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ABSTRACT 

 
This paper presents a Delaunay-based region-growing (DBRG) surface reconstruction algorithm 
that holds the advantages of both Delaunay-based and region-growing approaches. The proposed 
DBRG algorithm takes a set of unorganized sample points from the boundary surface of a three-
dimensional object and produces an orientable manifold triangulated model with a correct 
geometry and topology that is faithful to the original object. Compared with the traditional 
Delaunay-based approach, the DBRG algorithm requires only one-pass Delaunay computation 
and needs no Voronoi information because it improves the non-trivial triangle extraction by using a 
region-growing technique. Compared with the traditional region-growing methods, the proposed 
DBRG algorithm makes the surface reconstruction more systematic and robust because it inherits 
the structural characteristics of the Delaunay triangulation, which nicely complements the absence 
of geometric information in a set of unorganized points. The proposed DBRG algorithm is capable 
of handling surfaces with complex topology, boundaries, and even non-uniform sample points. 
Experimental results show that it is highly efficient compared with other existing algorithms. 
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Fig. 1. A demonstration of the growing process of a large complex Buddha model that consists of 542546 points. Bottom line 
represents the achieved percentage of the growing progress. 

 

1. INTRODUCTION 

Surface reconstruction from a finite set of unorganized 
points have attracted much attention in the past decade 
and are becoming increasingly important in geometric 
modeling and related applications such as reverse 
engineering, computer vision, computer graphics and 
virtual reality. In the past, there were several algorithms 
that have been proposed to reconstruct surfaces with 

arbitrary topology. We distinguish them into three main 
categories: Delaunay-based, implicit surface and region-
growing approaches. 
For the Delaunay-based approach, the typical procedure 
consists of two steps: 1) First, it builds a geometric 
structure from a finite set of unorganized sample points 
via the Delaunay triangulation or Voronoi diagram; 2) it 
then extracts a collection of facets from such a geometric 
structure to approximate the actual surface. The early 
reconstruction method of Boissonnate [1], the well-
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known alpha shapes of Edelsbrunner et al. [2], the crust 
and power crust algorithms of Amenta et al. [3],[4], the 
co-cone algorithm of Dey et al. [5],[6], and the 
reconstruction algorithm of Yau and Kuo [7],[8] 
generally fall into this category. The main advantage of 
the Delaunay-based approach is that the structural 
characteristics of the Delaunay triangulation and 
Voronoi diagram nicely complement the absence of 
geometric information in a set of unorganized points. 
Accordingly, it is more systematic and robust than other 
approaches. To our knowledge, algorithms with 
theoretical guarantees all fall into this category [4-7]. 
However, the expensive computation of the Delaunay 
triangulation was always denounced in the past. Besides, 
the extraction process based on the Delaunay/Voronoi 
structures is not simple and trivial. Consequently, the 
Delaunay-based method does not only require the 
Delauany triangulation but also the Voronoi diagram 
[3],[4]; it even needs multiple Delaunay computations 
[3],[4],[7],[8], which are quite time-consuming. 
In a different approach, the region-growing method 
begins by initiating a triangle as an initial region and 
iterates to attach new triangles only on the region’s 
boundaries. Such approach includes the early surface-
based algorithm of Boissonnate [1], the graph-based 
approach of Mencl and Muller [9], the ball-pivoting 
algorithm (BPA) of Bernardini et al. [10], the projection-
based triangulating techniques of Gopi and Krishnan 
[11], the interpolant reconstruction method of Petitjean 
and Boyer [12], the advancing-front algorithm of Hung 
and Menq [13], and recently the greedy Delaunay-based 
algorithm of Cohen-Steiner [14]. Although these 
methods are extremely fast due to keeping the Delaunay 
computation off [1],[9-13], there exists a common 
drawback that the reconstruction quality heavily 
depends on the user-defined parameters, which vary 
with the sampling density and cannot be assigned easily. 
In addition, the region-growing method may still leave 
behind small holes after the growing procedure when 
poor data (for example, noises) exists, therefore it 
cannot guarantee the creation of a closed manifold 
model if no appropriate hole-filling post-processing 
procedure is used. Among these algorithms, only [14] 
grows a triangulated surface from the Delaunay 
triangulation, which is similar to our proposed approach 
in this paper. However, in [14], the growing criterion, 
the smallest ball passing through the vertices of a 
Delaunay triangle and enclosing no sample points, 
proposed by [14], is exactly borrowed from the concepts 
of the pivoting ball [10] and the empty ball [12]; 
therefore, it does not only require the Delaunay 
triangulation but also the Voronoi edge, which is a 
disadvantage of the Delauny-based approach. 
For the implicit surface approach, a signed distance 
function defined from sample points is first defined and 

