
 701

Towards Designing in Adaptive Virtual Worlds

Gregory J. Smith1, John S. Gero2 and Mary Lou Maher3

1 University of Sydney, g_smith@arch.usyd.edu.au

2 University of Sydney, john@arch.usyd.edu.au
3 University of Sydney, mary@arch.usyd.edu.au

ABSTRACT

We present an approach to designing from within a virtual world in which the objects in the world

have agency. In this kind of world, agents are associated with design components rather than

specific design processes. By combining adaptive virtual worlds with situated FBS, we have a

different kind of design support, illustrated through scenarios of building design. his document

outlines the necessary details to prepare a conference paper for the annual CAD conferences.

Authors are requested to follow all formatting instructions encoded into this MS Word file. To

simplify the task of paper preparation, simply cut and paste the relevant sections into this

document.

Keywords: Agent, designing, virtual world.

1. INTRODUCTION

Typically, designing using CAD as a visualization and

documentation aid runs as follows. Starting with a set of

incomplete and possibly inconsistent requirements,

conceptual designing proceeds using pencil and paper

or some qualitative computer tools, attempting to

resolve those requirements. At some point the designer

progresses onto detailed design. Also at some point, but

probably not at the same point, pencil and paper give

way to computational tools such as CAD packages,

numerical analysis tools, word processors, spreadsheets,

databases and so on. Current CAD tools tend to focus

on detailing, visualizing and documenting a designed

structure. Despite AI being useful for specific designing

tasks, designing is predominantly performed by one or

more designers, either separately or collaboratively.

 Virtual worlds as 3D multi-user environments

provide the potential for a different kind of support for

design processes. In a 3D virtual world, the designers

can interact with each other and manipulate the

components of the design while being immersed in the

virtual design. The concept of adaptive virtual worlds

takes this one step further. An adaptive virtual world is

one in which each component of the virtual design has

an associated rational agent. The agent is able to reason

about the design and the design changes, and to interact

with the human designers in response to their design

decisions.

 In this paper we introduce our conception of

agent-based virtual worlds, which provides the basis for

adaptive virtual worlds. In this kind of world, agents are

associated with design components rather than specific

design processes. We consider this idea as an extension

to the FBS model [1] by using the concept of situated

FBS [2]. By combining adaptive virtual worlds with

situated FBS, we have a different kind of design support,

illustrated through scenarios of building design. We

begin with a discussion of agent-based virtual worlds.

Situated designing by agents is then described, followed

by a review of a package that allows agents to be used

with the Active Worlds platform. The notion of designing

within the design is considered, and we finish with an

example design scenario.

2. AGENT-BASED ADAPTIVE VIRTUAL

WORLDS

Work on intelligent buildings has focused on human

designers designing real buildings that behave

intelligently. There are already existing buildings with

computerized communications, energy management and

environmental control systems. Recent work in AI is

leading to the development of ``enhanced reality''

rooms using embedded sensors and effectors, such as for

the provision of embedded teleconferencing facilities [3].

In this paper we reverse this focus, placing intelligence

into agents that act at design time. We discuss in this

section two motivating examples. one is designing via

 702

adaptive virtual worlds, the other is the design of

adaptive virtual worlds.

 An example of designing via adaptive virtual

worlds is collaborative designing using systems of agents.

One or more designers log into a virtual world containing

a representation of the building that is being designed.

The designer expresses changes to requirements as chat

using a structured subset of natural language, through

changes to structure by directly manipulating objects in

the world, or via gesture recognition from a sketching

interface. Consider a designer deciding that a room is

too small. Let there be zone agents that reason about the

spaces delimited by 3D objects, and let wall agents

reason about 3D wall objects. The designer uses chat to

tell a zone agent that it is too small, the wall reformulates

expected behaviours, and communicates with the

bounding wall agents so as to achieve the movement of

a wall. Agents associated with that zone will act

cooperatively but agents associated with adjoining zones

may not. For cooperative zone agents, objects connected

to the wall will also move (such as paintings and pipes),

and floors and ceilings will expand appropriately. An

adjoining zone may then reduce its space, and so that

zone then negotiates to compensate.

 An example of the design of adaptive virtual

worlds is the intelligent virtual office described in [4]. As

an example, one agent in this system is an intelligent

door that has functions of allowing access, to restricting

access, and providing security. The door agent

recognizes the 3D representation of itself in an AW world

and then maintains itself according to those functions.

