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ABSTRACT

This paper elucidates the possibilities to interactively generate and deform Log-
aesthetic (LA) curves regardless of their integral form. The methods proposed are
twofold; in the first section, we propose new method to generate an S-shaped LA
spline. In the next section, we propose a novel method to solve the G2 Hermite
interpolation problem with LA curves which is in the form of LA triplets. These
methods have been implemented as a plug-in module for a commercial CAD system
and are successfully used for practical design. This paper proofs that LA curve has
matured and ready for industrial design.
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1 INTRODUCTION

Recent advancement on Log Aesthetic (LA) curve has been promising and it is now maturing for
industrial and graphical design practices. Designers may specify two shape parameters which can be
used to generate visually pleasing curves using LA curves. The shape parameters are denoted as ߙ and
Λ. The ߙ shape parameter is used to dictate the types of curves the designer wants, e.g., when ߙ = −1,
the LA curve becomes clothoid and when ߙ = 2 the LA curve becomes circle involute. The Λ shape
parameter can be used to control certain shape constraints to be satisfied during design processes,
e.g. controlling the curvature radius at endpoints.

An independent research indicated that LA curve is the most promising curve for aesthetic design
[8]. Recent researches on the LA curve include reformulation of LA curve using variational principles
to obtain minimized functionals for free-form surfaces design [14]. In 2009, Gobithaasan and Miura [2]
formulated the generalized log-aesthetic curve (GLAC) in a standard form by representing the gradient
of the Logarithmic Curvature Graph (LCG) as a function of its arc length. They also reported that the
LCG gradient of Generalized Cornu spiral [5] can be written as a linear function [3]. In 2012, Ziatdnov
et al. [18] showed that some LA curves can be expressed by incomplete Gamma functions analytically
which shortens the computation time up to 10 times. Recently Meek et al. [10] proved that an unique
solution exists for G1 interpolation by using an LA curve segment when ߙ < 0.
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This paper proposes a novel method to solve G2 Hermite interpolation problem using LA curves. G2

Hermite data consists of end points, tangent vectors and curvatures at those points. In 2006, Yoshida
and Saito [17] solved G1 Hermite interpolation problem which consists of endpoints and tangent
vectors at those points. In 2007, Miura et al. extended Yoshida and Saito’s work to join LA curve
segments with G2 continuity by changing tangent directions at their joints [13]. However the proposed
technique restraints users from specifying tangent directions at the joints. Hence the proposed
method cannot solve G2 Hermite interpolation problem. Up-to-date, no technique exists to design LA
curves with G2 continuity.

There are a number of methods have been proposed to design robot trajectories with clothoid
curves [6, 7, 9, 15]. A notable work in this field of study is by Lan et al. [6] who extended Makino’s
technique [9]. Lan et al. proposed a method to solve the G2 interpolation problem using clothoid
curves. Since the degree of freedom (DOF) of a clothoid is insufficient, they used triple clothoids to
obtain the necessary DOFs. As stated previously, clothoid curves are a subset for LA curves when ߙ
equals to -1. The DOF of clothoid and LA curve is the same onceis fixed. Hence we extend Lan et al.’s
method for LA curve to solve G2 Hermite interpolation problem using the LA spline which consists of
triple LA curve segments connected with G2 continuity.

The rest of the paper is organized as follows. Section 2 reviews the fundamentals of LA curve and
compares two methods to generate a LA curve segment proposed by Yoshida & Saito [17] and Makino
[9]. This section also describes a novel method to generate an S-shaped curve with an LA curve
segment. Section 3 discusses on the main contribution of this paper; the LA spline formulation to
solve G2 Hermite interpolation problem. Section 4 concludes the paper with a short discussion on
future work.

2 GENERATION OF S-SHAPED CURVES USING THE LA CURVES

S-shaped curves are used in various designs and they are very important for aesthetic design [16]. The
methods to generate log-aesthetic curves [1, 17] investigated so far do not deal with the input of S-
shaped curves since the S-shaped curves can be generated only in the case of  is negative. However
the S-shape is inevitable for robots trajectory design. Makino et al. [6, 7, 15] used only clothoid curves
(whose  equals to -1 for LA formulation) and their methods can be employed to generate both S-
shaped and C-shaped curves. In this section we compare Yoshida & Saito’s method [17] to Makino’s [9]
method and further extend their work to generate S-shaped curves using LA formulation.