computed, and then uses a zero-set of the signed 
distance function to construct an approximate 
triangulated surface with topology as the actual surface. 
Such approach has been applied to the surface 
reconstruction problem by Hoppe et al. [15], Curless 
and Levoy [16], Bajaj et al. [17], and Boissonnate and 
Cazals [18]. Recently, Beatson et al. [19] fits a radius 
basis function (RBF) to the signed distance function and 
uses RBF to polygonize sample points to create a 
triangulated surface. Compared with the Delaunay-
based and the region-growing methods, the implicit 
surface approach approximates rather than interpolates 
sample points and therefore limits its applications only to 
computer graphics and virtual reality. In CAD/CAM and 
coordinate metrology applications [8],[20], however, 
accuracy of model representation is sometimes more 
important. 
In this paper, we present a Delaunay-based region-
growing (DBRG) algorithm that maintains the 
advantages of both Delaunay-based and region-growing 
approaches. The proposed DBRG algorithm first 
computes a Delaunay triangulation of a set of sample 
points, and then performs a region growing process to 
“grow” into a triangulated surface from the Delaunay 
structure. The growing process starts from initiating a 
triangle as an initial region and iterates to attach new 
triangles only to the region’s boundary edges. In each 
iteration, the region expands by incrementally adding 
new triangles. Figure 1 demonstrates the growing 
process of a large complicated Buddha model, which is 
resulted from our proposed DBRG algorithm. Figure 2 
illustrates the idea and overall procedure of our DBRG 
algorithm. Although the Delaunay computation was 
considered time-consuming in the past, but recently it 
has been improved quite substantially. In our experience, 
the computational geometry algorithms library CGAL 
[21] is now able to compute the 3D Delaunay 
triangulation of 15000 points per sec on a 1.2 GHz 
AMD CPU, which is extremely fast and is adopted in our 
implementation. 

 
 

Fig. 2. The idea and overall procedure of the DBRG algorithm. 
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Compared with the traditional Delaunay-based 
approach, the proposed DBRG algorithm extracts 
triangles “incrementally” instead of “independently” 
from the Delaunay structure; therefore it can control the 
extraction easily and only requires single Delaumay 
computation, making the whole process more efficient. 
Compared with the traditional region-growing approach, 
the proposed DBRG algorithm inherits the structural 
characteristics of the Delaunay triangulation, which 
nicely complements the absence of geometric 
information in a set of unorganized points, making the 
surface reconstruction more systematic and robust. In 
other words, the proposed DBRG algorithm provides a 
systematic way to grow the triangulated surface, which is 
better than the traditional region-growing methods that 
rely on heuristic rules. Compared with the implicit 
surface approach, the proposed DBRG algorithm 
interpolates rather than approximates the sample points, 
therefore its output is guaranteed to pass through the 
original sample points, which is important in CAD/CAM 
and coordinate metrology applications [8],[20]. 
 
2. DATA STRUCTURES 

The procedure of the DBRG algorithm, as shown in 
Figure 2, is to select the triangles from the Delaunay 
triangulation of sample points and incrementally insert 
them into the growing triangulated surface. In the 
proposed DBRG algorithm, therefore, there are two 
main data structures needed for storing the Delaunay 
triangulation and the growing triangulated surface. 
 
2.1 Delaunay triangulation 

The well-known Delaunay triangulation and its duality, 
Voronoi diagram, are becoming increasingly important 
and have found extensive applications in various fields 
[22]. A three-dimensional Delaunay triangulation, 
denoted by DT, is a tetrahedralization that divides the 
convex hull of sample points into a collection of 
tetrahedrons. A three-dimensional DT consists of four 
entities: vertices, edges, triangles and tetrahedrons. One 
of most important properties is that a three-dimensional 
DT is unique under the assumption that no 5 sample 
points can be found on a common sphere, which is one 
of the advantages of using DT in surface reconstruction 
from unorganized points. 
In our implementation, we use the famous CGAL 
(Computational Geometry Algorithms Library) [21] to 
compute the three-dimensional DT. Therefore, a 3D-
triangulation data structure provided by CGAL is 
adopted as the data structure of DT in this paper. With 
such data structure, all tetrahedrons and triangles 
incident to a given edge or vertex can be readily 
acquired, which provides a quick access to the necessary 

geometrical information in our region-growing 
operations. 
 