The door is informed by other agents of the classification

of avatars that are nearby. Depending on these and on

the door's interpretation of the world, it chats with

avatars so as to determine security clearance and

changes its structure so as to allow or restrict access.

 These worlds are composed of objects such as

walls and floors, and each object can be associated with

an agent. When a person interacts with a virtual world

via a browser they interact with a set of objects. These

objects are 3D models, avatars, sounds, chat and so on.

Virtual world browsers are designed to efficiently display

these objects. Conceptually we wish that these objects, or

at least a subset of these objects, can behave intelligently

and so conceptually we consider a world that is a system

of interacting agents. But in implementation terms the

act of constructing 3D models may be distinct from the

act of instantiating them in a world. So some agents

represent themselves in a world as one or more objects

and some do not. A wall agent would represent itself as a

3D model of a wall; a zone agent would not represent

itself as an object in a world. Similarly, some objects may

be associated with an agent and some may not be. In the

next section we discuss how such agents can represent

their world and the objects that constitute it.

3. SITUATED DESIGN

3.1 Situated FBS

The FBS model of design knowledge [1] categorizes the

knowledge about a specific design component in terms

of its structure (what it is), its behaviour (what it does),

and its function (what it is for). In FBS models,

behaviour is determined from structure according to

some causation. Causation is a relation between two

things where the first is thought of as somehow bringing

about the second [5]. In the physical world, this

causation is modeled based on our understanding of the

laws of physics. With virtual worlds the bringing about is

from procedures computed by agents or by the server, so

behaviour is determined by whatever the “virtual

physics”' are in the underlying platform. Regardless of

whether the causation is physics or virtual, an agent's

representations of interpreted behaviour are computed

from its expectations of behaviour and from interpreted

structure. These interpretations are computed from either

encoded interpretation rules or are learned from

experience.

 Taking the FBS model to a situated model, the

structure, behaviour and function are all interpretations

by an agent from sense-data and from the sensed impact

of effect-data. The sense data include the information

from the virtual world server that describes the state of

the components or objects in the world. Structure are

beliefs of what objects in the world are, behaviour are

beliefs of what objects in the world do, and function are

beliefs of what objects in the world are for. Further

discussions of interpretation are found in [6].

 Figure 1. shows the situated FBS (sFBS) model

of Gero [2] overlayed with an agent's process model.

The interpreted world FBS
ii
∪∪ is the agents

beliefs of how the environment is now and the expected

world
eee
FBS ∪∪ are the agent's beliefs of how it

expects or desires the environment to be.
x
S is the

structure of the

environment.

 703

i
S are the set of all structures of objects in the

environment that are interpreted by the representing

agent, and
e
S are the set of all expectations of

structure. To describe only the structure of a particular

object we constrain
i
S or

e
S to only those objects. So

for a wall Wall1, interpreted structure is the set of

properties { }[]1WallS
i

, or in shorthand as

[]1WallS
i

. Behaviours and functions can be denoted

similarly.

 Agents in any multi-agent system necessarily

communicate. Any agent could communicate indirectly

with another since it could sense and effect it's

environment, and so changes made by one agent to the

environment could be interpreted by another. In this

work we define direct communication to mean agents

intentionally sending each other or persons messages

such as chat, and indirect to mean changing the

environment and having another agent or person

interpret those changes.

 Agents that communicate directly must believe

that they share a common understanding of the contents

of messages. A shared understanding is common ground

[7]. Common ground here consists of an ontology, a

shared language of illocution, and interaction protocols.

For our agents, communications to or from person

agents are as textual chat, and communications between

artificial agents are in an agent communication language

(ACL) the locution of which is XML.

 Messages, chat or otherwise, sent between

agents are objects. A text string representing chat is the

structure of a communication. The receiving agent

interprets the structure of the communication as

concerning the structure, behaviour or function of

another object. The structure of a communication and

structure in the content of a communication are therefore

different things.

 For persons, interaction protocols are learned

as a part of learning natural language. For the artificial

agents that we have implemented the protocols and

ontology used have been encoded. To be situated,

though, we should expect experiences of an agent to be

reflected in it's beliefs and behaviour. Learning the

contents of communications is beyond the scope of this

paper; it is a difficult learning task that is being

considered by researchers such as Steels [8].

