
 91

Rapid and Flexible Prototyping Through Direct Machining

Frank Wei Li1, Tyler Davis2, C. G. Jensen3, and W. E. Red4

1Brigham Young University - Provo, frank1li@et.byu.edu
2 Brigham Young University - Provo, tad29@et.byu.edu
3 Brigham Young University - Provo, cjensen@byu.edu
4 Brigham Young University - Provo, ered@et.byu.edu

ABSTRACT

The rapid physical realization of a product from a CAD model prior to full scale manufacturing
presents a challenging task for industrial companies, as well as academic researchers. This paper
presents a rapid and flexible prototyping system designed to directly connect a CAD system (Alias)
with a software based DMAC (Direct Machining And Control) controller. The overall architecture is
presented and the tool path planning, animation, and direct machining under Alias are explained.
The implementation of the proposed prototyping system is realized on a three-axis mill. An
example of milling a real surface through this direct CNC system is presented and conclusions are
drawn.

Keywords: free-form surface, rapid prototyping, direct machining, path planning, animation.

1. INTRODUCTION

In automotive, aerospace, shipbuilding, die and mold
industries, an original design concept usually begins as a
2D sketch created by industrial designers. This 2D sketch
is then transformed into a 3D CAD model through one
of two processes. Ideally, the designer will work with an
engineer to create a 3D CAD model directly from the 2D
sketches. An alternative is to create a physical model,
often sculptured from clay by a skilled artisan or sculptor,
from which a 3D CAD model is obtained by some form
of 3D scanning such as white light imaging. The 3D CAD
surfaces are usually modeled as parametric forms that
use the well defined mathematics of B-spline, Bezier, and
NURBS entities.

To mill out parametric surface, a 3D CAD model is
usually translated into some intermediate file format,
such as IGES, and is then read into a CAM system. After
the CAD model is translated into the CAM system, tool
paths can be generated and post processed into CNC
codes (M&G codes). A physical model can then be
milled out on a CNC machine using M&G codes. This
traditional design-to-manufacturing process is time
consuming and error prone.

A major limitation with current CNC manufacturing
methods is the form of data transfer between the driving
CAD model and the machine tool controller—M&G
code [3]. Traditionally, M&G code does not support the
use of free-form curves such as NURBS [2]. In addition,
there is no association between the tool path data and
the master CAD model. This means that any
modification to the original CAD model requires a

regeneration of all subsequent intermediate files as well
as the M&G codes. A modification of M&G codes on the
shop floor can never be reflected back to the original
CAD model. This flow of data makes the task of keeping
all relevant files up to date and deleting obsolete files
very problematic. Moreover, because of the extra steps
needed to generate these intermediate files, and the
iterations required to produce a production ready M&G
code file, this traditional design-to-manufacturing process
increases the time and costs of creating a physical model
from a conceptual design.

With the increasing use of these complex surfaces to
describe CAD models, it is difficult, if not impossible, to
remain in the traditional M&G point/line/arc paradigm of
past decades. Traditional approaches to machining
curved surfaces have always involved increasing the
number of M&G code points (line segments) that the
cutter moves through, or fitting the point data with an
increasing number of circular arcs. These forms of tool
path data representations are inefficient and inaccurate.
We, along with other researchers and a few control
manufacturers, believe it is desirable to utilize derived
NURBS curves for tool path description. Several
techniques for Bezier curve-based tool path generation
exist currently [4], [8] and new techniques are constantly
being developed [1], [17]. To accommodate these
needs, the capability to accept free-form curves has
recently been added to the M&G standard. However, the
lack of associativity between ASCII M&G code tool paths
and associative geometric tool path in the CAD model
remains a barrier to design creativity.

 92

This paper presents a revolutionary new paradigm for
rapid prototyping NC and CNC control by directly
connecting a CAD system (Alias) with a software based
DMAC (Direct Machining And Control) controller.
DMAC technology completely eliminates all intermediate
files between the CAD model and the CNC controller by
directly processing the geometric tool path entities that
are sent from the CAD/CAM system to the motion buffer
of the controller [5], [12]. For example, NURBS control
points and knot vectors defining the tool paths are sent,
not a tessellated approximation of the curve.

