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ABSTRACT 

 
A rational cubic spline, with shape parameters, has been discussed with the view to its application 
in Computer Graphics. It incorporates both conic sections and parametric cubic curves as special 
cases. The parameters (weights), in the description of the spline curve can be used to modify the 
shape of the curve, locally and globally. The rational cubic spline attains parametric C2 smoothness 
whereas the stitching of the conic segments preserves visually reasonable smoothness (C1) at the 
neighboring knots. A very simple distance-based approximated derivative scheme is also presented 
to calculate control points. The curve scheme is interpolatory and can plot parabolic, hyperbolic, 
elliptic, and circular splines independently as well as bits and pieces of a rational cubic spline. We 
discuss difficult cases of elliptic arcs in space and introduce intermediate point interpolation scheme 
which can force the curve to pass through given point between any segment. 
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1. INTRODUCTION 

A common problem, in Computer Graphics, is to design 
a curved outline by stitching small pieces of curves 
together. Piecewise rational cubic spline functions 
provide powerful tools for designing of curves, surfaces 
and some analytic primitives such as conic sections that 
are widely used in engineering design and various 
computer graphics applications. These applications may 
be representing some font outline [13], round corner in 
an object [3], or it may be a smooth fit to a given data 
[9]. Several segments of curves, to compose a desired 
curve outline, can have different mathematical 
descriptions. For example, a font “S” when designed, 
appears to have straight lines, conics, and cubics as 
essential parts of its outline. Single mathematical 
formulation for the precise definition of various types of 
geometry shapes is one of the major advantages of the 
rational cubic spline functions. This research is oriented 
towards similar direction and expected to achieve goal 
in terms of representing a piecewise parametric curve 
scheme which has all the features to produce a desired 
outline of shape. 
 
In [2], C1 rational cubic splines with exact derivatives for 
control points were used. We introduce a similar 
interpolant with a very simple distance-based 
approximated derivative scheme and achieved fine 

results. Our scheme is also more simple than area-based 
derivative scheme in [12]. Our research describes the 
parametric C1 and C2 rational cubic spline 
representation possessing a family of shape control 
parameters. This family of shape parameters has been 
utilized to produce straight line segments, conics, and 
cubics. The features of maintaining some reasonable 
amount of continuity (C1) between conic and cubic arcs, 
estimated end derivatives, conic (circular, elliptical, 
parabolic, and hyperbolic) splines, circular arcs for given 
radius or center, elliptic arc in space and intermediate 
point interpolation are further achievements in this 
research. In [2], end derivatives are based on the 
assumption of the user, which is not convenient. 
Moreover, the conics were not discussed at all. We have 
estimated most suitable end derivatives for more 
pleasing results. In [10], cubic and conic segments are 
joined with G1 continuity which is not reasonable for 
some practical applications. Intermediate point 
interpolation scheme and circular arcs, presented in [5], 
are not practical as the space curves and exact circular 
arcs are not possible. [11] offered intermediate point 
interpolation scheme with C0 continuity at 
neighborhood points. [6] presented G1 continuity in his 
recent research work on constrained guided curve 
scheme. He used rational quadratic function. We use 
rational cubic function and offer better continuity (C1). 
In [4], rational quadratic spline is used for circular spline. 
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We have used very simple technique using rational 
cubic spline to achieve same circular spline. 
 
We have used a very simple algorithm for any type of 
plane or space curve, parallel or non-parallel end 
tangents. Our scheme can generate exact circular and 
elliptical arcs. We have applied degree elevation 
techniques on rational quadratic spline as mentioned in 
[7]. NURBS (Non Uniform Rational B-Spline) 
representation of ellipse is given in [7]. We have 
improved this technique to handle any type of elliptic 
arcs even in space. In addition, the scheme has the 
following properties, which may lead to a more useful 
approach to curve and surface design in CAGD. 

• The curve has C2 continuity between the 
rational cubic arcs and C1 continuity between 
cubic and conic arcs. 

• Most suitable end derivatives are estimated. 
• The scheme is local, i.e. shape control 

parameters will not significantly affect the 
adjacent parts of the design curve. 

• A distance-based approximated derivative 
scheme is also used to compute control points. 
Tangent vectors vary continuously along the 
curve preserving C1 continuity. 

• Any part of the rational cubic spline can be 
made conic (with exact circle and ellipse) or 
straight line using the same interpolant. 

• Intermediate point interpolation scheme has 
been introduced for use in guided curve. 

• Our scheme can handle any kind of elliptic arc 
in space. 

• All methods are suitable for space curves and 
hence can also be generalized to surfaces. 

