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ABSTRACT 

The rapid physical realization of a product from a CAD model prior to full scale manufacturing 
presents a challenging task for industrial companies, as well as academic researchers. This paper 
presents a rapid and flexible prototyping system designed to directly connect a CAD system (Alias) 
with a software based DMAC (Direct Machining And Control) controller. The overall architecture is 
presented and the tool path planning, animation, and direct machining under Alias are explained. 
The implementation of the proposed prototyping system is realized on a three-axis mill. An 
example of milling a real surface through this direct CNC system is presented and conclusions are 
drawn. 

Keywords: free-form surface, rapid prototyping, direct machining, path planning, animation.  

1. INTRODUCTION 

In automotive, aerospace, shipbuilding, die and mold 
industries, an original design concept usually begins as a 
2D sketch created by industrial designers. This 2D sketch 
is then transformed into a 3D CAD model through one 
of two processes. Ideally, the designer will work with an 
engineer to create a 3D CAD model directly from the 2D 
sketches. An alternative is to create a physical model, 
often sculptured from clay by a skilled artisan or sculptor, 
from which a 3D CAD model is obtained by some form 
of 3D scanning such as white light imaging. The 3D CAD 
surfaces are usually modeled as parametric forms that 
use the well defined mathematics of B-spline, Bezier, and 
NURBS entities. 

To mill out parametric surface, a 3D CAD model is 
usually translated into some intermediate file format, 
such as IGES, and is then read into a CAM system. After 
the CAD model is translated into the CAM system, tool 
paths can be generated and post processed into CNC 
codes (M&G codes). A physical model can then be 
milled out on a CNC machine using M&G codes. This 
traditional design-to-manufacturing process is time 
consuming and error prone. 

A major limitation with current CNC manufacturing 
methods is the form of data transfer between the driving 
CAD model and the machine tool controller—M&G 
code [3]. Traditionally, M&G code does not support the 
use of free-form curves such as NURBS [2]. In addition, 
there is no association between the tool path data and 
the master CAD model. This means that any 
modification to the original CAD model requires a 

regeneration of all subsequent intermediate files as well 
as the M&G codes. A modification of M&G codes on the 
shop floor can never be reflected back to the original 
CAD model. This flow of data makes the task of keeping 
all relevant files up to date and deleting obsolete files 
very problematic. Moreover, because of the extra steps 
needed to generate these intermediate files, and the 
iterations required to produce a production ready M&G 
code file, this traditional design-to-manufacturing process 
increases the time and costs of creating a physical model 
from a conceptual design. 

With the increasing use of these complex surfaces to 
describe CAD models, it is difficult, if not impossible, to 
remain in the traditional M&G point/line/arc paradigm of 
past decades. Traditional approaches to machining 
curved surfaces have always involved increasing the 
number of M&G code points (line segments) that the 
cutter moves through, or fitting the point data with an 
increasing number of circular arcs.  These forms of tool 
path data representations are inefficient and inaccurate. 
We, along with other researchers and a few control 
manufacturers, believe it is desirable to utilize derived 
NURBS curves for tool path description. Several 
techniques for Bezier curve-based tool path generation 
exist currently [4], [8] and new techniques are constantly 
being developed [1], [17]. To accommodate these 
needs, the capability to accept free-form curves has 
recently been added to the M&G standard. However, the 
lack of associativity between ASCII M&G code tool paths 
and associative geometric tool path in the CAD model 
remains a barrier to design creativity. 
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This paper presents a revolutionary new paradigm for 
rapid prototyping NC and CNC control by directly 
connecting a CAD system (Alias) with a software based 
DMAC (Direct Machining And Control) controller. 
DMAC technology completely eliminates all intermediate 
files between the CAD model and the CNC controller by 
directly processing the geometric tool path entities that 
are sent from the CAD/CAM system to the motion buffer 
of the controller [5], [12]. For example, NURBS control 
points and knot vectors defining the tool paths are sent, 
not a tessellated approximation of the curve.  

Direct machining maintains the efficiency and accuracy 
improvements seen in NURBS tool path representation, 
and also retains associativity between the CAD model 
and the tool paths driving the CNC machine tool. Only 
one file exists, the master CAD model, which contains 
the embedded associative process-planned tool paths. 
This model file is opened by the controller, parsed for the 
tool path, and then closed when the milling is complete.  

