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ABSTRACT 

 

A new knot placement algorithm for B-spline curve approximating to dense and noisy data points 

is presented in this paper. In this algorithm, the discrete curvature of the points, in contrast to the 

points themselves as in the traditional approaches, is smoothed to expose the curvature 

characteristics of the underlying curve of the data. With respect to the smoothed curvature, knots 

are placed to satisfy a heuristic rule. Experimental results are included to demonstrate the validity 

of this algorithm. 
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1. INTRODUCTION 

Reverse engineering (RE) starts with a physical model 

and reconstructs its geometric model from coordinate 

data acquired with a measuring system in order to 

create and/or refine the digital model. Advances in range 

image acquisition and other three-dimensional digitizing 

devices allow us to acquire very dense data points from 

physical objects. Although these devices are of high 

fidelity, measurement errors are still unavoidable due to 

the surface attributes of the physical object, the impact 

of the environment and the uncertainty of the measuring 

system. Consequently, the measured data points are 

often noisy as well as dense. 

For the data points that are organized in the form of 

scan lines, a two step process, curve fitting and then 

surface lofting, is usually employed to reconstruct 

surfaces from the data. Generally, B-spline curve 

approximation instead of interpolation is preferred for 

dense and noisy data to create the curves. However, 

although curve approximation is well understood, the 

knot placement problem has not been dealt with 

satisfactorily, especially when dense and noisy data 

points are to be approximated. In this case, smoothing 

and re-sampling are usually employed to pre-process the 

data in present applications in order to facilitate the 

placement of knot and improve the performance of 

curve approximation [6], [7]. But the data smoothing 

and re-sampling operations highly depend on the 

intervention of the designers. The features are often 

blurred and the original design intent is lost if no special 

care is taken [8].  

It has been established that the choice of knots has 

considerable effect on the shape of the curve [2]. An 

unreasonable knot vector may introduce unpredictable 

and unacceptable shape.  In curve interpolation, the 

placement of knots is straightforward. On the contrary, 

in curve approximation, it is difficult to determine the 

amount and distribution of knots. Generally, a curve 

error bound is specified as an input together with the 

data points to be fitted. The amount and distribution of 

the knots, which are required to satisfy the bound, are 

both unknown in advance. Therefore, in theory, knot 

placement is a multivariate and multimodal nonlinear 

optimization problem [14].  

In applications, curve approximation methods are 

generally iterative. Roughly speaking, these methods 

proceed into one of the two ways [11]: (1) start with the 

minimum or a small number of knots and iteratively 

increase the amount of knots to satisfy the error bound; 

(2) start with the maximum or many knots and 

iteratively reduce the amount of knots to satisfy the error 

bound. When the amount of points is very large, these 

methods become time-consuming if the initial knots are 

not well determined. Unfortunately, the problem of 

determining the initial knots is not well addressed in the 

literatures. 

An exception to the above ways is the algorithm 

proposed by Razdan [12]. This algorithm is restricted to 

smooth data points. Similar algorithm was employed by 

Hölzle [5] to approximate a polygon to a curve. When 

the number of knots is given in advance and the points 

are reasonably distributed with regard to the curvature 

of the underlying curve, average knot method [9], [10] 
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can be used to determine the distribution of the knots. 

However, this method highly relies on the data pre-

processing operations such as smoothing and re-

sampling. Furthermore, if an error bound is to be 

satisfied, this method becomes a trial-and-error method.  

In this paper, a new knot placement method for B-spline 

curve approximation to dense and noisy data points is 

discussed. In order to preserve the shape features 

obliterated by the noise and reduce the time 

consumption, the discrete curvature of the points, in 

contrast to the points themselves, is smoothed, and 

knots are automatically placed with respect to the 

smoothed curvature to satisfy a heuristic rule presented 

in this paper without iterative calculations of the 

approximating curves.  

 The organization of this paper is as follows. A brief 

introduction of B-spline curve approximation is given in 

Section 2. In Section 3, the discrete curvature of the 

points is stated, followed by Section 4, where the digital 

filter is described. The knot placement algorithm is 

presented in Section 5. Examples are shown in Section 

6 to demonstrate the effectivity of the presented 

algorithm, followed by a conclusion section that closes 

the paper. 