 In the case where communications are from a

person that is a designer, direct communications will be

as chat and so the artificial agents will require some

amount of natural language understanding. For the

artificial agents that we have implemented, interpretation

of chat has been restricted to sentences of the form
[name,] verb [direct object]

[preposition] [indirect object]. Here

verb is compulsory and name, direct object,

preposition and indirect object are optional.

Each communication of this form is interpreted as an

inform or request on the structure, behaviour or

function of an object known to the agent. With an

inform a designer communicates a belief of the

structure, behaviour or function of that object. With a

request the designer communicates a desire for

Interpreted
world

Expected
world

Agent

Environment

Effectors

Focusing
Transformation

Fe

B

S

e

e

Fi

i

iS

B

S

Sensation

Hypothesiser

Action
Activation

Interpretation

Legend

x

Figure 1. Diagram of sFBS transforms overlyed with agent processes.

 704

change to the structure, behaviour or function of an

object. For communications between artificial agents the

idea is similar except that natural language is not used.

Instead, these inter-agent messages contain XML

serialized java beans.

For indirect communications, the structure that is

interpreted is not the structure of a communication about

an object but is instead the structure of an object in the

world. One designer may sketch on a whitebeard, and

another designer interprets that changing structure. A

designer may decide that a wall is in the wrong place,

move that wall, and zone agents interpret changed

structure of that wall as a change to the structure of that

zone.

3.2 The AWAgent Package Implementation

In this section we review a package that allows for agents

to be added to worlds running on the Active Worlds

platform. Further details can be found in [4,6].

 We consider virtual universes that are object

based, where constructing 3D objects to be instantiated

in a virtual world is independent of the instantiation of

those objects in that world. Similarly, chat, avatars,

sounds, inter-agent messages and so on are all discrete

objects. We also allow for agents to sense and effect

objects that are not a part of a virtual world, such as by

sending each other messages in an

agent communication language (ACL).

 In general, a virtual universe is an environment

and a set of agents. The environment includes virtual

worlds plus any objects that exist independently of the

worlds, and worlds are a partitioning of virtual universe

objects into disjoint sets. That is, objects can exist in one

world but agents can exist across worlds. The

environment is everything between the effectors and

sensors of the set of agents; anything perceived via a

virtual world browser is a world.

 A virtual world (or universe) may be centralized

in a client-server fashion or it may be distributed. In a

distributed virtual universe it may be that, unlike with

client-server platforms such as Active Worlds, a virtual

world is implemented directly as a system of agents. So

to describe a universe independently of the

implementation platform we describe the server in a

client-server implementation as a special : “agent” a0,

and other agents as ai where i=..N. We can also describe

citizens logged into a world as “person agents”. Wall

agents represent themselves in a world as a 3D wall

object; person agents represent themselves in a world as

a 3D avatar.

 Some objects are associated with an agent and

some are not. An avatar occupies a space bounded by

objects - it does not occupy an object. So a 3D model of

a door, for example, will be associated with a door agent

but a zone agent that provides agency to a virtual space

will not correspond to any particular 3D object. By

“associated” we mean that the object represents the

agent in the world to other agents. Conversely, agents

are associated with zero or more objects. Of those agents

that are not associated with any 3D object, some

represent concrete concepts such as of a zone. Others

are abstract, such as to receive high level requirements

and decide what existing agent should handle it.

 A package called AWAgent was written with the

aim of providing a flexible, object oriented framework for

providing agency to AW worlds. Instead of being

statically linked at compile time, agents are configured

using an XML file that is loaded via a validating DOM

parser. This component based approach provides a

flexibility that allows for the reconfiguration of agents

running in a world without having to recompile and

restart the server. It is targeted at eventually inserting

agents into an AW world in the same way that a 3D

object is. Agents can be added or removed dynamically

according to the desires of a designer or according to

inferences by other agent. The creator of an agent

configures it by specifying a set of sensors, effectors, a

rule-base and other parameters. These sensors and

effectors encapsulate knowledge of how to communicate

with a world. An ACL sensor and effector similarly

encapsulated knowledge of how to send and receive

messages to and from other agents. Agents are written

using a combination of Java and Jess. Jess allows for

declarative programming of knowledge. Java allows for a

Java native interface to the Active Worlds platform, use

of imperative Java methods, access to the Internet via

HTTP sockets, and access to databases via JDBC. For

more details of the AWAgent package, see [4] and [6].