2. BACKGROUND 

2.1 Related Research 

In recent years, efforts have been made, by both 
industrial and academic researchers, to invent a better 
design-to-manufacturing process. The goal in machining 
has been to overcome the limitations existing in current 
two-, three-, and multi-axis milling processes. 

Related research efforts can be found in the principles of 
open architecture control (OAC) and manufacturing. 
Three active industrial consortiums, the OSE (Open 
System Environment for controller) of Japan, the 
OSACA (Open System Architecture for Controls within 
Automation systems) of Europe, and the OMAC (Open 
Modular Architecture Controllers) consortium of the 
U.S., define and promote the use of open architecture 
controllers to replace the old closed CNC systems. In 
academia, several research projects have been 
undertaken in an attempt to open CNC control. Wright 
et al. [14, 15] proposed the MOSAIC (Machine Tool 
Open System Advanced Intelligent Controller) 
architecture in 1988. Koren et al. [7] in Engineering 
Research Center for Reconfigurable Machining System at 
the University of Michigan proposed an open CNC 
system, named UMOAC. Yellowley et al. [10] at the 
University of British Columbia proposed and developed 
a UBC open-architecture controller. 

Despite all these efforts by industry and research 
institutes, to this day there is no standard interface that is 
agreed on by all machine manufacturers, control 
vendors, software developers, and machine tool end 
users. In addition, the lack of associativity between CAD 

model, CAM system, and CNC machine still remains as 
the greatest limitation in these architectures. 

With open-architecture control and manufacturing as a 
basis, a more recent technology called STEP-NC has 
been proposed and is being developed for solving the 
ongoing design-to-manufacturing CNC problems. STEP-
NC is a new process description language that provides 
an improved interface between the CAD model, CAM 
system, and CNC controller [9, 13]. This technology 
attempts to create associativity between a CAD model 
and its tool paths. However, this technology is only a link 
between CAM and CNC—not a link between CAD and 
CNC. STEP-NC requires that a CAD part be translated 
from its native format (e.g. UG part, Alias wire, etc.) to 
the STEP format. While this format is purported to be 
universal and independent, it lacks the ability to retain 
the original design intent and method within the part file. 
As a result, modifying the part requires a new STEP file 
to be created, along with any tool path operations and 
other STEP-NC related work. 

2.2 Part Printer Paradigm 

The method we are proposing avoids this problem by 
connecting any CAD/CAM application directly to a mill 
through a software layer that essentially acts as a 
“driver”. This direct connection eliminates the need for 
any files outside of the CAD/CAM package’s native 
format since the data can be transmitted directly to 
whatever machine tool is currently connected. This 
concept is similar to how printers work, all word 
processing software connects to a standard printer 
interface, and all printers provide that standard interface. 
The direct machining concept acts in the same manner. 
All CAD/CAM packages connect to a standard software 
interface, and all machine tools accept that interface 
through the DMAC controller. 

The speed and ease of use provided by the direct 
machining concept allows machine tools to be used as 
rapid prototyping machines. Many conventional rapid 
prototyping machines are limited by what materials they 
can use, what size of part they can produce, and their 
high cost. Directly controlled machine tools have a much 
greater range of sizes, can shape more material types, 
and cost significantly less [6]. 

A proof of concept for this system was implemented at 
GM’s design center in Warren, MI to test its compatibility 
with Alias|AutoStudio surface development software. 
The method and results of this proof-of-concept are 
described in the remainder of this article. 
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2.3 Direct Machining and Control System 

Prior to this project, research work has [2], [3], [5], [12] 
connected the DMAC controller directly with off-the-shelf 
CAD/CAM software. The general architecture to connect 
the DMAC controller with a commercial CAD/CAM 
package is shown in Fig. 1. The idea of this general 
architecture is to take full advantage of the 3D modeling 
and tool path planning capabilities of CAD/CAM 
packages and to utilize DMAC open-architecture 
controller to process the derived NURBS tool path 
directly. For example, Unigraphics has advanced 3D 
modeling and tool path planning capabilities. Any 
process plan developed in UG can be processed directly 
by the DMAC controller. 

 

Fig. 1. Illustration of the flexible DMAC architecture. 