 
This paper has been organized in such a way that a 
parametric rational cubic spline scheme is considered in 
next section. Analysis of the designing curve has been 
made in section 3. In section 4, we present a scheme to 
calculate end derivatives (tangents). We discuss 
conditions for conics and straight line segments in 
section 5. This section also covers all types of circular 
and elliptical arcs in space and introduces a very 
powerful method for intermediate point interpolation. 
Examples are discussed in section 6. Finally, conclusion 
has been made in section 7. 
 
2. THE RATIONAL CUBIC SPLINE 

The cubic spline is the spline of the lowest degree with 
C2 continuity. C2 continuity meets the needs of most 
problems arising from engineering and mathematical 
physics. Rational cubic spline functions of lower degree 
are numerically simple, stable and fundamental of all 

rational space curves. Let Fi∈R
m, i=1,…,n, be a given 

set of points at the distinct knots ti∈R, with unit interval 
spacing. Consider first degree parametric piecewise 
rational function for straight line segment between Fi and 
Fi+1: 
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Fig. 1. Plot of P(t) with Vi, Wi from (4) Straight line, (5) Conic 
and (6) Cubic. 

 
We apply degree elevation formula ([1], p. 104) to get 
quadratic rational Bézier function: 
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where Ui may be taken as the point of intersection of 
tangents at Fi and Fi+1 (see Fig. 1). Applying again 
degree elevation, we get rational cubic Bézier function: 
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which is a straight line segment between Fi and Fi+1 with 
control points: 
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and  weight γi=αi+βi. Similarly this function (3) is a 
conic curve between Fi and Fi+1 with following control 
points: 
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Thus only one interpolant (3) is enough for straight line 
segment, conic arc and cubic arc. It is C1 Hermite 
function for: 
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This can be achieved by imposing the Hermite 
interpolation conditions: 
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3. DESIGN CURVE ANALYSIS 
The parameters αi, βi and γi are mainly meant to be used 
freely to control the shape of the curve. At the same 
time, for the convenient of the designer, it is also 
required that the ideal geometric properties of the curve 
are not lost. The geometric properties, like variation 
diminishing, convex hull, and positivity, are the ones 
which need to be presented in the description of the 
design curve. 

• For the constraints, αi>0, βi>0 and γi>-αi, -βi, 

∀i, it is very obvious that the rational cubic is 
characterized as of Bernstein Bézier form. The 
case for default values of shape parameters 
αi=1=βi and γi=2 is that of cubic Hermite 
interpolation. 

• Thus following the Bernstein Bézier theory, the 
piece of curve Pi(t) lies in the convex hull of Fi, 
Vi, Wi, Fi+1. 

• It also follows the variation diminishing 
property within the convex hull. That is any 
straight line crossing the control polygon of Fi, 
Vi, Wi, Fi+1 does not cross the curve more than 
its control polygon. 

 
3.1 Point and Interval Tension 

The following `tension' properties of the rational Hermite 
form are now immediately apparent from (3) and (6), 
(see Fig. 2). 
 
3.1.1 Point Tension 

Accentuated point tension can be achieved by 

considering αi-1=βi→0. The point tension property holds 
from both right and left of ti, where the spline interpolant 
becomes C0. This case thus allows the introduction of a 
tangent discontinuity at ti. 
 

 
 

(a) Default: 
αi=1=βi-1, γi=2 

 
 

(b) Point tension: 

α3=0.2=β2 

 
 

(c) Interval tension: 

γ2=20 
 
Fig. 2. Demonstration of shape parameters using distance-based 
derivatives (C1 continuity). 

 

 
 

(a) Supposed 

 
 

(b) Distance based 

 
 

(c) Reasonable 
 
Fig. 3. Demonstration of end derivatives using exact derivatives 
(C2 continuity). 
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See Fig. 2(b)., where point tension is increased at 3rd 
point by decreasing the values of α3 and β2. 
 

3.1.2 Interval Tension 

The interval shape property is obvious from the following 
limit behavior. That is, the increase in the shape 
parameter γi in any interval i tightens the curve towards 
the line segment joined by the control points and the 
resulting rational spline interpolant is C1 at ti and ti+1. 
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(a) Parabolic 

 
 

(b) Hyperbolic 
 

 
 

(c) Elliptical 

 

 
 

(d) Circular 
 

Fig. 4. Conic spline. 