 

2. B-SPLINE CURVE APPROXIMATION 

A kth-order B-spline curve is defined by 
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where }{ iP  are the control points, and )}({ , uN ki  are the 

kth-order B-spline basis functions defined on the knot 

vector },{ jt=T knj += ,...,0 . In this paper, attention is 

concentrated on planar end-point interpolating cubic 

curves with simple internal knots, i.e. the multiplicities of 

all internal knots are restricted to 1.  

Given data points }{ id , and associating parameters 

}{ iu , mi ,...,0= . The approximating curve )(uC in the 

least square sense is defined by [2] 
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For B-spline curves, the normal equation is 
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Constraints can be incorporated into Eqn. 2 using 

Lagrange multipliers [11]. 

The matrix M  is singular if and only if there is a span 

],[ kjj tt + , nj ,...,0=  that contains no iu . This fact is 

known as Schoenberg-Whitney condition for 

unconstrained curve fitting [2]. Therefore, if there is no 

span ],[ kjj tt + , nj ,...,0=  that contains no iu , i.e. M  is 

not singular, the control points can be obtained by 

solving Eqn. 3. 

Parameterization of the points is well discussed and 

many methods have been proposed [2]. In this paper, 

chord length parametrization method is employed. The 

remaining problem, which is to determine a reasonable 

knot vector, will be discussed in the following sections. 

 

3. DISCRETE CURVATURE OF DATA POINTS 

Generally, the scan lines used in curve approximation 

are ordered and distributed in two-dimension, or they 

can be sorted to get an ordered point set according to 

certain criteria.  

For an ordered point set )},...,0(,{ nii =p , the discrete 

curvature ik  at point ip  )1,...,1( −= ni  can be defined as 

the inverse of the radius ir  of the circle passing through 

the three points 1−ip , ip  and 1+ip , as illustrated in Fig. 

1.  

 

 

 

 

 

 

 

 

 
Fig. 1.  Discrete curvature of ordered points 

 

The signed discrete curvature can be expressed as [8] 
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Hamann and Chen [3] presented a more complex 

scheme to estimate the discrete curvature by computing 

a locally interpolating quadratic polynomial. However, 

due to the noise in the measured data points, the 
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discrete curvature changes very frequently. 

Consequently, this quadratic polynomial scheme has no 

advantage over the circle scheme in respect of exposing 

the curvature characteristic of the underlying curve. 

The discrete curvature of a noisy point set is also flawed 

by noise. As a matter of fact, noise in the curvature is 

more severe than the data themselves. In this paper, the 

discrete curvature is considered as equally spaced digital 

signal and processed using digital signal processing 

methods to find out the tendency and characteristics of 

the curvature of the underlying curve. 

 

4. SMOOTHING OF DISCRETE CURVATURE 

Like many other situations, when the discrete curvature 

is considered as digital signal, noise all but obliterates the 

signal of interest. So a lowpass filter is employed to 

smooth the discrete curvature.  

Filters can be grouped into two categories [4]: Finite 

Impulse Response (FIR) filters and Infinite Impulse 

Response (IIR) filters. Comparing their performance, a 

FIR filter is used in this paper. Suppose that the 

sequence of numbers { }nv  is such a set of equally spaced 

measurements of some quantity )(tv , where n  is an 

integer and t  is a continuous variable. Typically, t  

represents time, and )(nvvn = . FIR filters are defined by 

[4] 
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The coefficients  kc  are the constants of the filter, the 

knv −  are the input data, and the ny  are the outputs. In 

practice, the number of products must be finite, and the 

length of the run of nonzero coefficients kc  is shorter 

than the run of data ny . A lowpass filter means that the 

low frequencies pass through and the high frequencies 

are stopped, with a transition zone between the 

passband and stopband of frequencies. Hence, Lowpass 

filters are employed to smooth out the high frequency 

noise in the signal. 

When the signal is masked by a large amount of noise, 

any small peaks left in the spectrum of the signal after 

filtering out the noise might be either from the original 

signal or from ripples in the transfer function used in the 

filtering process. Although careful analysis could separate 

the two, the problem can also be avoided if a class of 

filters that vary smoothly rather than ripple is used. By 

“vary smoothly”, we mean that the filters are monotone 

over long intervals of the frequency band. 

Due to the nature of knot placement, the resulting 

sequence of the filtering should have precisely zero-

phase distortion. In this paper, this is implemented by 

processing the input data in both forward and reverse 

directions. After filtered in the forward direction, the 

sequence is reversed and run back through the filter. 

