545.
http://dx.doi.org/10.1111/j.1467-8659.2005.00879.x.

[3] Huang, P.; Wang, C.-L.; Chen, Y.: Self-intersection free and topologically faithful slicing of implicit
solid, ASME IDETC/CIE 2011 Conference, Washington, DC, USA, 2011.

[4] JewelCAD Pro, http://www.jewelcadpro.com, Jewellery CAD/CAM Ltd.
[5] Ju, T.; Losasso, F.; Schaefer, S.; Warren, J.: Dual contouring of Hermite data, ACM Transactions on

Graphics, 21(3), 2002, 339-346. http://dx.doi.org/10.1145/566654.566586.
[6] Kobbelt, L.-P.; Botsch, M.; Schwanecke, U.; Seidel, H.-P.: Feature sensitive surface extraction from

volume data, In Proc. of SIGGRAPH 2001, 57-66.
[7] Kumar, V.; Dutta, D.: An assessment of data formats for layered manufacturing, Computer-Aided

Design, 28(3), 1997, 151-164.
[8] Lee, K.-H.; Woo, H.: Direct integration of reverse engineering and rapid prototyping, Computers &

Industrial Engineering, 38(1), 2000, 21-38. http://dx.doi.org/10.1016/S0360-8352(00)00017-6.
[9] Liu, G.-H.; Wong, Y.-S.; Zhang, Y.-F., Loh, H.-T.: Error-based segmentation of cloud data for direct

rapid prototyping, Computer-Aided Design, 35(7), 2003, 633-645.
http://dx.doi.org/10.1016/S0010-4485(02)00087-8.

[10] Lorensen, W.-E.; Cline, H.-E.: Marching cubes: A high resolution 3D surface construction algorithm.
In SIGGRAPH 1987, ACM Press, New York, USA, 1987, 163-169.

[11] Newman, T.-S.; Yi, H.: A survey of the marching cubes algorithm, Computer & Graphics, 30(5),
2006, 854-879. http://dx.doi.org/10.1016/j.cag.2006.07.021.

[12] Nielson, G.-M.; Hamann, B.: The asymptotic decider: resoving the ambiguity in marching cubes,
Visualization, 1991.

[13] Pandey, P.-M.; Reddy, N.-V.; Dhande, S.-G.: Slicing procedures in layered manufacturing: a review,
Rapid Prototyping Journal, 9(5), 2003, 274-288. http://dx.doi.org/10.1108/13552540310502185.

[14] Pfister, H.; Zwicker, M.; van Baar, J.; Gross, M.: Surfels: surface elements as rendering primitives,
In SIGGRAPH 2000, ACM Press, New Orleans, LA, USA, 2000, 335-342.

http://dx.doi.org/10.1111/j.1467-8659.2005.00879.x
http://www.jewelcadpro.com/
http://dx.doi.org/10.1145/566654.566586
http://dx.doi.org/10.1016/S0360-8352(00)00017-6
http://dx.doi.org/10.1016/S0010-4485(02)00087-8
http://dx.doi.org/10.1016/j.cag.2006.07.021
http://dx.doi.org/10.1108/13552540310502185

Computer-Aided Design & Applications, 10(6), 2013, 965-981
© 2013 CAD Solutions, LLC, http://www.cadanda.com

981

[15] Qiu, Y.-J.; Zhou, X.-H., Qian, X.-P.: Direct slicing of cloud data with guaranteed topology for rapid
prototyping, The International Journal of Advanced Manufacturing Technology, 53(1), 2011, 255-
265. http://dx.doi.org/10.1007/s00170-010-2829-6.

[16] Schaefer, S.; Ju, T.; Warren, J.: Manifold dual contouring, IEEE Transactions on Visualization and
Computer Graphics, 13(3), 2007. http://dx.doi.org/10.1109/TVCG.2007.1012.

[17] Wang, C.-L.; Chen, Y.: Layered Depth-Normal Images for Complex Geometries: Part Two ---
Manifold-Preserved Adaptive Contouring, ASME Conference 2008, 729-739.

[18] Wang, C.-L.; Leung, Y.-S.; Chen, Y.: Solid modeling of polyhedral objects by Layered Depth-Normal
Images on the GPU, Computer-Aided Design, 42(6), 2010, 535-544.
http://dx.doi.org/10.1016/j.cad.2010.02.001.

[19] Zeng, L.; Lai, M.-L.; Qi, D.; Lai, Y.-H.; Yuen, M.-F.: Efficient slicing procedure based on adaptive
layer depth normal image, Computer-Aided Design, 43(12), 2011, 1577-1586.
http://dx.doi.org/10.1016/j.cad.2011.06.007.

http://dx.doi.org/10.1007/s00170-010-2829-6
http://dx.doi.org/10.1109/TVCG.2007.1012
http://dx.doi.org/10.1016/j.cad.2010.02.001
http://dx.doi.org/10.1016/j.cad.2011.06.007