2.1 The fundamentals of LA Curves

Referring to Lan et al.’s method [6], the G2 Hermite interpolation problem for LA spline is formalized
based on their notations.

For a given LA curve ,ࡼ let s and h be its arc length and total length, respectively. ܵ= ℎ(0/ݏ ≤ ܵ≤ 1)
represents a dimensionless arc length. The curve is generally expressed by the following equation:

ࡼ = ଴ࡼ = න ࢛
௦

଴

=ݏ݀ �ܲ ଴+ ℎන ࢛
ௌ

଴

݀ ,ܵ 0 ≤ ≥ݏ ℎ, 0 ≤ ܵ=
ݏ

ℎ
≤ 1

Where ଴ࡼ is the start point of the curve and ࢛ is its unit tangent vector. Therefore if ࢛ is defined as a
function of S, the shape of the curve is determined.

In general, a curvature radius function cannot represent a straight line, hence this paper
represents LA curve in the form of curvature function. Frenet-Serret formulas are used for curve
shape calculations.

When ߙ ≠ 0, thesigned curvature of the LA curve, )ߢ )ܵ, is defined as follows:

)ߢ )ܵ = ቐ
( ଴ܿܵ+ ଵܿ)ି

ଵ
ఈ ���ܿ଴ܵ+ ଵܿ ≥ 0

−(− ଴ܿܵ− ଵܿ)ି
ଵ
ఈ otherwise

(2.1)

If the curve is turning left in accord with the direction of travel, the curvature is defined to be
positive and negative otherwise. A right-turning curve can also be obtained as a mirror image of a left-
turning curve. When α = 0, the curvature is given by )ߢ )ܵ = ଴ܿ

௖݁భௌ where its sign is specified by ଴ܿ.
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Let α ≠ {0,1} and ଴ܿ ≠ 0, then the directional angle of the curve, denoted as ߶( )ܵ can be written as
follows:

߶( )ܵ =

⎩
⎨

⎧
ߙ

−ߙ) 1) ଴ܿ
( ଴ܿܵ+ ଵܿ)

ఈିଵ
ఈ + ଶܿ ���ܿ଴ܵ+ ଵܿ ≥ 0

ߙ

−ߙ) 1) ଴ܿ
(− ଴ܿܵ− ଵܿ)

ఈିଵ
ఈ + ଶܿ otherwise

(2.2)

where ଶܿ is an integration constant. Note that in case of ଴ܿܵ+ ଵܿ < 0, the sign of the first term is
without a minus. Hence, it can be rewritten as follows:

߶( )ܵ =
ߙ

−ߙ) 1) ଴ܿ
| ଴ܿܵ+ ଵܿ|

ఈିଵ
ఈ + ଶܿ

When ଴ܿ = 0, the curve is a straight line or an circular arc and its directional angle is defined by

߶( )ܵ = ቐ
( ଵܿ)ି

ଵ
ఈ ܵ+ ଶܿ ���ܿଵ ≥ 0

−(− ଵܿ)ି
ଵ
ఈ ܵ+ ଶܿ otherwise

(2.3)

If ߙ = 0, ߶( )ܵ is given by

߶( )ܵ =
ଵܿ

଴ܿ

௖݁భௌ + ଶܿ

and if ߙ = 1, it is given by

߶( )ܵ =
1

଴ܿ
log | ଴ܿܵ+ ଵܿ| + ଶܿ

If the curve is a straight line or circular arc, the above equations should be appropriately adjusted.

2.2 Comparison between Yoshida & Saito’s Method and Makino’s Method

The directional angle of LA curve segment in the standard form II proposed by Yoshida and Saito [17]
is given by

(ݏ)߶ =

⎩
⎪⎪
⎨

⎪⎪
⎧

1 − ஃ݁௦

Λ
ߙ��� = 0

log(Λݏ+ 1)

Λ
ߙ��� = 1

(Λݏߙ+ 1)
ఈିଵ
ఈ − 1

Λ(α − 1)
otherwise

In this form, the tangent direction at the start point of the curve is assumed to be directed in the
positive direction along the x coordinate axis and the curvature radius is assumed to be 1. The
curvature radius is increases monotonically when Λ ≠ 0 and when Λ = 0in which the curve becomes a
circular arc. The shape of the curve is determined by inputting the shape parameter () and three
points which forms a triangle. The triangle consists of endpoints and an extra point in between of the
endpoints which specifies the tangent directions of the endpoints which is similar to control points of
a quadratic Bezier curve. A bisection method is used to search for a suitable Λ to match the control
points.