Direct machining maintains the efficiency and accuracy
improvements seen in NURBS tool path representation,
and also retains associativity between the CAD model
and the tool paths driving the CNC machine tool. Only
one file exists, the master CAD model, which contains
the embedded associative process-planned tool paths.
This model file is opened by the controller, parsed for the
tool path, and then closed when the milling is complete.

2. BACKGROUND

2.1 Related Research

In recent years, efforts have been made, by both
industrial and academic researchers, to invent a better
design-to-manufacturing process. The goal in machining
has been to overcome the limitations existing in current
two-, three-, and multi-axis milling processes.

Related research efforts can be found in the principles of
open architecture control (OAC) and manufacturing.
Three active industrial consortiums, the OSE (Open
System Environment for controller) of Japan, the
OSACA (Open System Architecture for Controls within
Automation systems) of Europe, and the OMAC (Open
Modular Architecture Controllers) consortium of the
U.S., define and promote the use of open architecture
controllers to replace the old closed CNC systems. In
academia, several research projects have been
undertaken in an attempt to open CNC control. Wright
et al. [14, 15] proposed the MOSAIC (Machine Tool
Open System Advanced Intelligent Controller)
architecture in 1988. Koren et al. [7] in Engineering
Research Center for Reconfigurable Machining System at
the University of Michigan proposed an open CNC
system, named UMOAC. Yellowley et al. [10] at the
University of British Columbia proposed and developed
a UBC open-architecture controller.

Despite all these efforts by industry and research
institutes, to this day there is no standard interface that is
agreed on by all machine manufacturers, control
vendors, software developers, and machine tool end
users. In addition, the lack of associativity between CAD

model, CAM system, and CNC machine still remains as
the greatest limitation in these architectures.

With open-architecture control and manufacturing as a
basis, a more recent technology called STEP-NC has
been proposed and is being developed for solving the
ongoing design-to-manufacturing CNC problems. STEP-
NC is a new process description language that provides
an improved interface between the CAD model, CAM
system, and CNC controller [9, 13]. This technology
attempts to create associativity between a CAD model
and its tool paths. However, this technology is only a link
between CAM and CNC—not a link between CAD and
CNC. STEP-NC requires that a CAD part be translated
from its native format (e.g. UG part, Alias wire, etc.) to
the STEP format. While this format is purported to be
universal and independent, it lacks the ability to retain
the original design intent and method within the part file.
As a result, modifying the part requires a new STEP file
to be created, along with any tool path operations and
other STEP-NC related work.

2.2 Part Printer Paradigm

The method we are proposing avoids this problem by
connecting any CAD/CAM application directly to a mill
through a software layer that essentially acts as a
“driver”. This direct connection eliminates the need for
any files outside of the CAD/CAM package’s native
format since the data can be transmitted directly to
whatever machine tool is currently connected. This
concept is similar to how printers work, all word
processing software connects to a standard printer
interface, and all printers provide that standard interface.
The direct machining concept acts in the same manner.
All CAD/CAM packages connect to a standard software
interface, and all machine tools accept that interface
through the DMAC controller.

The speed and ease of use provided by the direct
machining concept allows machine tools to be used as
rapid prototyping machines. Many conventional rapid
prototyping machines are limited by what materials they
can use, what size of part they can produce, and their
high cost. Directly controlled machine tools have a much
greater range of sizes, can shape more material types,
and cost significantly less [6].

A proof of concept for this system was implemented at
GM’s design center in Warren, MI to test its compatibility
with Alias|AutoStudio surface development software.
The method and results of this proof-of-concept are
described in the remainder of this article.

 93

2.3 Direct Machining and Control System

Prior to this project, research work has [2], [3], [5], [12]
connected the DMAC controller directly with off-the-shelf
CAD/CAM software. The general architecture to connect
the DMAC controller with a commercial CAD/CAM
package is shown in Fig. 1. The idea of this general
architecture is to take full advantage of the 3D modeling
and tool path planning capabilities of CAD/CAM
packages and to utilize DMAC open-architecture
controller to process the derived NURBS tool path
directly. For example, Unigraphics has advanced 3D
modeling and tool path planning capabilities. Any
process plan developed in UG can be processed directly
by the DMAC controller.