This paper addresses the beginning of a project aimed at 
implementing generative tool path planning and direct 
machining capabilities within a 3D sculpting package, 
such as Alias|AutoStudio. 

3. PROPOSED ALIAS/DMAC ARCHITECTURE 

A diagram of the control structure used for a three-axis 
rapid prototyping CNC mill is shown in Fig. 2. The 
hardware and software systems are designed in a 
hierarchical and modular form. This design strategy 
makes the whole system highly flexible and easy to 
upgrade. 

The hardware system consists of a PC with dual Pentium 
processors.  The non real-time Windows CAD/CAM 
application runs on one processor and all real-time 
applications, such as motion control and servo loop 
control, run on the second processor. 

Sitting between the software based DMAC controller and 
the physical digital drives and I/O is a software layer 
called the Digital Control Interface (DCI). Evans et al. 
discuss the DCI [5]. Currently an ISA-bus card that 
connects to proprietary fiber optic lines forms a network 
that is used to communicate between the software 
controller and the digital drives. A commercial version 
uses an IEEE 1394 network. The modular structure of 
the system makes it easy to replace the existing ISA card 
and fiber optic lines with any new PC communication 
cards and protocols, such as PCI based fiber-optics, IEEE 
Fire wire 1394, or USB2. 

 

Fig. 2. Overall architecture. 
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Each distributed networked drive consists of a digital 
motor interface, an amplifier, and a motor. Each drive is 
connected to the ISA-bus card through two fiber optics 
lines. The digital motor interface receives torque set 
points from the software controller through one fiber 
optic line. It converts the torque set point into an analog 
signal, which is then amplified to drive the motor. Actual 
torque, position, velocity, and acceleration signals are 
sensed and put into digital form to be relayed back to the 
software controller through the other fiber optic line. 

All of the control software is written in object oriented 
C++ code.  The software system is divided into three 
layers - CAD/CAM application, Motion Planner, and 
Servo Controller.  

The user interface or top layer of our DMAC system is a 
customized commercial CAD/CAM application. In this 
example extensions are made to Alias, a popular system 
used by aesthetic designers, though the authors have 
also successfully implemented DMAC in Unigraphics and 
ParaSolids. All customized milling functionalities were 
written as plug-ins to Alias. As shown in Fig. 2, the plug-
ins consisted primarily of Tool Path Generation 
functionality, Tool Path Export, Animation, and Direct 
Machining. Since each Plug-in is a separate software 
module, the software developers or the end users can 
replace any of the Plug-ins without changing other 
software modules. All modifications of Alias were 
planned and implemented so that it would run 
independently, on a single Pentium processor. 

With tool path data correctly prepared in Alias, by the 
Direct Machining Plug-in, the real-time system (or 
second processor) gains access via the shared memory 
queue of the Direct Machine Interface layer.  The shared 
memory queue acts as a bi-directional link between the 
two CPUs. It also allows a near real-time simulation of 
the actual milling process back on the Windows (or Alias) 
CPU.  

Motion commands and settings (coolant on/off, feed 
rate, spindle speed, etc.) are generated in Direct 
Machining Plug-in and are packed into motion or I/O 
data. This data will then be passed to the Motion Planner 
through Direct Machine Interface. Red et al. discuss the 
DMAC Motion Planner architecture [12]. The Motion 
Planner is composed of a trajectory generator and a 
kinematics object. An adaptive optimal trajectory 
generator [11] is used in our architecture to generate 
position, speed, acceleration, and jerk values for each 
trajectory step, based on a distance parameter (such as 
total distance along a path). All joints position, speed, 
and acceleration can be found by calling an inverse 
kinematics routine. To drive a motor, each joint position, 

speed, and acceleration value must first be mapped into 
actuator space and then converted into a torque set 
point. This torque set point is fed into the Servo 
Controller. 

The Servo Controller [5] receives the torque set point 
from the Motion Planner and performs the servo control 
functions for each actuator in the system. Currently, a 
Proportional-Integral-Derivative (PID) control law is 
implemented on our Servo Controller. Because of the 
flexibility and modularity of our system architecture, any 
new servo control laws can be easily implemented to 
replace the existing PID control. 