Makino [9] used a different approach where the arc length is made to be dimensionless and the
start point is translated to be the origin and the end point is rotated to be a point on the x axis whose
coordinate is positive. From the directional angles at the start and end points, parameters ଵܿ and ଶܿ in
Eqn. (2.2) are expressed as linear functions of ଴ܿ. The shape of the curve is determined by searching a
suitable ଴ܿ which makes the y coordinate of the endpoint to be 0.

The arc length can be made dimensionless by simply excluding the dimension of the curve out of
search parameter. It is then fitted with the given control points as proposed by Yoshida and Saito. In
essence, both of the discussed methods transforms G1 Hermite interpolation problem into a one
parameter search problem . In Yoshida & Saito’s method, Λ is always lower-limited by default and,
when α ≠ 1, Λ is upper-limited. In practice, Yoshida & Saito’s method is expected to be advantageous



Computer-Aided Design & Applications, 10(6), 2013, 1021-1032
© 2013 CAD Solutions, LLC, http://www.cadanda.com

1024

than the Makino’s method. Therefore, we propose a new method to generate a S-shape curve based on
Yoshida & Saito’s method.

It is necessary to connect a number of segments with C2 continuity to increase the DOF of a LA
spline to solve G2 Hermite interpolation problem. This is due to the fact that the Standard form II
proposed by Yoshida and Saito [17] is expressed with a fixed radius curvature at the start point of the
segment which makes it impossible to join the subsequent segments with G2 continuity. Hence, a
general formula of LA curve is used to solve the G2 Hermite interpolation problem and further extend
from C2 continuity to Cn continuity with the LA spline. It is also difficult to estimate the directional
angle at the end point of the subsequent segments using Yoshida and Saito’s method. Therefore
Section 3 is dedicated to formulate a new method solving G2 Hermite interpolation problem applicable
to entire LA family based on the methods proposed by Lan et al. [6] and Makino [7].

2.3 Condition on the LCG Gradient to have an Inflection Point

At an inflection point (ݏ) = 0 . It is necessary to change the sign of the curvature at a point on the
curve to make an S-shaped curve, i.e. to have an inflection point where the curvature changes its sign.
The curvature of a LA curve in Standard Form II is given by

(ݏ)ߢ = ቊ
݁ି ஃ௦ ߙ��� = 0

(Λݏߙ+ 1)ି
ଵ
ఈ otherwise

The LA curve has no inflection point when ߙ = 0 (Nielsen’s spiral). If ߙ > 0, Λݏߙ+ 1 = ±∞ should be
satisfied and inflection point does not occur if the arc length is limited to be finite. Therefore a curve
with ߙ < 0 may have an inflection point.

2.4 Input of an S-shaped Curve

The arc length s of a curve with ߙ < 0 is given as a function of the directional angle ߶ at the end point
as follows:

=ݏ
{1 + −ߙ) 1)Λ߶}

ఈ
ఈିଵ− 1

Λߙ
(2.4)

It is necessary for the total arc length s to become larger than the arc length to the inflection point ଴ݏ
to form a S-shaped curve where

=ݏ −
1

Λߙ

Notice that ଴ݏ > 0 because ߙ < 0. If the directional angle is defined to be negative when it decreases
over 0 degree, the directional angle becomes maximum at the arc length ଴ݏ and is given by

߶௠ ௔௫ =
1

(1 − α)Λ
(2.5)

If the directional angle is specified to be less than the value stated above, it is not possible to generate
a curve without a loop which indicates that the directional angle changes by more than 360 º ݏ. is
expressed by means of ଴ݏ from Eqn. (2.4) as follows:

=ݏ ଴ݏ +
{1 + −ߙ) 1)Λ߶}

ఈ
ఈିଵ

Λߙ
(2.6)