Fig. 1. Illustration of the flexible DMAC architecture.

This paper addresses the beginning of a project aimed at
implementing generative tool path planning and direct
machining capabilities within a 3D sculpting package,
such as Alias|AutoStudio.

3. PROPOSED ALIAS/DMAC ARCHITECTURE

A diagram of the control structure used for a three-axis
rapid prototyping CNC mill is shown in Fig. 2. The
hardware and software systems are designed in a
hierarchical and modular form. This design strategy
makes the whole system highly flexible and easy to
upgrade.

The hardware system consists of a PC with dual Pentium
processors. The non real-time Windows CAD/CAM
application runs on one processor and all real-time
applications, such as motion control and servo loop
control, run on the second processor.

Sitting between the software based DMAC controller and
the physical digital drives and I/O is a software layer
called the Digital Control Interface (DCI). Evans et al.
discuss the DCI [5]. Currently an ISA-bus card that
connects to proprietary fiber optic lines forms a network
that is used to communicate between the software
controller and the digital drives. A commercial version
uses an IEEE 1394 network. The modular structure of
the system makes it easy to replace the existing ISA card
and fiber optic lines with any new PC communication
cards and protocols, such as PCI based fiber-optics, IEEE
Fire wire 1394, or USB2.

Fig. 2. Overall architecture.

 94

Each distributed networked drive consists of a digital
motor interface, an amplifier, and a motor. Each drive is
connected to the ISA-bus card through two fiber optics
lines. The digital motor interface receives torque set
points from the software controller through one fiber
optic line. It converts the torque set point into an analog
signal, which is then amplified to drive the motor. Actual
torque, position, velocity, and acceleration signals are
sensed and put into digital form to be relayed back to the
software controller through the other fiber optic line.

All of the control software is written in object oriented
C++ code. The software system is divided into three
layers - CAD/CAM application, Motion Planner, and
Servo Controller.

The user interface or top layer of our DMAC system is a
customized commercial CAD/CAM application. In this
example extensions are made to Alias, a popular system
used by aesthetic designers, though the authors have
also successfully implemented DMAC in Unigraphics and
ParaSolids. All customized milling functionalities were
written as plug-ins to Alias. As shown in Fig. 2, the plug-
ins consisted primarily of Tool Path Generation
functionality, Tool Path Export, Animation, and Direct
Machining. Since each Plug-in is a separate software
module, the software developers or the end users can
replace any of the Plug-ins without changing other
software modules. All modifications of Alias were
planned and implemented so that it would run
independently, on a single Pentium processor.

With tool path data correctly prepared in Alias, by the
Direct Machining Plug-in, the real-time system (or
second processor) gains access via the shared memory
queue of the Direct Machine Interface layer. The shared
memory queue acts as a bi-directional link between the
two CPUs. It also allows a near real-time simulation of
the actual milling process back on the Windows (or Alias)
CPU.

Motion commands and settings (coolant on/off, feed
rate, spindle speed, etc.) are generated in Direct
Machining Plug-in and are packed into motion or I/O
data. This data will then be passed to the Motion Planner
through Direct Machine Interface. Red et al. discuss the
DMAC Motion Planner architecture [12]. The Motion
Planner is composed of a trajectory generator and a
kinematics object. An adaptive optimal trajectory
generator [11] is used in our architecture to generate
position, speed, acceleration, and jerk values for each
trajectory step, based on a distance parameter (such as
total distance along a path). All joints position, speed,
and acceleration can be found by calling an inverse
kinematics routine. To drive a motor, each joint position,

speed, and acceleration value must first be mapped into
actuator space and then converted into a torque set
point. This torque set point is fed into the Servo
Controller.

The Servo Controller [5] receives the torque set point
from the Motion Planner and performs the servo control
functions for each actuator in the system. Currently, a
Proportional-Integral-Derivative (PID) control law is
implemented on our Servo Controller. Because of the
flexibility and modularity of our system architecture, any
new servo control laws can be easily implemented to
replace the existing PID control.

4. TOOL PATH GENERATION

Many possible methods exist for implementing tool path
generation within Alias|AutoStudio. However,
determining which method would be most suitable in a
particular business case is beyond the scope of this
project. It was determined that basic tool path generation
capabilities would be implemented using custom code,
developed within an Alias plug-in specifically for this
project.