 
See Fig. 2(c)., where interval tension is increased for 2nd 
segment by increasing the value of γ2. 
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4. TANGENT VECTORS 
There are different choices of the tangent vectors Di at 
Fi, which can be opted for practical implementation for 
the computation of a curve with specific amount of 
smoothness. For curve methods, some reasonable 
tangent approximation method can be used. The 
distance-based approximations are found reasonably 
good as far as pleasing smoothness is concerned. For a 
higher continuity, for example C2 rational cubic spline, 
complicated constraints are required to be fit. Readers 
are referred to [10] for detail. 
 

4.1 Estimation of End Tangent Vectors  

Tangent vectors for end segments are usually supposed 
but unfortunately these are not visually pleasing always. 
To make the end segments more appropriate, a  
compatible choice for the curve scheme of this paper, is 
presented here. For tangent at first point, let θ1 be the 
angle between F3-F1 and F2-F1. Let T1 be the rotation of 

F2 around F1 by an angle θ1 on the plane passing 
through F1, F2 and F3. Now we derive tangent vector D1 
at first point as follows: 
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where µ1 is determined by the condition: 

.2111 FUFU −=−            (10) 

Similarly, for tangent vector Dn at last point, let θn be the 
angle between Fn-2-Fn and Fn-1-Fn. Let Tn be the rotation 
of Fn-1 around Fn by an angle θn on the plane passing 
through Fn, Fn-1 and Fn-2. Then 
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where µn-1 is determined by the condition: 
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Visual difference between different types of end tangent 
vectors has been demonstrated in Fig. 3. 
 
5. CONIC SPLINE AND STRAIGHT LINE 

Conic and straight line are the most important parts in 
designing which can be achieved through rational cubic 
interpolant (3), so that we can use the same interpolant 
for all types of curves. As mentioned before, Ui is the 
point of intersection of tangents at Fi and Fi+1. In case 
the tangents are parallel, Ui can be taken as the point 
where the arc is desired to be divided into two pieces, for 
example, it may be the inflection or the middle point, 
etc. For conic section properties and choice of shape 
parameters, various conics are recovered depending 
upon the nature of weights [8]. Also readers are referred 
to ([7], p. 291-295) and ([1], p. 73-96). According to [7], 
the conic shape factor: 
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determines the conic; if the three weights are changed in 
such a way that k is not changed. Thus any two weights 
can be chosen arbitrarily; the conic is then determined 
by the third weight. It is customary to choose αi =1=βi. 
The C1 conic spline is: 

• Parabolic if γi=2 (Fig. 4(a)). 
• Hyperbolic if γi>2 (Fig. 4(b)). 
• Elliptic if -1<γi<2 (Fig. 4(c)). 
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5.1 Conic Arc in Cubic Spline 

Rational cubic interpolant (3) can easily adjust conic 
segment in cubic spline. Cubic segments are already 
joined by C2 continuity but we also need some 
smoothness between conic and cubic segments. C1 
continuity is enough  for visually pleasing results. Let i-th 
segment between Fi and Fi+1 is conic. If i>1, then for C1 
continuity at Fi, we impose the constraints 

)()( )1()1( +− =
ii
tt PP   to find 

( ) ( )
.

1

12

1

1
1

−

−
−

+

+−++
=

i

iiiii

i

γ

γγγ VF
W          (13) 

If i<n, then for C1 continuity at Fi+1, we impose the 
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5.2 Circular Spline 

For G1 circular spline, see Fig. 5., and consider: 

,cos2 φγ =
i

            (15) 

where φ is the angle between Fi+1-Fi and Ui- Fi. Let Ti be 
the unit vector along Di and Ui, the point of intersection 
of tangent vectors at Fi and Fi+1 is: 
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Circular spline is given in Fig. 4(a). Fig. 4(a)., shows 
three point exact circle. 
 
5.3 Circular Arc 

This section is devoted for the construction of circular arc. 
The cases, for a given radius and given center, are 
independently discussed. 
 
5.3.1 Circular Arc For Given Radius 
Let r be the given radius of the circular arc such that 
r>(|Fi+1-Fi|)/2. Then, the center M can lie anywhere on 
the circle centered at N=(Fi+Fi+1)/2 and having radius b 
as follows: 
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It will be preferred that M should lie on the plane passing 
through Fi, Fi+1 and Úi, where Úi is the intersection of Fi-

Di and Fi+1-Di+1. Therefore circular arc should lie on the 
side of Úi. Let e1 be the rotation of Fi+1 around N by an 
angle θ on the plane passing through Fi, Fi+1 and Úi, 
where θ=π/2 for anti-clockwise rotation and θ=-π/2 for 
clockwise rotation. 
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Fig. 5. Bézier points of Circular Arc. 