At the inflection point Cn continuity (݊= 0,1,2⋯) of the curve is guaranteed, hence the tangent vector,
curvature, derivative of curvature and etc. are continuous. If we assume that the curve is S-shaped, the
second term of Eqn. (2.6) increases according to the increase of ߶ → ߶௠ ௔௫. Beyond ߶௠ ௔௫ the directional
angle (߶஽ in Fig. 1.) decreases. ߶஽ indicates the directional angle of ௘ܲ calculated anticlockwise from x
axis and, ߶஽ is the angle between the line through the origin and the ௘ܲ and the x axis. Hence we
change the sign of the second term and define ଵݏ by

ଵݏ = −
{1 + −ߙ) 1)Λ߶}

ఈ
ఈିଵ

Λߙ
(2.7)

Note that since ߙ < 0, hence, ଴ݏ > 0. The total arc length ݏ is given by ଴ݏ + .ଵݏ
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Fig. 1: Input of a S-shaped curve.

Fig. 2: Decision criterion of an S-shape curve.

2.5 An Algorithm to Generate an S-shaped LA Curve

We use four control points to generate an S-shaped LA curve because if we use only three control
points, the two tangent vectors at the start and end points intersect at the second control point unless
they are on a line. It is impossible to make the tangent vectors parallel and furthermore, the angle
between them negative (clockwise). The four control points are used to specify two end points of the
curve and tangent vectors at these points.

An S-shaped curve can be generated with the following steps:

1. Move the start point to the origin and the directional angle there to be 0 by translating and
rotating the four initial control points,2. Calculate the directional angle at the end point ߶஽ and the
angle between the line through the origin and the end point and the x axis ߶ா as depicted in Fig. 1.,

3. Identify whether the curve is S-shaped from ߶஽ and ߶ா . A user generates a triangle with the
endpoints and the intersection point which dictates tangent vectors endpoints. If the curve exists
inside the triangle (Fig. 2(a).), then the curve is identified as an S-shaped curve. If the triangle
cannot be generated or the curve does not exist inside, then the curve is identified as not an S-
shaped curve (Fig. 2(a).). If the result is an S-shaped curve, then perform the following steps.

4. The minimum value of Λ is 0 and the condition for Λ to satisfy on the maximum directional angle
is

1 + −ߙ) 1)Λ߶௠ ௔௫ ≥ 0

Since ߶௠ ௔௫ > 0, the following inequality is obtained.

Λ ≤
1

(1 − ௠߶(ߙ ௔௫

However based on Eqn. (2.5) the above equation is always satisfied, hence no upper-limit
exists.

5. Calculate the arc length: =ݏ ଴ݏ + ଵݏ using ߶஽ . (Make sure that ߶஽ < ߶௠ ௔௫.)

6. Calculate the end point of the curve using andݏ compare the angle corresponding to ߶ா with
itself.
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7. If the calculated angle in the previous step is less than ߶ா, then decrease Λ, otherwise increase it.

8. Repeat steps 5 to 7 until conversion is successful.

Fig. 3: S-shaped LA curves with different  values.

In the above algorithm, parameter Λ does not have an upper-limit although it has 0 as the lower-
limit and there is not much difference to the Makino’s method. However Eqn. (2.7) gives the
relationship between the arc length and directional angle. Thus we can avoid a loop whose directional
angle grows more than 360 degree.

Fig. 3 shows several examples of S-shaped LA curves with different .�valuesߙ This figure illustrates
that the shape of the curve changes very much depending on ߙ when it is S-shaped. All numerical
examples illustrated in this paper are performed on a computer built with Core i-7, 3.4 GHz and main
memory 8 GB and the average processing time for parameter searching for the S-shaped curves in Fig.
3. is about 15 to 20 msec.

3 LOG-AESTHETIC SPLINE WITH THREE SEGMENTS

In this section, we propose to simultaneously specify endpoints, tangent vectors and curvature there
using the log-aesthetic spline with three segments which is a similar approach employed by Lan et al.
[6] to solve the G2 Hermite interpolation problem using triple clothoids. Miura et al. [13] used the LCG
gradient  as an additional parameter to make the curvature at the end point to 0. However there is a
report which claims  is related to impressions of the curve [4]. Hence,  is fixed as a constant to
produce G1 Hermite interpolation using a single LA curve segment and a C3 continuous compound-
rhythm LA curve is connected with two LA segments. In this paper we regard  as a parameter which
can be controlled by designers and do not use it to determine the shape of the curve. Note that the
DOF of the LA spline with three segments is similar to triple clothoids.