4. DESIGNING FROM WITHIN THE DESIGN

Designing is often a collaborative process in which the

rapport between designers is as important as their ideas

[9]. The interest in technologies that facilitate

collaboration is therefore unsurprising. Virtual design

studios (VDS) are one such technology. Maher [10] and

others have previously considered VDS and found that

they provide a means for sharing representations and

that they release some of the restrictions on the physical

locations of the collaborators.

 Many existing VDS maintain a desktop

metaphor. This allows for a loose coupling of existing

tools but does not encourage a community of

collaborators because designers interact with the desktop

rather than each other. The place metaphor of virtual

worlds provides a stronger sense of collaboration but

existing tools do not easily facilitate their use as design

environments. One reason for this is the amount of effort

at a structural level that is required to construct these

worlds. To build a building in Active Worlds, for

example, requires that detailed 3D models of walls,

 705

doors and so on be built, followed by their instantiation

at specific locations in the world. It is our conjecture that

if we can change all of the key objects in the world on

which a designer acts to be agents, then a lot of the

detailed structural effort can be encapsulated within

those agents. This and the ability of agents to

communicate and interact should allow designers to

focus much more on functional requirements.

 Designers from different disciplines often view

the same design differently. Further, another problem

with virtual worlds as VDS is that they are not good at

modeling the “uncertainty, multiple visions and

conflicting ideas that exist in the design process” [9]. We

believe that this is because constructing a virtual world is

a detailed exercise of instantiating specific concrete

structures. This forces designers to commit to specific

details for the purpose of visualization at a time when

they would rather not. The solution of Haymaker et al.

[11] is to use filter agents to interpret the same designed

structure variously according to the disciplines of the

designers.

 We propose the opposite approach where

agents are constructed with respect to required functions

and behaviours, with agents then constructing structure

variously. The design methodology proposed, then, is

based on designing a world as a set of dynamic

behaviours. This is in contrast to using CAD as drafting

tools of structure dictated by the designer. We want the

designer to concentrate on function and behaviour, and

have a system of agents look after changing structure as

much as possible. The way that we propose to achieve

this is by designing using adaptive virtual worlds. These

worlds are adaptive courtesy of multi-agent systems,

where design knowledge is embedded into agents of

different types that communicate so as to achieve design

goals. So, for example, different kinds of design

knowledge of what it is “to be a wall” is encoded into

generic wall agents that are then instantiated variously

and parametrically as required. Further, if the agents

learn then they could adapt to both other agents

(developing common ground) and to the designer.

Agents select and modify their 3D model, and they adapt

both collectively to changes in the system (the design)

and individually to actions by the designer.

 An important consideration is how to partition

the functionality required of a design amongst agents.

What should the scope of an agent be? A useful principle

from software engineering is to assign the scope of

agents so that they are maximally cohesive and have

minimal coupling with other agents. Decreasing coupling

between agents tends to decrease communication but

increase agent size, resulting in a larger set of ascribed

functions per agent. Having each agent ascribed only a

small set of strongly cohesion functions tends to minimize

agent size, with a consequent increase in

communication.

 Consider designing rooms. A wall could be

instantiated in a world as a single 3D object, as an

aggregation of 3D bricks, or as a part of a single room.

So functions and behaviours will, from the designers

viewpoint, be of the room as a space and of the wall as

an entity. This applies to all objects with an associated

agent such as doors, ceilings, floors and so on. Further,

some of the objects bound a space (walls, for instance)

and some do not (such as tables). A zone agent is an

example of agency applied to something that does not

correspond to an object in the world. As such it is an

example of behaviour that cannot be added to a world

without agents. A zone is a region of space, and as such

it is delimited by a set of 3D objects in the world but

does not represent itself in the world. The zone agent's

primary function is to maintain for the multi-agent

system a concept of what zones the office has. It

computes the zone space from sensed wall geometry,

and triggers a redesign of the space according to spatial

functions. So a zone can be the largest 3D convex hull of

points interior to a set of bounding objects and spatial

functions can be ascribed to zone agents. Other functions

can be ascribed to agents that represent themselves as

bounding and non-bounding objects, with the scope of

these agents decided as a compromise between

minimizing communication between agents and

maintaining that only similar functions be ascribed to

one agent.