2.2 Growing triangulated surface 

During the region-growing process, an appropriate 
geometrical data structure is required for constructing 
and manipulating the growing triangulated surface, 
especially for quickly inserting triangles and ascertaining 
their local geometrical and topological correctness. A 
triangulated surface represents the boundary surface of a 
real object using a collection of triangles, which is a kind 
of boundary-representation (B-Rep) geometrical model. 
In the past, various data structures have been proposed 
for boundary representation in solid modeling, which 
include vertex-based, edge-based and face-based 
structures depending on which entity is given a central 
role. The edge-based data structures, such as winged-
edge [23] and half-edge [24], have become most widely 
accepted due to the ability to represent both planar as 
well as curved polyhedral models. 
However, the triangulated surface is the simplest one 
among boundary representations. In this paper, a 
simpler but practical B-rep data structure that explicitly 
represents triangle-edge and edge-vertex topologies is 
adopted to facilitate the manipulation of the triangulated 
surface during the growing process. Figure 3 illustrates 
the graph scheme of the data structure used in this paper 
with nodes corresponding to triangles, edges and vertices. 
Links between these nodes express topological or 
connectivity information. In this data structure, the 
triangulated surface is represented as a list of triangles. 
Each triangle is composed of three edges oriented in 
counterclockwise direction with respect to its normal, and 
each edge is composed of two vertices with each one 
storing the x, y and z coordinates. To efficiently 
manipulate the triangulated surface, each edge also 
records a list of triangles using this edge as one of its 
edges, and each vertex records a list of edges using this 
vertex as one of its endpoints. An edge is a boundary 
edge if its list of triangles only contains one. A boundary 
triangle means that at least one of its edges is a 
boundary edge. A manifold model is supposed to have 
two triangles at most in the list of triangles for each edge. 
With these explicit topological relations, it is easy to 
examine the orientation compatibility between adjacent 
triangles and access to the one-ring neighborhood of a 
vertex, possibly in terms of adjacent vertices or incident 
edges or faces. Figure 4 gives illustrations of these 
accesses. Figure 4(a) demonstrates that two adjacent 
triangles are compatible in their orientations since their 
common edge is in the opposite direction with respect to 
their normal, and Figure 4(b) illustrates the one-ring 
neighborhood of a vertex v, which include adjacent 
vertices vi, incident edges ei and incident triangles ti, i = 
1,…,7. In addition, we design a hash table for the list of 
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triangles to meet the dynamic triangulated surface, 
especially to facilitate the quick addition, deletion and 
access to triangles during the region-growing process. 
 

 
Fig. 3. The graph scheme of the data structure used in this 
paper. 

 

    
 (a) (b) 
Fig. 4. Illustrations of: (a) the orientation compatibility between 
two adjacent triangles; (b) the one-ring neighbor of a vertex v, 
which include adjacent vertices, incident edges and triangles. 
 
3. THE PROPOSED DBRG ALGORITHM 
As shown in Figure 2, our DBRG algorithm is composed 
of three procedures: Delaunay computation, initial 
triangle selection and region-growing operation. Let P 
denote the set of input sample points, DT(P) the 
Delaunay triangulation of P, S the growing triangulated 
surface and ∂S the set of boundary edges of S. Notice 
that S ⊂ DT(P)since S is a collection of triangles chosen 
from DT(P). Besides, in S and DT(P), let v denote a 
vertex, e an edge, t a triangle and r(t) the circumradius of 
t. Outlined as follows are the complete steps of the 
proposed DBRG algorithm. 
 
Step 1: Compute DT(P). 
Step 2: Initialize the growing triangulated surface. 
Step 2.1: From DT(P), select a triangle as an initial 

triangle tinit and add tinit into S. 

Step 2.2: For each boundary edge e∈∂S, determine its 
candidate triangle ct(e). 

Step 2.3: For each ct(e), if ct(e)≠ NULL, assign a local 
smooth degree (LSD) to ct(e) and put ct(e) into a 
priority queue Q with the priority determined by 
LSD. 

Step 3: Perform the region-growing process. 