3.1 Definitions of the LA Spline with Three Segments

Harada et al. [4] reported that  is closely related to impressions of the LA curve. Hence it is a common
practice to fix the value of ߙ� to design aesthetic shapes using LA curves. We use triple LA curves as a
LA spline for the G2 Hermite interpolation problem. In this paper, a triple LA curve consists of three
LA curve segments with different ߙ values which are joined with G2 continuity. For algebraic
simplification we assume that the curve is planar, the curvature of the curve is positive or zero and
ߙ ≠ 0,1. Let the curvature of LA curve is stated as follows:
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)ߢ )ܵ =

⎩
⎪
⎨

⎪
⎧( ଵܿ଴ܵ+ ଵܿଵ)

ି
ଵ
ఈభ 0 ≤ ܵ≤ ଵܵ

( ଶܿ଴ܵ+ ଶܿଵ)
ି
ଵ
ఈమ ଵܵ < ܵ≤ ଶܵ

( ଷܿ଴ܵ+ ଷܿଵ)
ି
ଵ
ఈయ ଶܵ < ܵ≤ 1

where ଵܵ is the normalized arc length defined from 0 to 1 and ௜ܿ௝ are constants where i=0,1,2 and j=0,1.

ଵܵ and ଶܵ can be substituted with any values. However, we use ଵܵ=0.25 and ଶܵ=0.75 as adopted by Lan
et al. [6]. When { ଵܿ଴,�ܿଶ଴,�ܿଷ଴}≠0, the directional angle ߶( )ܵ can be written as follows:

߶( )ܵ =

⎩
⎪⎪
⎨

⎪⎪
⎧

ଵߙ
−ଵߙ) 1) ଵܿ଴

( ଵܿ଴ܵ+ ଵܿଵ)
ఈభିଵ
ఈభ + ଵܿଶ 0 ≤ ܵ≤ ଵܵ

ଶߙ
−ଶߙ) 1) ଶܿ଴

( ଶܿ଴ܵ+ ଶܿଵ)
ఈమିଵ
ఈమ + ଶܿଶ ଵܵ < ܵ≤ ଶܵ

ଷߙ
−ଷߙ) 1) ଷܿ଴

( ଷܿ଴ܵ+ ଷܿଵ)
ఈయିଵ
ఈయ + ଷܿଶ ଶܵ < ܵ≤ 1

In case of )ߢ )ܵ < 0, the curvature and directional angle can be defined similar to Eqn. (2.1) and Eqn.
(2.2), respectively.

3.2 Conditions on Segments

The conditions for satisfying the imposed constraints at endpoints and to preserve G2 continuity at the
joints of the triple LA curves are given by:

௦ℎߢ = ( ଵܿଵ)
ି
ଵ
ఈభ (3.1)

௘ℎߢ = ( ଷܿ଴ + ଷܿଵ)
ି
ଵ
ఈయ (3.2)

߶௦ =
ߙ

−ߙ) 1) ଵܿ଴
( ଵܿଵ)

ఈభିଵ
ఈభ + ଵܿଶ (3.3)

߶௘ =
ߙ

−ߙ) 1) ଷܿ଴
( ଷܿ଴+ ଷܿଵ)

ఈయିଵ
ఈయ + ଷܿଶ (3.4)

Note that although for an arbitrary ଵandߙ ,ଷߙ Eqns. (3.1) and (3.2) can be rewritten as linear functions
of ௜ܿ௝(݅= 1,2,3,݆= 0,1,2), however Eqns. (3.3) and (3.4) cannot be linear functions when ଷߙ,ଵߙ ≠ −1.

The conditions to preserve curvature continuity and the directional angle at the two joints are
given by

( ଵܿ଴ ଵܵ + ଵܿଵ)
ି
ଵ
ఈభ = ( ଶܿ଴ ଵܵ + ଶܿଵ)

ି
ଵ
ఈమ (3.5)

( ଶܿ଴ ଶܵ + ଶܿଵ)
ି
ଵ
ఈమ = ( ଷܿ଴ ଶܵ + ଷܿଵ)

ି
ଵ
ఈయ (3.6)

ଵߙ
−ଵߙ) 1) ଵܿ଴

( ଵܿ଴ ଵܵ + ଵܿଵ)
ఈభିଵ
ఈభ + ଵܿଶ =

ଶߙ
−ଶߙ) 1) ଶܿ଴

( ଶܿ଴ ଵܵ + ଶܿଵ)
ఈమିଵ
ఈమ + ଶܿଶ (3.7)