5. SCENARIO

In previous sections we discussed agent-based virtual

worlds, situated designing by agents, and an approach to

designing from within the design. In this section we

further illustrate the idea through an example design

scenario.

 The design methodology described here

applies to designing any artifact that can be represented

in a virtual world where agents represent themselves by

changing world structure and designers interpret it in

terms of functional and behavioural requirements.

Design of architecture and mechanical devices are

examples, but the design of electric circuits is not

because the layout of circuit components has little effect

on the electrical behaviour of the circuit.

 In this section we consider by way of example

the scenario of the design of a building. The agents do

not encode the topology of the building and then search

it to satisfy design requirements. Rather, they

communicate using interaction protocols to propagate

changes to their neighbours, and they act reactively to

sensed changes to the environment. The aim is to

employ an adaptive system of agents that try to self-

organize but under designer control.

 706

 An example of self-organization is where one

agent makes a small change to the environment that

biases the actions of others that are nearby, such as by

adding a new chair to a table and having all of the others

adjust their locations automatically. There are many

cases where such a mechanism could be used in a multi-

agent virtual world. Walls and zones could, for example,

sense how many avatars are in a space and redesign the

space accordingly. Janitor agents could roam a world

looking for expired or otherwise undesirable objects or

avatars. Lighting agents could move around a world with

avatars, adapting to patterns of use. Walls that move in

one zone could trigger neighbouring walls to adjust their

own spaces by moving other walls.

 The minimum design is a single zone that is

bounded by the world (that is, unbounded). A new

design is started by instantiating a new society of agents

containing only a single unbounded zone. For the

purpose of this scenario let there be two designers

collaborating. Designer 1 is an architect and designer 2 is

an interior designer. These two designers could

communicate with each other directly with natural

language chat or indirectly by changing and observing

the structure of the world. Similarly, designers could

communicate with agents using the structured chat

described in Section 3.1. Designers could also

manipulate objects in the world in ways that agents

understand, such as by moving a wall and having both

wall and zone agents re-interpret their sFBS

representations accordingly. A distributed sketching tool

could also be used by implementing a distributed

sketching system and using gesture recognition to trigger

design actions to be sensed by agents. In this scenario we

shall focus on communicating functions and behaviours

via structured chat.

 ���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Figure 2. Initial plan view of the multi-agent system design. In

this figure the floor agent is shown pink and is named Floor.

The wall agents re named, clockwise from the top, Wall1, Wall2,

Wall3 and Wall4. The ceiling agent Ceiling is now shown. Note

that this particular set of agents were synthesized here for

example purposes only.

 Let the name of the existing unbounded zone

be Zone1. Designer 1 says “Zone1, create visual

boundary for Zone1”, which Zone1 receives as chat

sense-data. Zone1 interprets this sense-data as the

performative verb request for subject create of a

visual boundary with respect to agent Zone1. That

is, designer 1 is requesting that Zone1 change its function

to include a visual boundary. As no other requirements

have been communicated, hypothesizer in Zone1

changes it's expected behaviours and action activation

satisfies this by synthesizing a new default set of wall,

floor and ceiling agents located around the existing

central location of the zone. This is illustrated by the floor

plan of Figure 2.

Assume that designer 1 then chats with designer 2 saying

that there needs to be one room for displaying art and

another for holding meetings. Designer 1 then says

“Zone1, create partition of Zone1”. Zone1 interprets this,

updates it's functions, but hypothesizer decides that it

does not have sufficient information to construct new

expected behaviours: should the partition split Zone1

into two agents, or is an internal room divider required?

Zone1 constructs a communication protocol to interact

with the designer and receives an answer. Assume for

this example that the answer is to split into two zones.

 After the protocol completes, action activation

in Zone1 instantiates a new wall called Wall5, changes

zones representation []1ZoneS
i

 to represent a shift of

location to one side of Wall5, re-computes it's

representation of the bounds of the zone in []1ZoneS
i

and avatar classifications in []1ZoneB
i

 accordingly,

and instantiates a new zone Zone2 for the other side of

Wall5.