 

 
 

Fig. 6. A three-point circle given in rational cubic Bézier form. 

 

 
 

Fig. 7. Rational cubic spline with mid interval as circular arc 
piece for radius r=15 (dashed), 18 (bold), 24 (normal). 

 
Now, e=(e1-N)/|e1-N| is a unit vector passing through 
N and perpendicular to Fi+1-Fi. Then, M=N+be will be 
the center of our required circular arc. Let φ=∠FiMN. 
Replace φ with -φ if circular arc rotation is anti-clockwise. 
Next, we find γi from (15). Let T′ be the rotation of Fi+1 
around Fi through angle φ on the plane passing through 
Fi, Fi+1 and Úi from which we have Ti=(T′-Fi)/|T

′-Fi|, a 
unit tangent vector at Fi. Now use (16) to find Ui, (5) to 
find control points Vi and Wi, (13) for C

1 continuity at Fi, 
(14) for C1 continuity at Fi+1 and finally use rational 
cubic interpolant (3) for required circular arc. In this 
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scheme the radius r can be used as a shape control 
parameter demonstrated in Fig. 7. 
 
5.3.2 Circular Arc For Given Center 

 

 
 

Fig. 8. Rational cubic spline with mid interval as circular arc 
piece for given center. 

 
Let M be the given center of the circular arc such that 
|Fi+1- M|=|Fi-M|. Let M′ be the rotation of M around 
Fi by an angle θ on the plane passing through Fi, Fi+1 
and M, where θ=π/2 for clockwise rotation and θ=-π/2 
for anti-clockwise rotation.  Ti=(M′- Fi)/|M

′-Fi| is a unit 
tangent vector at Fi. Let φ be the angle between Fi+1-Fi 
and Ti. Now use (15) to find γi, (16) to find Ui, (5) to find 
control points Vi and Wi, (13) for C

1 continuity at Fi, (14) 
for C1 continuity at Fi+1 and finally use rational cubic 
interpolant (3) for required circular arc. Fig. 8., shows the 
plot of C-type rational cubic spline with mid segment as 
circular arc. The center of this circular arc is shown as 
small disk where as given data is shown as small circles. 
 
5.4 Elliptic Arc 
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Fig. 9. Bézier points of Elliptic Arc. 

 

 
 

Fig. 10. A four-point ellipse given in rational cubic Bézier form. 
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Fig. 11. An elliptic arc in space. 

 
This section is devoted for the construction of elliptic arc 
in three dimension. Very complicated cases have also 
been treated, e.g., when major axis becomes too much 
larger than minor axis and required elliptic arc consists of 
highest curvature part of the ellipse. 
 
Given start point Fi, end point Fi+1, center M, unit vector 
along major axis X, unit vector along minor axis Y, semi 
major axis a and semi minor axis b (see Fig. 9). XMY is 
a local coordinate system in space. Let θs=∠XMFi and 
θe=∠XMFi+1. If necessary, use Newton Raphson 
method to compute θs and θe. If θs>θe, replace θs with θs-
2π. S(=M+a cos θ X+b sin θ Y}) is a point on elliptic 
arc, where θ=(θs+θe)/2. Let Ui be the point of 
intersection of tangents T0(=-a sin θs X+b cos θs Y) and 
T1(=-a sin θe X+b cos θe Y) at Fi and Fi+1 respectively. 
Let R be the point of intersection of S-Ui and Fi+1-Fi. 
The quadratic rational Bézier arc (3) can be written in 
the form: 
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Now the line L(u)=[Fi, Fi+1] is obtained by taking γi =0. 
Therefore 

( )
( )

,
1

1
)(

22

1

22

uu

uu
u

ii

+−

+−
= +FF

L               (21) 

which is convex combination of Fi and Fi+1 and 
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Therefore, Q(u)=S and from (20), we can easily find 
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Now use (5) to find control points Vi and Wi and rational 
cubic interpolant (3) for required elliptic arc. Four point 
ellipse given in rational cubic Bézier form. Fig. 11., is 
showing an elliptic arc in space from following given 
information: 
 
a=20, b=1, M=(0,0,2), 
Fi=(18.967819, -2.184863, 3.943775), 
Fi+1=(-7.476452, 1.674027, 1.144135), 
X=(0.990033, -0.099335, 2.099833), 
Y=(0.109252,0.989038, 1.900665). 
 
5.5 Intermediate Point Interpolation 

 

 
 

(a) u is calculated 

 
 

(b) u=0.2 (normal), 0.4 (dashed), calculated (bold) 
 

Fig. 12. Intermediate point interpolation. 