Step 3.1: From Q, select a candidate triangle with top 
priority as the most credible candidate triangle cct 
and remove cct from Q. Examine the local 
geometry and topology of cct in S. 

Step 3.2: If cct is correct in both topology and 

geometry in S, insert cct into S and update ∂S. 
Otherwise, go to step 3.1. 

Step 3.3: For each new edge ne∈∂S, determine its 
candidate triangle ct(ne) with corresponding 
LSD(ct(ne)) and put ct(ne) into Q with the priority 
determined by LSD(ct(ne)). 

Step 3.4: Iterate steps 3.1, 3.2 and 3.3 until Q is 
empty. 

With a good program for DT(P), only steps 2 and 3 
require detailed elaborations. 
 
3.1 Initializations 

3.1.1 Initial triangle 

In step 2.1, a triangle is chosen from DT(P) as an initial 
triangle to start the region-growing process. The first 
procedure is to pick up a vertex vi with the maximum z 
coordinate from DT(P) and then compute the 
circumradius for each incident triangle of vi. A triangle 
with the minimum circumradius is selected as an initial 
triangle tinit and added into S. The normal to tinit has to be 
oriented as its z component is positive. In other words, 
the angle between the normal to tinit and the positive z 
direction must be less than π/2. At this moment, the three 
edges of tinit are all the boundary edges ∂S of S. 
 
3.1.2 Candidate triangle 

For a boundary edge e ∈ ∂S, it is associated with a 
candidate triangle ct(e), which is determined as follows. 
With the 3d-triangulation data structure described in 
section 2.1, a set of incident triangles of e can be easily 
obtained from DT(P). Let Tincident(e) be the set of incident 
triangles of e and tncident(e) one of Tincident(e). Besides, let 
tb(e) represent the triangle using e as one of its edges in S 

(tb(e) ∈ S and tb(e)∈ Tincident(e)) and θ(tincident(e), tb(e)) the 
dihedral angle between tb(e) and tincident(e), which 
tincident(e) ≠ tb(e). Notice that tb(e) and tincident(e) must be 
compatible in the computation of the dihedral angle. 
However, in the 3D Delaunay triangulation, the value of 
θ(tincident(e), tb(e)) might be extremely large due to the 
existence of a sliver tetrahedron. A silver tetrahedron is a 
tetrahedron whose four vertices lie close to a plane and 
whose orthogonal projection to that plane is a convex 
quadrilateral with no short edge [25]. If a silver 
tetrahedron is encountered and therefore the value of 
θ(tincident(e), tb(e)) is too large, saying greater than 5π/6, 
then the tincident(e) cannot be selected as a candidate 
triangle ct(e) to avoid the situation that the growing 
direction turns back and therefore creates a wrong 
geometry. Therefore, let θsliver denote a user-defined 
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parameter for being a threshold to avoid generating such 
wrong geometry, especially when tb(e) and tncident(e) are 
the triangles of a sliver tetrahedron. The candidate 
triangle ct(e) associated with e is defined as follows. 
 

ct(e) = { t ∈ Tincident(e), t ≠ tb(e) | r(t) is minimum 
and θ(t, tb(e)) < θsliver } 

 
In the existing surface reconstruction algorithms, different 
values of the similar silver parameter like θsliver are 
selected for dealing with sliver tetrahedrons [3],[5],[14]. 

In our implementation, θsliver is set to 5π/6. Experiments 
show the value of θsliver is not critical. From step 2.2, a set 
of candidate triangles Tct(∂S) are obtained by traversing 
the boundary edges. Figure 5 illustrates a three-
dimensional example determining a candidate triangles 

ct(e) associated with e ∈ ∂S. In Figure 5, S is represented 
by the green region, ∂S the bold edges with 
counterclockwise directions and e is one of ∂S. From 
DT(P), it is easy to access to the incident triangles of e, 
namely t1,…,t6, and let Tincident(e) = {t1,…, t6}. Notice 
that tb(e) = t1. The red triangle t2 is the candidate triangle 
ct(e) since its value of r(t) is obviously minimal among 
Tincident(e) and θt < θsliver. 
 

 
 
Fig. 5. A three-dimensional illustration of determining the 
candidate triangle for a boundary edge. 
 