 

5. KNOT PLACEMENT 

The knot vector plays an effective role in retrieving the 

underlying curve of the data points. In particular, given 

data points with considerable curvature variance of the 

underlying curve, the reconstructed curve may be 

significantly different from the underlying curve if the 

knots are not distributed reasonably in accordance with 

the varying of the curvature.  

In this section, we will give a heuristic rule for knot 

placement, and subsequently, the knot placement 

algorithm for B-spline curve approximation to dense and 

noisy data. 

 

5.1 A Heuristic Rule for Knot Placement 

Su and Liu [13] demonstrated that, given points ip  

),...,0( ni = ( see Fig. 2 ), the interpolating spline curve is 

of locally small deflection if 6πα ≤i , which means cubic 

spline curve could be used to interpolate the given 

points. Here, iα  is the angle between vectors 1+iL  and 

iL , as shown in Fig. 2, with 1−−= iii ppL  ),...,1( ni = . 

 

 

 

 

 

 

 
 

Fig. 2. Point distribution of small deflection spline 

 

If the given points satisfy the above condition, the 

interpolating curve will approximate the underlying 

curve. Then a heuristic rule for knot placement in curve 

approximation is deduced from the above condition, i.e. 

if the points corresponding to the knots can satisfy this 

condition, the reconstructed curve will be a good 

approximation to the given data points. Hence, the 

problem of knot placement becomes how to select 

points, where knots are placed, from the given data 

points to fulfill the above rule. 
 

5.2 The Algorithm 
Unlike the problem of piecewise linear curve 

approximation to freeform curves discussed in [3] and 

[5], the feature points, such as curvature extrema and 

inflection points, are critical to retrieve the underlying 

curves of the data points. These kinds of points play a 

basic role in constraining the overall shape of the 

reconstructed curves. They also tend to impact the 

quality of the reconstructed curves. So the parameters of 

1−ip 2+ip

1+ip

ip
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the feature points and the endpoints are set to be knots. 

In this paper, three kinds of points are defined as feature 

points (In the following, )( iuk  is abbreviated to ik ). 

(1) If 0))(( 11 >−− +− iiii kkkk , iu  is set to be knot. In the 

curvature plot, this kind of feature points 

corresponds to the curvature extrema, such as 

),( 33 ku  and ),( 66 ku  in Fig. 3. 

(2) If 0))(( 11 =−− +− iiii kkkk and 011 >−+− +− iiii kkkk , 

iu  is set to be knot. In the curvature plot, this kind 

of feature points corresponds to the points 

connecting horizontal line segments with non-

horizontal curve segments, such as ),( 11 ku , ),( 22 ku  

and ),( 77 ku  in Fig. 3. 

(3) In the case 01 <+iikk , if 1+< ii kk , iu  is set to be 

knot; otherwise, 1+iu  is set to be knot. In the 

curvature plot, this kind of feature points 

corresponds to the points nearest to the zero-

crossing points, such as ),( 44 ku  in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Segmentation of discrete curvature 

 

As the curvature of the points between any two adjacent 

feature points or the endpoints and their adjacent feature 

points is monotone, curvature is used as a function for 

knot placement in succession. Firstly, each subset is 

bisected iteratively with respect to their curvature and the 

parameters nearest to the bisecting positions are set to be 

knots to make all internal data points corresponding to 

the knots satisfy the heuristic rule of knot placement. This 

process is shown in Fig. 4(a). The horizontal axis 

indicates the parameters of the points, and the vertical 

axis indicates the discrete curvature of the points. '
0u , 

'
1u  

and '
2u  are the knots inserted into [ ]32 ,uu  and the 

subscript variables indicate the order of the insertion of 

the knots. When the curvature of a subset is constant, i.e. 

the underlying curve of the subset is a circle or a line, the 

parameter axis is bisected iteratively and knots are 

placed at the points whose parameters are nearest to that 

of the bisecting positions (see Fig. 4(b)).  