ଶߙ
−ଶߙ) 1) ଶܿ଴

( ଶܿ଴ ଶܵ + ଵܿଵ)
ఈమିଵ
ఈమ + ଶܿଶ =

ଷߙ
−ଷߙ) 1) ଷܿ଴

( ଷܿ଴ ଶܵ + ଷܿଵ)
ఈయିଵ
ఈయ + ଷܿଶ (3.8)

Eqns. (3.7) and (3.8) are essentially non-linear. Eqns. (3.5) and (3.6) are simplified as follows:

ଶܿ଴ ଵܵ + ଶܿଵ = ( ଵܿ଴ ଵܵ + ଵܿଵ)
ఈమ
ఈభ (3.9)

ଶܿ଴ ଶܵ + ଶܿଵ = ( ଷܿ଴ ଶܵ + ଷܿଵ)
ఈమ
ఈయ (3.10)

Let the coordinates of the endpoint of the curve be ,ݎ) 0), the following two equations should be
satisfied.

ℎ�න cos߶( )ܵ
ଵ

଴

݀ܵ= (3.11)���������������������������������������������������������������������������������������������ݎ

න sin߶( )ܵ
ଵ

଴

݀ܵ= 0 (3.12)
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The variables are ℎ and ௜ܿ௝ with {݅= 1,2,3,݆= 0,1,2} and the number of unknown is 10 in the above

formulation. The conditions are from Eqn. (3.1) to (3.4) and from Eqn. (3.7) to (3.12). The number of
them adds to 10 as well. Hence the number of unknowns and equation are the same and which makes
a determined system.

3.3 Proposed Solution

At first we estimate the total length ℎ and express the left side of Eqn. (3.12) by only ଷܿ଴. Its value is
determined by binary search algorithm to satisfy Eqn. (3.12). From Eqn. (3.11), ℎ is calculated by using

ଷܿ଴. The process is repeated until the iteration converges to the solution.

We assume that ଷܿ଴ is given as a numerical value due to the fact that both ଵܿ଴ and ଷܿ଴ remain as
unknown. If we can treat ଷܿ଴ as a numerical value, we obtain ଵܿ଴ by solving a nonlinear equation. Then
we may update the value of ଷܿ଴ to satisfy constraints without ଵܿ଴.

From Eqn. (3.1) to Eqn. (3.4)

ଵܿଵ = (௦ℎߢ)
ିఈభ (3.13)

ଷܿଵ = (௘ℎߢ)
3ߙି − ଷܿ଴ (3.14)

ଵܿଶ = ߶௦−
ଵߙ

−ଵߙ) 1) ଵܿ଴
(௦ℎߢ)

ଵିఈభ (3.15)

ଷܿଶ = ߶௘−
ଷߙ

−ଷߙ) 1) ଷܿ଴
(௘ℎߢ)

ଵିఈయ (3.16)

Hence ଷܿଵ and ଷܿଶ are determined by ଷܿ଴ and ଵܿଶ using ଵܿ଴.

From Eqns. (3.9) and (3.10)

൤ ଵܵ 1

ଶܵ 1
൨ቂ

ଶܿ଴

ଶܿଵ
ቃ= ቎

( ଵܿ଴ ଵܵ + ଵܿଵ)
ఈమ
ఈభ

( ଷܿ଴ ଶܵ + ଷܿଵ)
ఈమ
ఈయ

቏

Therefore

ଶܿ଴ =
( ଵܿ଴ ଵܵ + ଵܿଵ)

ఈమ
ఈభ − ( ଷܿ଴ ଶܵ + ଷܿଵ)

ఈమ
ఈయ

ଵܵ− ଶܵ
(3.17)

ଶܿଵ =
ଵܵ( ଷܿ଴ ଶܵ + ଷܿଵ)

ఈమ
ఈయ − ଶܵ( ଵܿ଴ ଵܵ + ଵܿଵ)

ఈమ
ఈభ

ଵܵ− ଶܵ
(3.18)

By using Eqns. (3.7) and (3.8) we remove ଶܿଶ as follows:

ଵߙ
−ଵߙ) 1) ଵܿ଴

( ଵܿ଴ ଵܵ + ଵܿଵ)
ఈభିଵ
ఈభ + ଵܿଶ +

ଶߙ
−ଶߙ) 1) ଶܿ଴

{( ଶܿ଴ ଶܵ + ଵܿଵ)
ఈమିଵ
ఈమ − ( ଶܿ଴ ଵܵ + ଶܿଵ)

ఈమିଵ
ఈమ } −

ଷߙ
−ଷߙ) 1) ଷܿ଴

( ଷܿ଴ ଶܵ + ଷܿଵ)
ఈయିଵ
ఈయ − ଷܿଶ = 0

We define the left side of the above equation as (݂ ଵܿ଴). ଵܿଶ, ଶܿ଴ and ଶܿଵ are functions of ଵܿ଴ and from

Eqns. (3.13), (3.15) and (3.16) we obtain the following equations when
ଶߙ

ଵൗߙ ≠ −1:

߲ ଵܿଶ

߲ ଵܿ଴
=

ଵߙ
−ଵߙ) 1) ଵܿ଴

ଶ ଵܿଵ

ఈభିଵ
ఈభ

߲ ଶܿ଴

߲ ଵܿ଴
=

ଵܵ

ଵܵ− ଶܵ

ଶߙ
ଵߙ

( ଵܿ଴ ଵܵ + ଵܿଵ)
ఈమ
ఈభ
ିଵ

߲ ଶܿଵ

߲ ଵܿ଴
= −

ଵܵ ଶܵ

ଵܵ− ଶܵ

ଶߙ
ଵߙ

( ଵܿ଴ ଵܵ + ଵܿଵ)
ఈమ
ఈభ
ିଵ

We can also obtain similar formulas when
ଶߙ

ଵൗߙ = −1. Hence we can numerically evaluate ߲ (݂ ଵܿ଴)/߲ ଵܿ଴.

Since differentiation is possible, we can adopt numerical methods using derivatives such as the
Newton’s method to solve a non-linear equation by forming (݂ ଵܿ଴) = 0. Although the method described
above assumes that ߙ ≠ {0,1} it is possible to formulate similar solution for such cases.
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3.4 Initial Value Estimation

We need initial values for ℎ, ଵܿ଴ and ଷܿ଴ in the proposed solution. To obtain the initial values for ଵܿ଴ and

ଷܿ଴, we estimate curvatures at the joints at ଵܵ and ଶܵ and calculate them from these curvatures.

We may use a Bézier curve of degree 5 for the estimation of the initial shape of the LA spline. We
can use the total length of the Bézier curve as ℎ. To note, the Bézier curve is not uniquely determined
by endpoints, tangent directions and curvatures there and these conditions do not necessarily yield a
suitable curve for the initial value estimation for ଵܿ଴ and ଷܿ଴.

Hence we use an objective function which is modified to be independent from the total length ℎ as
proposed by Miura at al. [13]:

௅஺஼ܬ =
∫ ඥ1 + ଵߙ

ଶߩଶఈభିଶߩ௦
ଶௌభ௛

଴
+ݏ݀ ∫ ඥ1 + ଶߙ

ଶߩଶఈమିଶߩ௦
ଶௌమ௛

ௌభ௛
+ݏ݀ ∫ ඥ1 + ଷߙ

ଶߩଶఈయିଶߩ௦
ଶ௛

ௌమ௛
ݏ݀

ℎ
(3.19)

The above function is minimized to generate an appropriate initial Bézier curve. Fig. 4(a). shows a
Bézier curve of degree 5 and its initial control points in green and those after optimization in blue for
=௜ߙ −0.5, ݅= 1,2,3.

Fig. 4: Optimization of the approximation curve for initial values.

Upon using the Bézier curve after optimization, ଵܿ଴ and ଷܿ଴ are calculated and a LA spline curve
with three segments shown in red is determined. Strictly speaking the LA spline curve does not
minimize the objective function in Eqn. (3.19), but notice that the shapes of the Bézier curve and the
LA spline are almost in the same shape.

In this example, ଵܿ଴ and ଷܿ଴ calculated from the input Bézier curve are not appropriate, hence the
numerical calculation diverges because the total length ℎ becomes negative. If we use the Bezier curve
after optimization, we may obtain these values without calculation failure and generate a LA spline
curve successfully.