4. TOOL PATH GENERATION 

Many possible methods exist for implementing tool path 
generation within Alias|AutoStudio. However, 
determining which method would be most suitable in a 
particular business case is beyond the scope of this 
project. It was determined that basic tool path generation 
capabilities would be implemented using custom code, 
developed within an Alias plug-in specifically for this 
project. 

 

Fig. 3. Light lines indicate iso-parms. Cartesian spacing is much 
greater on left than on right. 

Two routes exist for developing the custom code within 
Alias. The first option is to utilize as many of the 
available Alias curve and surface tools as possible, 
followed by customization within the Alias API to add 
tool planning and generation. The other option is to pass 
the Alias surface description to a separate (existing) CAM 
algorithm that performs the necessary tool path planning 
and generation, which in turn is displayed within Alias. 
This project was specific to Alias, so we chose the first 
option to take advantage of whatever surface tools Alias 
could offer to help speed development times. The 
authors are presently investigating the most appropriate 
third-party CAM tool to integrate.  

4.1 Surface Contact Curve Generation 

Two techniques for tool path generation were 
implemented: ISO-Curve Cut and Planar Cut. The ISO-
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Curve cutting method develops tool paths by following 
lines of constant parametric value (iso-parms) along the 
surface. For example, an ISO-curve could be created on 
a parametric surface defined in U and V by holding U 
constant at some value, while allowing V to vary from its 
minimum to maximum value (see Fig. 3). 

A surface S(u, v) in Alias is defined in NURBS form by 
Eqn. (1). 
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As a simple method of tool path generation, iso-curves 
can be created by specifying the number of lines desired 
across the surface, and the parameter direction in which 
to travel (e.g. U or V). This technique suffers from over- 
or under-machining on surfaces where the correlation 
between parametric value and Cartesian position is not 
constant. Fig. 3 illustrates a condition where the 
Cartesian spacing of lines defined by constant parametric 
values is too large on one end, and too small on another. 

 

Fig. 4. Relationship of tool tip to surface contact point. 

Another tool path generation technique, called the 
Planar Cut method, avoids this problem by drawing 
planes through the surface and using the intersection of 
each plane to calculate a tool path. This method allows 
the user to specify a constant step distance between 

consecutive tool paths, but it suffers from scallop heights 
that increase as the surface normal nears the 
perpendicular of the tool axis. 

4.2 Offset Tool Paths 

Tool paths are defined as the locations of the tool tip as 
the cutter sweeps across the surface. Eqn. (2) is used to 
calculate the tool tip location of a ball end mill making 
point contact with the design surface (see Fig. 4): 

ttstst arnrpp ˆˆ −+=
vv

 (2) 

where 

tp
v

 = position of the ball end tool tip, 

sp
v

 = position of point contact on the surface, 

tr  = radius of tool, 

sn̂  = surface unit normal at point sp
v

, 

tâ  = tool axis unit normal  

The entire tool path generation process can be 
completed by applying Eqn. (2) in three main steps: 

1. Create curves on the surface. 
2. Offset these curves by a distance equal to the tool 

radius along the surface normals at these curves 
locations. 

3. Move the offset curves down the tool axis by a 
distance equal to the tool radius. 

The first step for creating curves on a surface is using one 
of the two methods described in above. These curves 
define the path of contact that the tool will follow along 
the surface. 

 

Fig. 5. Tool path connecting types: (a) Box cut, (b) Lace cut. 

Once the curves on a surface are created, they must be 
offset from the surface by a distance equal to the tool 
radius along the normal to the surface. The normal is a 
function of position along the surface, so the offset curve 
must be created by fitting a new NURBS through a series 
of offset points. The process of offsetting is not exact and 
suffers a slight loss of accuracy. Determining the optimal 
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number of interpolation points to use is a separate issue 
and is not discussed in this article. 

These steps will create a series of tool paths and store 
them within Alias|AutoStudio. The tool paths must be 
connected to form a continuous series that describe the 
entire tool operation. This is done by adding a retract 
move, up from the end of one path, over the start of the 
next, and then down to begin the next cut. The 
connected paths can be switched to create lace style tool 
paths, or box style tool paths (see Fig. 5). 