Fig. 3. Light lines indicate iso-parms. Cartesian spacing is much
greater on left than on right.

Two routes exist for developing the custom code within
Alias. The first option is to utilize as many of the
available Alias curve and surface tools as possible,
followed by customization within the Alias API to add
tool planning and generation. The other option is to pass
the Alias surface description to a separate (existing) CAM
algorithm that performs the necessary tool path planning
and generation, which in turn is displayed within Alias.
This project was specific to Alias, so we chose the first
option to take advantage of whatever surface tools Alias
could offer to help speed development times. The
authors are presently investigating the most appropriate
third-party CAM tool to integrate.

4.1 Surface Contact Curve Generation

Two techniques for tool path generation were
implemented: ISO-Curve Cut and Planar Cut. The ISO-

 95

Curve cutting method develops tool paths by following
lines of constant parametric value (iso-parms) along the
surface. For example, an ISO-curve could be created on
a parametric surface defined in U and V by holding U
constant at some value, while allowing V to vary from its
minimum to maximum value (see Fig. 3).

A surface S(u, v) in Alias is defined in NURBS form by
Eqn. (1).

jjmm

j

m

j

iinn

i

n

i

n

i

m

j

m

j

n

iij

n

i

m

j

m

j

n

iijij

n

i

m

j

m

j

n

iij

n

i

m

j

m

j

n

iijij

n

i

m

j

m

j

n

iij

n

i

m

j

m

j

n

iijij

vvvB

uuuB

vBuBw

vBuBZw
vuZ

vBuBw

vBuBYw
vuY

vBuBw

vBuBXw
vuX

−

−

= =

= =

= =

= =

= =

= =

−=

−=

=

=

=

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

)1)(()(

)1)(()(

)()(

)()(
),(

)()(

)()(
),(

)()(

)()(
),(

0 0

0 0

0 0

0 0

0 0

0 0

 (1)

As a simple method of tool path generation, iso-curves
can be created by specifying the number of lines desired
across the surface, and the parameter direction in which
to travel (e.g. U or V). This technique suffers from over-
or under-machining on surfaces where the correlation
between parametric value and Cartesian position is not
constant. Fig. 3 illustrates a condition where the
Cartesian spacing of lines defined by constant parametric
values is too large on one end, and too small on another.

Fig. 4. Relationship of tool tip to surface contact point.

Another tool path generation technique, called the
Planar Cut method, avoids this problem by drawing
planes through the surface and using the intersection of
each plane to calculate a tool path. This method allows
the user to specify a constant step distance between

consecutive tool paths, but it suffers from scallop heights
that increase as the surface normal nears the
perpendicular of the tool axis.

4.2 Offset Tool Paths

Tool paths are defined as the locations of the tool tip as
the cutter sweeps across the surface. Eqn. (2) is used to
calculate the tool tip location of a ball end mill making
point contact with the design surface (see Fig. 4):

ttstst arnrpp ˆˆ −+=
vv

 (2)

where

tp
v

 = position of the ball end tool tip,

sp
v

 = position of point contact on the surface,

tr = radius of tool,

sn̂ = surface unit normal at point sp
v

,

tâ = tool axis unit normal

The entire tool path generation process can be
completed by applying Eqn. (2) in three main steps:

1. Create curves on the surface.
2. Offset these curves by a distance equal to the tool

radius along the surface normals at these curves
locations.

3. Move the offset curves down the tool axis by a
distance equal to the tool radius.

The first step for creating curves on a surface is using one
of the two methods described in above. These curves
define the path of contact that the tool will follow along
the surface.

Fig. 5. Tool path connecting types: (a) Box cut, (b) Lace cut.

Once the curves on a surface are created, they must be
offset from the surface by a distance equal to the tool
radius along the normal to the surface. The normal is a
function of position along the surface, so the offset curve
must be created by fitting a new NURBS through a series
of offset points. The process of offsetting is not exact and
suffers a slight loss of accuracy. Determining the optimal

 96

number of interpolation points to use is a separate issue
and is not discussed in this article.