3.1.3 Local smooth degree 

In each iteration during the growing process, only one of 
the candidate triangles Tct(∂S) can be selected and 
inserted into S. To determine such candidate triangle, a 
greedy heuristic that follows [14] is used in this paper. 
The basic idea is that the most credible candidate 
triangle should be inserted into S first. In [14], the c(t) 
with the smallest value of θ(c(t), tb(e)) is inserted into S 
first. In other words, such c(t) would generate smoother 

surface in that local region and therefore it has higher 
credibility. In this paper, however, a more 
comprehensive parameter, local smooth degree (LSD), is 
defined to measure the credibility of a candidate triangle, 
which may represent a local smooth degree more 
appropriately for a triangulated surface. The definition of 
LSD is described as follows. Let nti be the ith 
neighboring triangle of t and θ(t, nti) the dihedral angle 
between t and nti. The LSD of t is defined as follows. 
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where n is the number of neighboring triangles of t and 1 
≤ n ≤ 3. 
From the definition of LSD, it is obvious that a candidate 
triangle with a higher value of LSD is more credible than 
one with a lower value of LSD. In step 2.3, we assign the 
local smooth degree, LSD, to each candidate triangle 
ct(e) and put ct(e) into a priority queue Q with the 
priority determined by LSD(ct(e)). Therefore, the 
candidate triangle with top priority in Q is the most 
credible candidate triangle. 
 
3.2 Region Growing 

During the region-growing process, new triangles are 
incrementally attached to ∂S. The determination of these 
new triangles and their incremental attaching and 
updating operations are clarified as follows. 
 
3.2.1 Topological and geometrical examinations 
As described in section 3.1.3, a candidate triangle with 
top priority in Q is selected as the most credible 
candidate triangle. Let cct denotes the most credible 
candidate triangle. Before cct is inserted into S, its local 
topology and geometry in S are examined to ensure that 
S is an orientable manifold model all the time. 
• Topological examination 
A topological examination mainly checks that inserting 
a cct would not create a non-maniflod or a non-
orientable manifold. An edge attaching operation is 
created when a cct is attached to ∂S. As shown in 
Figure 5, if t2 is a cct, t2 would be attached to e that is 
a common edge shared with t1. With the above-
mentioned appropriate data structure for the growing 
triangulated surface, this orientation examination is 
easily accomplished by checking the orientation 
compatibility between t1 and t2, as illustrated in Figure 
4(a). Moreover, the edge attachment also needs to 
avoid creating a non-manifold, such as an edge shared 
by more than two triangles, as shown in Figure 6(a). In 
addition, the vertex status must be checked 
simultaneously for avoiding the creation of the neck 
vertex, as shown in Figure 6(b). If an incorrect 
topology is detected, it means that cct is an invalid 
triangle in S. 
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• Geometrical examination 
A geometrical examination of cct is performed after 
ensuring no topological incorrectness. Let nti be the ith 

neighboring triangle of cct in S and θ(cct, nti) the 
dihedral angle between cct and nti. The geometrical 
constraint is: cos(θ(cct, nti)) > cos(θsliver) for any 
existing neighboring triangle nti of cct. If the dihedral 
angle violates this geometrical constraint, it means that 
cct is an invalid triangle. 
 

 
 
Fig. 6. Two typical incorrect topological operations of the most 
credible candidate triangle cct. 
 
3.2.2 Update and iteration 
Through the above-mentioned examinations, if cct is a 
valid triangle (both topology and geometry are correct in 
S), it is inserted into S. Otherwise, the growing 
procedure is interrupted and goes back to step 3.1 to 
select a new cct. After inserting cct into S, an update 
operation for ∂S is followed, as described in step 3.2. In 
other words, some new boundary edges are created and 

inserted into ∂S; some current boundary edges become 
non-boundary and must be removed from ∂S. In step 
3.3, indeed, it is an update of Q by executing step 2.2 
and 2.3 but only for new boundary edges. Continuing 
steps 3.1, 3.2 and 3.3 until Q is empty, S is the resulting 
triangulated surface of the DBRG algorithm. 
 
3.3 Demonstrations 

Figure 7 demonstrates the growing process of a torus 
model growing from 1 triangle to 2016 triangles. The 
blue line represents boundary edges and the dark region 
shows the interior of the torus model. A complete solid 
model (no blue line) is reconstructed when the number 
of triangles is 2016. A larger and more complicated 
Buddha model is demonstrated in Figure 1. From the 
growing process, it is obvious that the regions with high 
curvature are reconstructed first. Indeed, for the Buddha 
model, the sampling density is mostly higher in the 
regions with high curvature than with low curvature. 
Therefore, the regions with high curvature really have 
low value of r(t) and will be reconstructed first in the 
DBRG procedure. 
 