4.3 History 

A feature within Alias|AutoStudio called “history” allows 
users to maintain associativity between an object and its 
construction elements. This way, if one or more of an 
object’s construction elements are modified, it will 
update to match the new geometry. Alias|AutoStudio 
also makes this capability available to plug-in 
developers. Since our group of tool paths is clearly 
associated with a surface, the ability to use construction 
history for the generated tool paths was used for this 
project. As a result, whenever a surface that had been 
used to generate tool paths was modified in any way, the 
associated tool paths were regenerated. 

4.4 Layers and Organizing 

The completed tool paths are added to the DAG 
(Directed Acrylic Graph) under a single group node. A 
DAG node is simply an object within the structured 
hierarchy defined with Alias|AutoStudio. This allowed all 
the paths to be handled as a single object in the user 
interface. They are also created on a new layer that is 
separate from the rest of the model. This way the user 
can easily hide the tool paths if they are causing undue 
visual clutter. 

5. ANIMATION 

To make the machining environment user friendly, 
capabilities for checking the validity of a machining 
sequence was required. An important step toward this 
capability is animating the generated tool paths. 

 

Fig. 7. Dialog used to specify tool properties 

Since this project focuses on keeping the master part in 
its native format, it was appropriate to perform the tool 
path animation within the native program as well. 
Fortunately, Alias|AutoStudio contains advanced 
animation capabilities. 

The first step toward animation of the tool path is to 
create geometry for the actual tool (Fig. 6). The user is 
asked to enter the tool size, and specify whether the tool 
is flat or ball ended (Fig. 7). The new geometry is then 
stored in a DAG node. 

 

Fig. 6. Animated ball end mill. 

In Alias|AutoStudio, animation is accomplished by 
specifying the location of a DAG node in reference to 
time. Time is defined by specifying the number of image 
frames to play back per second. Each frame that 
contains position information for a particular DAG node 
is called a key frame. Animation is displayed by defining 
key frames for position information, such as start, end, 
and a few intermediate positions along a path. 
Alias|AutoStudio interpolates the position between each 
key frame for all other frames. The shape of the 
parameter value curve as it is interpolated between key 
frames can be defined by user specified shape 
characteristics such as step, smooth, linear, etc. 

 

Fig. 8. Key frames define a parameter action. Parameter actions 
are associated with an animatable parameter such as x-position 
through a channel. 
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A series of key frames is called a parameter action, and 
defines a parameter value as a function of frame 
number. Each action is not associated with any specific 
parameter until it is stored in a channel. The channel 
associates a parameter action with an animation 
parameter value, such as position (Fig. 8). 

For our animation, three parameter actions were 
defined—one each for the x, y, and z positions of the 
tool tip. Key frames were defined for all three position 
parameters by interpolating along each tool path in the 
selected tool path group. The parameter actions were 
then stored in channels and associated with the x, y, and 
z positions of the cutter tool DAG node. 

Once these steps are completed, the user is able to view 
the animation by clicking play on the animation tool bar. 
The tool then follows the tool paths using the animation 
engine built into Alias|AutoStudio. 

Future improvements of this test code will add the ability 
to detect collisions and surface gouging.  Methods will 
also be developed to synchronize the graphical playback 
with the actual machining operation. This will allow the 
screen to mirror what is actually happening in the 
machine tool’s work area. 

With these additions, an operator will be able to 
completely test an operation for validity before 
transferring the master model and tool path to an actual 
machine tool for milling. 

6. DIRECT MACHINING 

Once tool paths are generated natively in Alias, rather 
than being passed to the controller as thousands of M&G 
GOTO points stored in a file, they are sent in their native 
mathematical form to the DMAC controller for direct 
machining. 

6.1 NURBS-Based Tool Path Encapsulation 

As explained in section 4, a surface S(u, v) in Alias is 
defined in NURBS form. As a result, tool paths created 
from these surfaces are also defined in NURBS form. For 
this project, all the tool paths are extracted from Alias as 
NURBS and encapsulated into NURBS tool path data 
structures for direct machining. 

Mathematically, a NURBS tool path can be fully defined 
with the following parameters: NURBS degree, number 
of knots, number of control points, knot vector, weight 
and control points. A NURBS tool path is shown in Fig. 
9. 

The data structure of the NURBS tool path and the real 
NURBS data extracted from Alias is also shown in Fig. 9. 