Since an optimization process is necessary only for the initial value estimation, we propose a
simpler method. As shown in Fig. 4(b). let the lengths between the first and the second control points
and the fifth and sixth control points be ଴݈ and ଷ݈ , respectively. Furthermore let parameters to
determine the positions of the 3rd and 4th be ଵ݈ and ଶ݈, respectively. We change these parameters

independently in the range of 0.05 ≤
௟೔

௛
≤ 0.5for ,݅= 0,1,⋯ ,3 by 0.05 where ℎ is the total arc length of the

input Bézier curve. We obtain parameter values which minimizes the objective function in Eqn.(3.19).

Fig. 5: (a) Non-linearity of function (݂ ଵܿ଴), (b) the curvature profile of the LA spline curve with three
segments shown in Fig. 4(a).
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Figure 5 shows function (݂ ଵܿ଴) defined in the previous subsection calculated by using the initial
values obtained from the optimized Bézier curve of degree 5. We notice from the figure that the
function is non-linear, but there is only one solution which satisfies (݂ ଵܿ଴) = 0 in the range of −20 ≤

ଵܿ଴ ≤ 20. Figure 6 shows a curvature profile of the LA spline curve. Its curvature is continuous for the
whole curve, but the monotonicity is not preserved because the specified curvatures at the end points
are relatively small. The processing time is about 30 msec for the optimization process and about 20
msec for the parameter search, adding to 50 msec.

Fig. 7: (a) LA splines with different curvatures at the end points ߙ) = −0.5), (b) a generation of G2

continuous Bézier curve of degree five satisfying traditional G2 Hermite data by a built-in command
with and a LA spline in red color with the sameG2 Hermite data .

Figure 7(a) shows examples of LA spline for different curvatures at their end points. Even though
the curvature of the curve in Fig. 7(a

1
) appears to be monotonous, generally it is not guaranteed to be

monotonous as depicted in Fig. 7(a
2
) and 7(a

3
). In Fig. 7(b) the central curve consists of three segments

whose middle segment is generated using Bézier curve of degree 5 (black) and a LA spline (red) in
using the proposed method. The Bézier curve is generated and deformed by built-in commands of a
commercial CAD system to satisfy G2 Hermite data posed at its endpoints. The LA spline is generated
with similar G2 Hermite data to achieve G2 continuity at the joints. These curves are also shown
separately for visual clarity. The porcupine plot of these curves is drawn in blue. It is visually clear
that the curvature of the Bézier curve varies a lot to satisfy G2 continuity at its endpoints whereas LA
spline joins gradually.

Fig. 8: A G2 connection example of two LA spline curves.

We show an example to connect two LA spline curves with different  values with G2 continuity in
Fig. 8. Our method can connect LA spline with G2 continuity if the same curvatures are specified at
their connection points. The average processing time to generate this spline is about 35 msec.
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Fig. 9: Circular arc replacement by a LA spline to achieve G2 continuity.

Figure 9 shows a replacement of an arc in a practical CAD data to achieve G2 continuity. The
curvature of three curves at the upper position of a front door in Fig. 9(a) is not continuous as shown
in Fig. 9(b). The circular arc is replaced with a LA spline and the result indicates the curvature is
continuous as shown in Fig. 9(c).

Fig. 10: A car model designed by using LA spline and its mock-up.

Figure 10 shows a practical design example of a car designed by using LA splines. Figure 10(a)
shows iso-parametric lines of free-form surface generated using LA splines and its corresponding
zebra maps. Figure 10(b) depicts the geometric model with special lighting condition and in 10(c) are
photos of its mock-up manufactured based on geometric model. To note, the roof of the car is
designed by a LA spline curve with three segments and its zebra maps indicates the surface is of high
quality.

Although to find out drawable regions of our method is one of future researches, our experiences
indicate the regions are very wide and we can generate LA splines for practical with most of G2

Hermite data.

4 CONCLUSIONS

The contribution of this paper is twofold: the first part proposed a novel method to generate a S-
shaped LA curve which deals with G1 Hermite interpolation problem. The second part proposes a new
method to solve G2 Hermite interpolation problem with LA curves. These methods have been
successfully implemented as a plug-in module for a commercial CAD system and are found to be
essential for practical design. It is hoped that complex aesthetic shapes which assumed hard to design
can be designed easily using the proposed methods with minimal effort.
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