These steps will create a series of tool paths and store
them within Alias|AutoStudio. The tool paths must be
connected to form a continuous series that describe the
entire tool operation. This is done by adding a retract
move, up from the end of one path, over the start of the
next, and then down to begin the next cut. The
connected paths can be switched to create lace style tool
paths, or box style tool paths (see Fig. 5).

4.3 History

A feature within Alias|AutoStudio called “history” allows
users to maintain associativity between an object and its
construction elements. This way, if one or more of an
object’s construction elements are modified, it will
update to match the new geometry. Alias|AutoStudio
also makes this capability available to plug-in
developers. Since our group of tool paths is clearly
associated with a surface, the ability to use construction
history for the generated tool paths was used for this
project. As a result, whenever a surface that had been
used to generate tool paths was modified in any way, the
associated tool paths were regenerated.

4.4 Layers and Organizing

The completed tool paths are added to the DAG
(Directed Acrylic Graph) under a single group node. A
DAG node is simply an object within the structured
hierarchy defined with Alias|AutoStudio. This allowed all
the paths to be handled as a single object in the user
interface. They are also created on a new layer that is
separate from the rest of the model. This way the user
can easily hide the tool paths if they are causing undue
visual clutter.

5. ANIMATION

To make the machining environment user friendly,
capabilities for checking the validity of a machining
sequence was required. An important step toward this
capability is animating the generated tool paths.

Fig. 7. Dialog used to specify tool properties

Since this project focuses on keeping the master part in
its native format, it was appropriate to perform the tool
path animation within the native program as well.
Fortunately, Alias|AutoStudio contains advanced
animation capabilities.

The first step toward animation of the tool path is to
create geometry for the actual tool (Fig. 6). The user is
asked to enter the tool size, and specify whether the tool
is flat or ball ended (Fig. 7). The new geometry is then
stored in a DAG node.

Fig. 6. Animated ball end mill.

In Alias|AutoStudio, animation is accomplished by
specifying the location of a DAG node in reference to
time. Time is defined by specifying the number of image
frames to play back per second. Each frame that
contains position information for a particular DAG node
is called a key frame. Animation is displayed by defining
key frames for position information, such as start, end,
and a few intermediate positions along a path.
Alias|AutoStudio interpolates the position between each
key frame for all other frames. The shape of the
parameter value curve as it is interpolated between key
frames can be defined by user specified shape
characteristics such as step, smooth, linear, etc.

Fig. 8. Key frames define a parameter action. Parameter actions
are associated with an animatable parameter such as x-position
through a channel.

 97

A series of key frames is called a parameter action, and
defines a parameter value as a function of frame
number. Each action is not associated with any specific
parameter until it is stored in a channel. The channel
associates a parameter action with an animation
parameter value, such as position (Fig. 8).

For our animation, three parameter actions were
defined—one each for the x, y, and z positions of the
tool tip. Key frames were defined for all three position
parameters by interpolating along each tool path in the
selected tool path group. The parameter actions were
then stored in channels and associated with the x, y, and
z positions of the cutter tool DAG node.

Once these steps are completed, the user is able to view
the animation by clicking play on the animation tool bar.
The tool then follows the tool paths using the animation
engine built into Alias|AutoStudio.

Future improvements of this test code will add the ability
to detect collisions and surface gouging. Methods will
also be developed to synchronize the graphical playback
with the actual machining operation. This will allow the
screen to mirror what is actually happening in the
machine tool’s work area.

With these additions, an operator will be able to
completely test an operation for validity before
transferring the master model and tool path to an actual
machine tool for milling.

6. DIRECT MACHINING

Once tool paths are generated natively in Alias, rather
than being passed to the controller as thousands of M&G
GOTO points stored in a file, they are sent in their native
mathematical form to the DMAC controller for direct
machining.

6.1 NURBS-Based Tool Path Encapsulation

As explained in section 4, a surface S(u, v) in Alias is
defined in NURBS form. As a result, tool paths created
from these surfaces are also defined in NURBS form. For
this project, all the tool paths are extracted from Alias as
NURBS and encapsulated into NURBS tool path data
structures for direct machining.

Mathematically, a NURBS tool path can be fully defined
with the following parameters: NURBS degree, number
of knots, number of control points, knot vector, weight
and control points. A NURBS tool path is shown in Fig.
9.