4. OPEN SURFACE REONSTRUCTION 

An open surface has apparent boundaries. In our DBRG 
algorithm, the growing process should be terminated on 
the boundaries if an open surface is reconstructed. 
Therefore, for the open surface reconstruction, the 
boundary detection is a critical procedure in the DBRG 
algorithm. Since the growing process described in section 
3 uses candidate triangles to grow the triangulated 
surface, the selection rule of candidate triangles is 
directly related to the boundary detection. Through 
observations, during the growing process, the value of 
circumradii of candidate triangles will increase rapidly on 
the boundaries. This phenomenon helps quantitatively 
control the growing process on the boundaries. Let ra(S) 
represent the average of circumradius of all triangles in 
S. A candidate triangle ct(e) associated with a boundary 

edge e is discarded when r(ct(e)) > M ra(S), which M is a 
multiplication factor provided by users. In other words, 
for an open surface, the region-growing process is 
terminated when all candidate triangles are discarded. 
Figure 8 demonstrates the growing process of a 
hypersheet, in which open surface boundaries are 
detected and preserved. 
 

 
 
Fig. 7. The growing process of a torus model. The number 
represents the number of triangles during the growing process. 
 

 
 
Fig. 8. The growing process of a hypersheet model. The number 
represents the achieved percentage of the growing progress 
 
5. SMALL HOLES FILLING 
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In practice, S might still have small holes in regions with 
poor sample points such as noises. The small holes are 
retained when the boundary edges are not created by 
the open surface boundary detection. Let H denote a set 
of small holes and ∂H the boundary edges of H. Notice 
that ∂H is different from ∂S since ∂S is the open surface’s 
boundaries that are detected and preserved by 

discarding the candidate triangles (section 4) and ∂H 
survived due to the existence of invalid candidate 
triangles (section 3.2.1). In this paper, we propose an 
explicit recursive hole-filling method as a post-processing 
step to fill such small holes. The hole-filling procedure is 
similar to the above-mentioned region-growing process, 
which incrementally creates new triangles and attaches 

them to ∂H in sequence. 
As an illustrative example shown in Figure 9, our hole-
filling procedure is addressed as follows. First, a small 
hole h is selected from H. Let ∂h and ∂v respectively 
represent a set of boundary edges and vertices of h. 

Second, ∂v is divided into two groups of vertices, namely 
concave vertices Vconcave and convex vertices Vconvex. Let 
vi-1, vi and vi+1 be three sequential vertices on ∂v, vi

n
r the 

unit normal to vi, which is computed by averaging the 
normal to incident triangles of vi, and 11 +− ×=

iiiicross
vvvvn

r . 

A vertex is labeled as “concave” when the dot product of 

vi
n
r

 and cross
n
r

 is smaller than zero. An example is shown 
in Figure 9(a). Let v1, v2 and v3 be three sequential 
vertices on ∂v. The vertex v2 is labeled as “convex” 

because the dot product of 2vn
r

 and cross
n
r

 is greater than 
zero. In Figure 9(b), Vconcave are colored by blue points. 
Third, for each vconcave ∈ Vconcave, its candidate triangle is 

created by vconcave and its two adjacent vertices on ∂v, 
which would be used to fill this small hole. With these 
candidate triangles, finally, an incremental two-edge 
attaching procedure is performed following the steps 2.3 
and 3.1-3.4, described in the DBRG algorithm. A 
difference, however, is that when the candidate triangle 
of vconcave is invalid, all the filling triangles and the 
boundary triangles of ∂h are deleted from S and hence a 
new and larger hole h’ is generated. Then, the hole-filling 
procedure is recursive to fill h’ instead of h. In practice, 
such recursive deletion might lose some geometrical 
features of a real object. But it is reasonable that the 
regions with poor sample points are cannot be easily 
reconstructed except when those poor sample points are 
filtered out. Indeed, these deletions act like a noise-
filtering process. Finally, H is filled and triangulized by 
repeating the hole-filing procedure for each small hole h 
∈ H. In Figure 9(b), a small hole h, shown in Figure 9(a), 
is filled by the red triangles. Notice that t1 is attached on 

∂h earlier than t7 since r(t1) < r(t7). 
Figure 10(a) is a complex dragon toy model, of which 
the sample points are obtained by merging six sets of 

data acquired from a laser range scanner. By using our 
DBRG algorithm, a resulting triangulated surface with 
some small holes colored by blue edges is shown in 
Figure 10(b). Through the explicit recursive hole-filling 
process, a complete solid model is reconstructed in 
Figure 10(c). 