 
We need to insert point C between Fi and Fi+1 while 
preserving some reasonable continuity (C1) at Fi and Fi+1. 
For αi =1=βi, consider: 
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Next, use (5) to find control points Vi and Wi, (13) for C
1 

continuity at Fi, (14) for C
1 continuity at Fi+1 and finally 

use rational cubic interpolant (3) for required result. Fig. 
12(a)., is showing an intermediate point interpolation in 
middle segment where the curve is forced to pass 
through different small disks. 
 
The parameter u can also be used as shape control 
parameter within the range 0<u<1. For different values 
of u, we can construct a family of curves interpolating C 
(small disk) as shown in Fig. 12(b). 
 
5.6 Straight Line Segment 

For straight line segment using rational cubic interpolant 
(3), we have following four different methods: 

1. Consider γi =0. 
2. Replace Ui with Fi or Fi+1 and then use (5) to 

find control points Vi and Wi. 
3. Use intermediate point interpolation scheme by 

inserting point C on line joining Fi and Fi+1. 

4. Consider γi=αi+βi, then find control points Vi 
and Wi from (4). 

 
6. EXAMPLES 

 

 
 

(a) Default 

 
 

(b) With interval and Point 
tension control 

 
Fig. 13. Times new roman font “S” with rational cubic spline 
interpolation. 

 
Data taken from times new roman font “S” has been 
interpolated by default rational cubic spline in Fig. 13(a). 
It is not as desired. Point and interval tension parameters 
are changed to achieve visually pleasing shape for font 
“S” in Fig. 13(b).  



 716 

 
 

(a) 
 

 
 

(b) 

 
 

(c) Cup 

 
 

(d) 

 

 
 

(e) 

 
 

(f) Lamp 

 
 

(g) 

 

 
 

(h) 

 
 

(i) Bowling pin 

 
 
(j) 

 

 
 

(k) 

 
 

(l) Vase 

 
Fig. 14. Rational cubic spline (From left to right: Default, Well shaped, Shaded rendition of well shaped outlines). 
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Fig. 14., illustrates the design of a rational cubic spline 
used for a surface of revolution that represents a cup, 
lamp, bowling pin and vase. Figures 14(a)., 14(d)., 
14(g)., and 14(j)., are default shapes with exact 
derivatives and use default values of shape parameters, 

i.e. αi=1=βi and γi=2. Figures 14(b)., 14(e)., and 14(h)., 
are also with exact derivatives whereas Fig. 14(k)., is 
plotted with distance-based approximated derivatives. 
To make these figures well shaped and pleasing, we used 
shape control parameters and inserted some conic or 
straight line segments connected by C1 continuity with 
neighborhood cubic segments. Detail about these figures 
is as follows: 

Fig. 14(b): from bottom, γ1=100, γ3=10 and γ4=100. 
Second segment is a circular arc. All other segments are 
cubic connected by C2 continuity and use default values 
of shape parameters. 

Fig. 14(e): from bottom, γ1=100, γ3=100, γ5=100, 
γ6=0.1 and γ7=100. Second segment is a circular arc 
with radius 15. All other segments are cubic connected 
by C2 continuity and use default values of shape 
parameters. 
Fig. 14(h): From top, first segment is a circular arc with 
radius 8, second last is a conic and last is a straight line. 
All other segments are cubic connected by C2 continuity 
and use default values of shape parameters. 
Fig. 14(k): from bottom, γ1=200, γ7=0.01, γn-1=100. 
Fifth segment is a circular arc. All other segments are 
cubic connected by C1 continuity and use default values 
of shape parameters. 
 
7. CONCLUSION 

We have described an interval controlled rational cubic 
interpolation scheme. The scheme offers a number of 
possible ways in which the shape of the corresponding 
curves may be altered by the users. It is therefore felt that 
such a scheme could be a useful addition to an 
interactive design package, with the user having enough 
control over the curve segments. The provision of the 
shape parameters, in the description of the piecewise 
rational functions, provides freedom to modify the shape 
in desirous regions in a stable manner. The rational 
spline scheme is meant for parametric curves and is 
capable of designing plane as well as space curves. It is 
an interpolatory rational spline scheme enjoying all the 
ideal geometric properties. It has features to produce all 
types of conic curves in such a way that the whole design 
curve may be produced as a circular, elliptic, parabolic, 
or a hyperbolic spline curve. In addition, the desired 
conic pieces may also be fitted within the rational cubic 
spline. Overall smoothness of the rational cubic spline is 
C2 whereas the conics are stitched with C1 continuity. 
The curve scheme is extendable to surfaces. 
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