The data structure of the NURBS tool path and the real
NURBS data extracted from Alias is also shown in Fig. 9.

The displayed NURBS tool path contains a single piece
of B-spline curve with the control points P0, P1, P2, and
P3 and within the knot interval [0.000 1.000]. For any
NURBS tool paths, the NURBS data structure will
contain all the necessary parameters for the controller to
correctly interpret the derived tool paths. A StartFrame
and EndFrame are also defined in the NURBSToolPath
data structure. These two frames are used by the DMAC
controller to correctly interpolate the NURBS tool paths
[16]. For a three-axis mill, as used in this project, the tool
will remain in a fixed orientation as it moves through a
NURBS tool path. But the DMAC controller has the
capability to correctly generate an intermediate
orientation frame by interpolating between the start and
end frames of the curves as a function of the curve-
length. So this research work can easily be modified to fit
for a five-axis machining system.

A shared memory queue is created inside the Direct
Machine Interface at machine start up. The Alias Direct
Machine plug-in will push the NURBS tool paths data
structure into this shared memory queue. If the memory
queue is full, the Direct Machine plug-in will be blocked
until a slot is freed. The DMAC controller will pull these
NURBS tool paths data out of the shared memory queue
at each trajectory cycle and interpolate the NURBS tool
paths correctly with all the necessary parameters
extracted from the NURBS data structure.

Fig. 9. NURBS-based tool path description.

The ability to pass tool path information directly to the
controller from the master part file is an advantageous
feature of direct machining that is not found in any file
based process description such as STEP-NC. Direct

 98

machining not only eliminates post-processing and its
related errors, is also enables the master part paradigm
by forcing tool path changes and revisions to be saved
within the driving part file. Since all kinematics are
handled within the controller, and the interface to the
DMAC controller is the same regardless of which
machine is being controlled, it is possible to run one
process on various machines without necessitating
process plan modifications. Direct machining takes
advantage of modern computing power to simplify every
stage of the machining process.

6.2 Direct Machining Execution

The execution of the direct machining application is
handled by customized user interfaces embedded inside
Alias. Once the tool paths are generated, the native Alias
tool paths can be passed down to DMAC controller for
direct machining. All the direct machining applications
are activated in Direct Machining Plug-in.

The Direct Machining application software is organized
so that a main function will call different sub-functions,
which will set all necessary parameters for tool paths
data transmission and direct machining execution.

Fig. 10. Direct machining dialog box.

Since the interface between the users and the machine
tool is the CAD/CAM system—in this case Alias—some
customized dialog boxes must be created in Alias to
provide interfaces for the users to control the CNC
machine.

Fig. 11. Example surface used to simulate production data.

Fig. 10 shows the dialog box that is activated from a
customized direct machining menu, which is created and
inserted inside Alias GUI. This dialog box is the manager
of the direct machining application. All dialog boxes that
are used to set up the CNC machine and to execute the
direct machining commands are launched from this
dialog box.

To properly mill a part directly out of Alias, the cutter
tool first has to be moved to the position where X, Y,
and Z are set to zero in the reference frame defined by
Alias. Fig. 12 shows a jog dialog box, where the users
may jog the cutter tool to any positions in relation to the
coordinate system of a 3-axis mill.

Fig. 12. Jog dialog box.

The slider provided in this dialog box is used to set the
distance (in mm) that the cutter tool will be jogged. If the
slider has been set to 5 and the “Jog X+” button is
pressed once, the cutter tool will be jogged 5 mm in the
positive X direction. If the “To Reference Point” button is
pressed, the cutter tool will be moved back to the zero
position in the Alias reference frame.

The machining process is executed using the dialog box
shown in Fig. 10. The direct machining process can be
run under two modes. If the “Continuous” button is
pressed, a flow of machining process information is
passed to DMAC controller without interruption. If the
“Single Step” button is pressed, a single move is sent
each time.