 
(a) 

 
(b) 

Fig. 9. An illustration of filling a small hole. 
 

 
 (a) (b) (c) 
Fig. 10. A practical example of filling small holes. (a dragon toy 
model) 
 
6. TREATMENT OF POOR DATA 

6.1 Non-uniform distribution 

The ability of handling sample points with uneven 
distribution is an important issue to the general surface 
reconstruction algorithm. Since the sampling 
requirement actually depends on the level of detail of the 
geometry, our DBRG algorithm is capable of dealing 
with the sample points with non-uniform distribution. 
Figure 11 demonstrates the surface reconstruction of a 
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golf model having the sample points with uneven 
distribution. Figure 11(a) is a non-uniform distribution 
case. Figure 11(b) shows the reconstruction from the 
non-uniform distribution case. 
 

 
 (a) (b) 
Fig. 11. The reconstruction from the sample points with uneven 
distribution. (a golf mold) 
 
6.2 Sharp edges 

Many existing surface reconstruction algorithms suffer 
from the fact that sharp edge features cannot be easily 
reconstructed. In practice, our DBRG algorithm can 
handle the reconstruction of sharp edges or corners only 
under the condition that the sampling requirement is 
satisfied, such as shown in Figure 12. Otherwise, as 
shown in Figure 13, a fan disk is reconstructed, but a 
post-processing step is needed to rectify the sharp edge 
features.  
 

 
 (a) (b) 
Fig. 12. The reconstruction with clean and clear features. (a 
machine part) 
 

 
 (a) (b) 
Fig. 13. The reconstruction with poor sharp features. (a fan disk 
model) 
 
7. IMPLEMENTATION AND EXPERIMENTS 

The proposed DBRG algorithm has been implemented 
in C++. We use the computational geometry algorithms 
library CGAL [21] to compute three-dimensional 
Delauny triangulation (DT). The CGAL provides several 
choices of number types [26]. We use floating point 
arithmetic, which is the fastest one provided by CGAL. 
In addition, Delaunay hierarchy method provided by 
CGAL 2.4 is adopted by us for more efficient 
computation of Delaunay triangulation. 
 

 
n: number of input points; v: number of output points; t: number of 
output triangles;  
DT(n): running time of Delaunay triangulation of n points (using CGAL 
2.4); 
RG: running time of region-growing process (sec); 
HF: running time of hole-filling process (sec); 
TRT: total running time (sec); 
Platform: windows XP on a PC with 1.2 GHz AMD CPU and 512 MB 
memory (except with 768MB memory for the blade model) 
 

Tab. 1. Experimental data of several surface reconstructions. 

 
Table 1 demonstrates the experimental results of the 
closed and open surfaces using the proposed DBRG 
algorithm. The results show that the proposed DBRG 
algorithm is extremely fast compared with other existing 
algorithms. Notice that most of running time of hole-
filling process is zero, even the maximum value is smaller 
than 2.1 second. The reason is that the hole-filling 
efficiency is extremely fast due to only few small holes. In 
addition, the ability of handling larger models is also 
demonstrated in Table 1, such as the blade model 
(882954 points). 
 
8. CONCLUSION 

A DBRG (Delauany-Based Region-Growing) surface 
reconstruction algorithm that holds the advantages of 
both Delaunay-based and region-growing approaches is 
presented. The input of the DBRG algorithm is an 
unorganized point set P and the output is an orientable 
manifold triangulated surface S that has a correct 
topology and geometry and is faithful to the original 
object. The DBRG algorithm uses the three-dimensional 
DT(P) as a combinatorial structure that consists of 
vertices, edges, triangles and tetrahedrons, and then 
incrementally extracts a collection of triangles from 
DT(P) as the resulting triangulated surface S. Such 
incremental extraction is carried out by using a region-
growing approach that begins from initializing a triangle 
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as an initial region and iterates to attach new triangles 
only on the region’s boundary edges. The output of the 
DBRG algorithm might contain small holes due to 
noises. An explicit recursive hole-filling method is 
developed for filling such small holes. 
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