At last, the feature points are tested to verify if they 

satisfy the heuristic rule. More knots are inserted into the 

two adjacent intervals of the feature points if the rule is 

not satisfied. Knot is inserted into the interval where the 

absolute value of the curvature difference of the 

endpoints is bigger than the other. As shown in Fig. 4(c), 

at the beginning, 3333 kkkk −>− −+ , '
0u  is placed at the 

point whose curvature is nearest to 2/)( 33
++ kk . Then, 

more knots are inserted iteratively to make 3u  satisfy the 

heuristic rule. The subscript variables also indicate the 

order of the insertion of the knots.  
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Fig. 4. Knot placement: (a) curvature monotone segments; (b) 

curvature constant segments; (c) feature points 

 

6. EXAMPLES 
In this section we present and discuss the performance of 

the presented knot placement algorithm in the context of 

two numerical experiments. Both examples have small 

features that are important in defining the shape of the 

underlying curves. Using traditional data smoothing and 

reduction methods, it is very difficult to preserve them. It 
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may take much time to process these data in practice in 

order to reconstruct the intended curve. 

The lowpass filter, like the one shown in Fig.6, is used to 

smooth the discrete curvature of the data points in this 

paper. As discussed in section 2, the magnitude response 

of this filter varies smoothly in order to reduce the impact 

of the filter on the output. This filter is also used in both 

forward and reverse directions to prevent phase 

distortion. Refer to [1] for the implementation of digital 

filter in one direction.   

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Lowpass filter 

 

The graphical output of this section consists of four kinds 

of figures, namely the data point figure, the curve figure, 

the original and smoothed discrete curvature plots of the 

data points. In the curve figures, the spots indicate the 

knots determined using the presented algorithm. 

The data of the first example originate from a section of 

a turbine blade (see Fig. 6 (a)). The curve is sampled 

evenly with respect to the parameter, and the obtained 

data points are disturbed with number less than 0.01. 

The maximum and average errors are 0.07186, 

0.01254, respectively. The features of the curve are 

retrieved successfully (see Fig. 6 (d)). The original 

curvature plot of the data is shown in Fig. 6(b), and the 

smoothed curvature plot is shown in Fig. 6(c).  
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(d) 

 
Fig. 6. Knot placement for a blade section: (a) original data 

points,  (b) initial discrete curvature, (c) smoothed discrete 

curvature, (d) the approximating curve 

 

The following example is from RE application in 

automotive industry. The data of this example originate 

from a section of the hood of a car (see Fig. 7 (a)). The 

points are not evenly distributed, but they are dense in 

most regions. From the discrete curvature plot shown in 

Fig.7 (b), we can observe that the noise is very severe, 

and it is difficult to find out the design intent from the 

curvature plot. The smoothed curvature shown in Fig. 

7(c) mostly coincides with the design intent. The 

variance intention of curvature is roughly exposed. The 

distribution of the knots shown in Fig. 7(d) coheres with 

the intended variance of the curvature of the underlying 

curve in most portions. The features are also retrieved 

successfully. The maximum and average errors are 

0.08616,  0.01648, respectively. 

The average error of the approximating curve of the 

blade section data is comparable to the initial 

disturbance we added to the data. This proves that our 
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algorithm is effective in retrieving the underlying curve 

from noisy data. The approximation error of the other 

example is also quite acceptable for RE applications. 

Meanwhile, the knots determined using our algorithm 

always satisfy the Schoenberg-Whitney condition. Other 

techniques, such as parameter correction and curve 

fairing [2], [6], can be used subsequently to refine the 

curves for the applications where the requirements are 

very strict.  
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(d) 

 
Fig. 7. Knot placement for a hood section: (a) original data 

points, (b) initial discrete curvature, (c) smoothed discrete 

curvature, (d) the approximating curve 

 

The data points need not be pre-processed in the above 

knot placement procedure except the interactive deletion 

of outliers and dropouts when it is necessary. From the 

point of view of accuracy, pre-processing of the data, 

such as smoothing and re-sampling, may introduce 

uncertainty into the data. The curves reconstructed using 

the presented algorithm are freed from this kind of 

uncertainty and conform to the given data. 

 

7. CONCLUSIONS 
A new knot placement algorithm has been described in 

this paper for B-spline curve approximation to dense and 

noisy data points. In this algorithm, the discrete 

curvature of the data points is smoothed using lowpass 

digital filter to expose the curvature characteristics of the 

underlying curve of the data. Then knots are 

automatically placed to make the curve, which passes 

the corresponding points, be of locally small deflection. 

This heuristic rule for knot placement can also be used in 

B-spline curve approximation to smooth data points. 

The knots determined using this approach are sensitive 

to the variation of the curvature, which means knots are 

concentrated in the regions where the function 

underlying the data is more ‘severe’.  
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