7. EXPERIMENTAL RESULTS

An experiment was arranged using a 3D CAD data
model of a car headlight, similar to data that would
typically be used in production at GM (see Fig. 11). The
headlight was used because it consists of only one free-
form surface, but still demonstrates a fair amount of
curvature and shape. Tool paths for the surface were

 99

generated using the test plug-ins and then sent to a 3-
axis table mill (see Fig. 13) that was directly connected,
through fiber optic lines, to a computer. The computer
runs dual Pentium II processors at 400 MHz. The none
real-time Alias application runs on one processor and all
real-time applications run on the second processor. The
headlight surface was machined directly out of Alias as
shown in Fig. 13. The process was also completed using
a conventional Tarus 3-axis mill currently utilized at GM.
The resulting decrease in production time does not come
from a reduction in actual machining time, but from a
decrease in time required for tool path generation and
file handling. A comparison of the time line for the direct
process and the typical process is shown in Tab. 1.

 The proposed rapid prototyping CNC system shows the
following advantages over the current CNC process
creation method:

1. Native part file contains tool path geometry, so no
disassociation between tool paths and part ever
occurs.

2. Multiple file type conversions are eliminated
reducing production time and geometry tessellation
error.

3. Simplified machine tool control places rapid
prototyping capability in the hands of design
software users.

4. A single 3D CAD model enables design and
manufacturing to be seamlessly integrated into a
single database—facilitate “art-to-part” process—
and gives the designers a significant power to realize
their visions on new products concepts.

Method Direct CNC Typical Method

 Description Time Description Time
Create Part n/a Create Part n/a

 Convert to IGES 1 min.

 Send to Tool Path
operator

5 min.

Generate Tool
Paths

n/a Generate Tool
Paths

n/a

 Convert to M&G
code

2 min.

 Send to machine
operator

5 min.

 Load file on CNC
machine

5 min.

Steps

Run program n/a Run program n/a

Totals 3 0 min. 8 18 min.

Tab. 1. Comparison of process time for direct CNC method and
typical method

8. CONCLUSIONS

This paper describes the use of a CNC mill as a rapid
prototyping machine when controlled by a DMAC
controller being driven directly from Alias|AutoStudio.
The experiment shows that the process of connecting the
software packages is relatively simple to accomplish. It
also demonstrates that significantly more production
power can be given to current designers as well as other
users of CAD packages such as Alias|AutoStudio.

Several areas of this work will require further research
and development before a useable product is truly
available. Foremost among these areas is the generation
of tool paths. Further research will be needed to decide
whether to use a currently available set of software
functions to perform the tool path generation, or to
develop a new suite of functions that are perhaps
generative and easy to use for this implementation.
Another area of further development is the connection to
the DMAC controller. Ties to the complete machining
and animation functionality available from the DMAC
controller have not yet been made. While this project is
not yet complete, its promise for future capability is very
exciting.

Fig. 13. Three-axis direct CNC.

9. FUTURE DIRECTIONS

Several research projects are currently being undertaken
at BYU to invent the next generation of machine tool
controllers. The goal of these research projects is to
develop a new class of algorithms in order to fully
implement direct and dynamic mechanism control by a
CAD/CAM application. Among these algorithms, curve
fitting of dynamic tool path motion and other control
data into n-dimensional-curves is now in development,
and will allow the true implementation of curvature-
matched machining on five-axis mills.

CMM control and in-cycle-inspection is also currently in
development. CMM control can lead to automatic error
correction and dynamic process plan updating. New
methods for dynamically reconfiguring machine tool

 100

controllers based on the changing process requirements
are also under development.

Under this new scheme, machine tools are treated like
devices connected directly to the controller. Each
machine tool has its own device driver that can be
loaded at run-time. If the functionalities of a machine
tool need to be enhanced or updated, a new device
driver can be developed by the machine tool
manufacturer and delivered to the end user. Without
changing the existing controller, the end user can obtain
the enhanced or updated functionalities provided by the
machine tool manufacturer.

In summary, although the DMAC paradigm is still under
development, it already demonstrates promising and
exciting capabilities. With further development and
enhancement, DMAC will provide new opportunities to
truly realize the seamless design-to-manufacturing
integration by removing many hurdles seen in today’s
machine tool controllers.

10. ACKNOWLEDGEMENTS

Special thanks for work effort, funding, and technical
support go to: The Utah State Centers of Excellence,
General Motors, Ford Motor Company, Alias,
Unigraphics Solutions, Pratt & Whitney, and Direct
Controls, Inc.