The displayed NURBS tool path contains a single piece 
of B-spline curve with the control points P0, P1, P2, and 
P3 and within the knot interval [0.000 1.000]. For any 
NURBS tool paths, the NURBS data structure will 
contain all the necessary parameters for the controller to 
correctly interpret the derived tool paths. A StartFrame 
and EndFrame are also defined in the NURBSToolPath 
data structure. These two frames are used by the DMAC 
controller to correctly interpolate the NURBS tool paths 
[16]. For a three-axis mill, as used in this project, the tool 
will remain in a fixed orientation as it moves through a 
NURBS tool path. But the DMAC controller has the 
capability to correctly generate an intermediate 
orientation frame by interpolating between the start and 
end frames of the curves as a function of the curve-
length. So this research work can easily be modified to fit 
for a five-axis machining system. 

A shared memory queue is created inside the Direct 
Machine Interface at machine start up. The Alias Direct 
Machine plug-in will push the NURBS tool paths data 
structure into this shared memory queue. If the memory 
queue is full, the Direct Machine plug-in will be blocked 
until a slot is freed. The DMAC controller will pull these 
NURBS tool paths data out of the shared memory queue 
at each trajectory cycle and interpolate the NURBS tool 
paths correctly with all the necessary parameters 
extracted from the NURBS data structure. 

 

Fig. 9. NURBS-based tool path description. 

The ability to pass tool path information directly to the 
controller from the master part file is an advantageous 
feature of direct machining that is not found in any file 
based process description such as STEP-NC. Direct 
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machining not only eliminates post-processing and its 
related errors, is also enables the master part paradigm 
by forcing tool path changes and revisions to be saved 
within the driving part file. Since all kinematics are 
handled within the controller, and the interface to the 
DMAC controller is the same regardless of which 
machine is being controlled, it is possible to run one 
process on various machines without necessitating 
process plan modifications. Direct machining takes 
advantage of modern computing power to simplify every 
stage of the machining process.  

6.2 Direct Machining Execution 

The execution of the direct machining application is 
handled by customized user interfaces embedded inside 
Alias. Once the tool paths are generated, the native Alias 
tool paths can be passed down to DMAC controller for 
direct machining. All the direct machining applications 
are activated in Direct Machining Plug-in. 

The Direct Machining application software is organized 
so that a main function will call different sub-functions, 
which will set all necessary parameters for tool paths 
data transmission and direct machining execution.  

 

Fig. 10. Direct machining dialog box. 

Since the interface between the users and the machine 
tool is the CAD/CAM system—in this case Alias—some 
customized dialog boxes must be created in Alias to 
provide interfaces for the users to control the CNC 
machine. 

 

Fig. 11. Example surface used to simulate production data. 

Fig. 10 shows the dialog box that is activated from a 
customized direct machining menu, which is created and 
inserted inside Alias GUI. This dialog box is the manager 
of the direct machining application. All dialog boxes that 
are used to set up the CNC machine and to execute the 
direct machining commands are launched from this 
dialog box. 

To properly mill a part directly out of Alias, the cutter 
tool first has to be moved to the position where X, Y, 
and Z are set to zero in the reference frame defined by 
Alias. Fig. 12 shows a jog dialog box, where the users 
may jog the cutter tool to any positions in relation to the 
coordinate system of a 3-axis mill. 

 

Fig. 12. Jog dialog box. 

The slider provided in this dialog box is used to set the 
distance (in mm) that the cutter tool will be jogged. If the 
slider has been set to 5 and the “Jog X+” button is 
pressed once, the cutter tool will be jogged 5 mm in the 
positive X direction. If the “To Reference Point” button is 
pressed, the cutter tool will be moved back to the zero 
position in the Alias reference frame. 

The machining process is executed using the dialog box 
shown in Fig. 10. The direct machining process can be 
run under two modes. If the “Continuous” button is 
pressed, a flow of machining process information is 
passed to DMAC controller without interruption.  If the 
“Single Step” button is pressed, a single move is sent 
each time. 