Note: Patents are pending on this research. For more

information please contact the authors.

11. REFERENCES

[1] Austin, S., Jerard, R., Drysdale, R., Comparison of
discretization algorithms for NURBS surfaces with
application to numerically controlled machining,
Computer-Aided Design, Vol. 29, 1997, pp 71-83.

[2] Bassett, C. P., Jensen, C. G., Bosley, J. E., Luo, Y.,
Red, W. E., Evans, M. S., Direct Machining
Architectures Using CAD-CAM Generative Methods,
Proceedings of the IASTED International

Conference on Control and Applications, 2000, pp
287-295.

[3] Bassett, C. P., Jensen, C. G., Red, W. E., Evans, M.
S., Direct Machining: a New Paradigm for
Machining Data Transfer, Proceedings of

DETC2000/DFM-14298: ASME 5th Design for

Manufacturing Conference, September 10-13,
Baltimore, Maryland, 2000.

[4] Ding, S., Mannan, M., Poo, A., Yang, D., Han, Z.,
Adaptive iso-planar tool path generation for
machining of free-form surfaces. Computer-Aided

Design, Vol. 35, 2003, pp 141-153.
[5] Evans, M. S., Red, W. E., Jensen, C. G., McBride,

C., Ghimire, G., Open Architecture for Servo

Control using a Digital Control Interface,
Proceedings of the IASTED International

Conference on Control and Application, 2000, pp
339-344.

[6] Huang, H., Lin, G., Rapid and flexible prototyping
through a dual-robot workcell, Robotics and

Computer Integrated Manufacturing, Vol. 19, 2003,
pp 263-272.

[7] Koren, Y., Pasek, Z. J., Ulsoy, A. G., Benchetrit, U.,
Real-Time Open Control Architectures and System
Performance, Annals of the CIRP, Vol. 45, 1996, pp
377-380.

[8] Lartigue, C., Thiebaut, F., Maekawa, T., CNC tool
path in terms of B-spline curves, Computer-Aided

Design, Vol. 33, 2001, pp 307-319.
[9] Newman, S. T., Allen, R. D., Rosso, R. S. U. Jr.,

CAD/CAM solutions for STEP Compliant CNC
Manufacture, Proceedings of the 1st CIRP(UK)
Seminar on Digital Enterprise Technology, 2002, pp
123-128.

[10] Oldknow, K. D., Yellowley, I., Design,
Implementation, and Validation of a System for the
Dynamic Reconfiguration of Open Architecture
Machine Tool Controls, International Journal of
Machine Tools & Manufacture, Vol. 41, 2001, pp
795-808.

[11] Red, E., A dynamic optimal trajectory generator for
Cartesian Path following. Robotica, Vol. 18, 2000
pp 451-458.

[12] Red, E., Evans, M., Jensen, G., Bosley, J., Luo, Y.,
Architecture for Motion Planning and Trajectory
Control of a Direct Machining Application,
Proceedings of the IASTED International

Conference on Control and Applications, 2000, pp
484-489.

[13] Suh, S., Chung, D., Lee, B., Cho, J., Cheon, S.,
Hong, H., Lee, H., Developing an Integrated STEP-
Compliant CNC Prototype, Journal of

Manufacturing Systems, Vol. 21, 2002, pp 350-362.
[14] Wright, P., Schofield, S., Open Architecture

Controllers for Machine Tools, Part 1: Design
Principles, Journal of Manufacturing Science and

Engineering, Vol. 120, 1998, pp 417-424.
[15] Wright, P., Wang, F. C., Open Architecture

Controllers for Machine Tools, Part 2: A Real Time
Quintic Spline Interpolator, Journal of

Manufacturing Science and Engineering, Vol. 120,
1998, pp 425-432.

[16] Yang, Z., Red, E., On-line Cartesian trajectory
control of mechanisms along complex curves,
Robotica, Vol. 15, 1997, pp 263-274.

[17] Yoshimoto, F., Harada, T., Yoshimoto, Y., Data
fitting with a spline using a real-coded genetic
algorithm, Computer-Aided Design, Vol. 35, 2003,
pp 751-760.