7. EXPERIMENTAL RESULTS 

An experiment was arranged using a 3D CAD data 
model of a car headlight, similar to data that would 
typically be used in production at GM (see Fig. 11). The 
headlight was used because it consists of only one free-
form surface, but still demonstrates a fair amount of 
curvature and shape. Tool paths for the surface were 
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generated using the test plug-ins and then sent to a 3-
axis table mill (see Fig. 13) that was directly connected, 
through fiber optic lines, to a computer. The computer 
runs dual Pentium II processors at 400 MHz. The none 
real-time Alias application runs on one processor and all 
real-time applications run on the second processor. The 
headlight surface was machined directly out of Alias as 
shown in Fig. 13. The process was also completed using 
a conventional Tarus 3-axis mill currently utilized at GM. 
The resulting decrease in production time does not come 
from a reduction in actual machining time, but from a 
decrease in time required for tool path generation and 
file handling. A comparison of the time line for the direct 
process and the typical process is shown in Tab. 1. 

 The proposed rapid prototyping CNC system shows the 
following advantages over the current CNC process 
creation method: 

1. Native part file contains tool path geometry, so no 
disassociation between tool paths and part ever 
occurs. 

2. Multiple file type conversions are eliminated 
reducing production time and geometry tessellation 
error. 

3. Simplified machine tool control places rapid 
prototyping capability in the hands of design 
software users. 

4. A single 3D CAD model enables design and 
manufacturing to be seamlessly integrated into a 
single database—facilitate “art-to-part” process— 
and gives the designers a significant power to realize 
their visions on new products concepts. 

Method Direct CNC Typical Method 

 Description Time Description Time 
Create Part n/a Create Part n/a 

  Convert to IGES 1 min. 

  Send to Tool Path 
operator 

5 min. 

Generate Tool 
Paths 

n/a Generate Tool 
Paths 

n/a 

  Convert to M&G 
code 

2 min. 

  Send to machine 
operator 

5 min. 

  Load file on CNC 
machine 

5 min. 

Steps 

Run program n/a Run program n/a 

Totals 3 0 min. 8 18 min. 

Tab. 1. Comparison of process time for direct CNC method and 
typical method 

8. CONCLUSIONS 

This paper describes the use of a CNC mill as a rapid 
prototyping machine when controlled by a DMAC 
controller being driven directly from Alias|AutoStudio. 
The experiment shows that the process of connecting the 
software packages is relatively simple to accomplish. It 
also demonstrates that significantly more production 
power can be given to current designers as well as other 
users of CAD packages such as Alias|AutoStudio. 

Several areas of this work will require further research 
and development before a useable product is truly 
available. Foremost among these areas is the generation 
of tool paths. Further research will be needed to decide 
whether to use a currently available set of software 
functions to perform the tool path generation, or to 
develop a new suite of functions that are perhaps 
generative and easy to use for this implementation. 
Another area of further development is the connection to 
the DMAC controller. Ties to the complete machining 
and animation functionality available from the DMAC 
controller have not yet been made. While this project is 
not yet complete, its promise for future capability is very 
exciting. 

 

Fig. 13. Three-axis direct CNC. 

9. FUTURE DIRECTIONS 

Several research projects are currently being undertaken 
at BYU to invent the next generation of machine tool 
controllers. The goal of these research projects is to 
develop a new class of algorithms in order to fully 
implement direct and dynamic mechanism control by a 
CAD/CAM application. Among these algorithms, curve 
fitting of dynamic tool path motion and other control 
data into n-dimensional-curves is now in development, 
and will allow the true implementation of curvature-
matched machining on five-axis mills. 

CMM control and in-cycle-inspection is also currently in 
development. CMM control can lead to automatic error 
correction and dynamic process plan updating. New 
methods for dynamically reconfiguring machine tool 
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controllers based on the changing process requirements 
are also under development. 

Under this new scheme, machine tools are treated like 
devices connected directly to the controller. Each 
machine tool has its own device driver that can be 
loaded at run-time. If the functionalities of a machine 
tool need to be enhanced or updated, a new device 
driver can be developed by the machine tool 
manufacturer and delivered to the end user. Without 
changing the existing controller, the end user can obtain 
the enhanced or updated functionalities provided by the 
machine tool manufacturer. 

In summary, although the DMAC paradigm is still under 
development, it already demonstrates promising and 
exciting capabilities. With further development and 
enhancement, DMAC will provide new opportunities to 
truly realize the seamless design-to-manufacturing 
integration by removing many hurdles seen in today’s 
machine tool controllers. 
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