 These interaction processes continue, with the

designers chatting amongst themselves and then

communicating requirements to the agents. Each time

that a communication to an agent changes a decision

taken by an agent, such as assuming default structure,

that agent learns. So agents adapt to the preferences of

the designers. Figure 3. shows the design at a later time.

 707

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

Figure 3. Plan view after the addition of another wall, floor,

zone and furniture. Chairs are in blue, a table in magenta, and

pictures hanging on Wall5 are brown.

As this is a design environment, we need to be able to

add, remove and alter the agents that constitute the

system at runtime. We would like for this to happen

without all of the agents having to re-compute a world

model at each change. They should act appropriately in

different situations, where differences in situations cause

the application of the same knowledge to result in

differing behaviour. To facilitate this we allow the society

to add and remove agents dynamically at runtime, and

the agents for walls, furniture and so on are all situated

and reactive. Reactive processes usually have little or no

memory but tend to be very task specific. Reflective

(deliberative) processes usually reduce to some form of

search and therefore only work tractably if the problem

space is restricted [12]. Naturally, therefore, reactive-

reflective hybrids have been of interest. Neural network

hybrids are fast but lack variable binding ability. Most

symbolic hybrids are based on some propositional logic

but can be “wildly intractable” [2].

 The solution advocated by Chapman [13],

Horswill [12] and others is to use deictic references:

indexicals of signified function. The idea is to keep the

reactive rules but to change what they signify Horwsill

calls these deictic references roles. Each role is a signifier

(a label) that is bound to a set of properties and is

maintained by low level processes. For a picture agent,

then, at initialization time a role of wall-that-I-hang-on

would be bound to the 3D object that it sensed that it

touched. The interpretation process consists of simple

rules then sense changes in structural properties of

whatever object this role is bound to binds to. Reactive

action rules then act with respect to the role so as to, in

this particular case, maintain the ascribed functions of a

picture agent. The effect is to separate perception into

processes of identification and localization. Looking at a

specific place in the environment and interpreting what is

there is an identification processes. Given sense-data

from an attended object, identification identifies that

object using classifiers that partition the sensory space.

Having an expectation of what is in the environment and

finding its location is a localization process. Gaze control

in robot vision is a localization process.

 The furniture added in Figure 3. are situated,

reactive agents that also use default values and self-

organization to locate themselves. Chairs, for instance,

desire that they sit on a floor, attract to tables, repel from

other chairs, and they have knowledge of how to change

their structure. Pictures have similar goals and

knowledge except that they desire to hang on a wall.

These agents take the designers to be an oracle from

which they learn by making equivalence queries. So if a

designer explicitly changes an agent such as by

relocating it, then that agent learns such that in later self-

organizing actions this new knowledge will subsume the

default actions.

 Now let designer 2 decide that Zone1 is too

crowded for the amount of furniture that has been

added. The designers chat, agree that Zone1 needs to be

bigger, and designers 1 says “Zone1, enlarge to the

east”. Zone1 interprets this chat sense-data, updates

interpreted function, and hypothesizer asserts a new goal

for a wall to move. But wall agents move walls, not zone

agents. So Zone1 instantiates a request protocol to

Wall5, for example, to request that it move in a direction

equivalent to east.

 Wall5 receives the request and binds a role for

the-zone-to-retreat-from. Action rules in Wall5 recognize

this role and act to move Wall5. Now, when the wall

moves other agents in the neighbourhood sense the

change in structure of the room and react to the new

situation, self-organizing to adapt to the change. The

wall-that-I-hang-on role of the picture agents interpret

this sense-data as no longer in contact with the object

bound to the role (Wall5), and so their action rules effect

a move of their picture object accordingly. The wall

agent does not keep track of room topology for when it

moves because other agents look after themselves. The

floor and ceiling agents similarly sense that they no

longer bound at Wall5, bind roles for the wall, and grow

or shrink accordingly. The chair and table agents in the

two zones move so as to reach new equilibrium positions

with respect to the relocated wall. All of these agents

react to the changed situation without building a model

of the world a planning the optimal response. This allows

the system to adapt to new situations and changes to the

agent system.

 Sense-data from the change in the location of

Wall5 results in Zone2 interpretation re-computing it

bounds. Assume that Zone2 has a function of having a

minimum area. In this case Zone2 hypothesizer would

assert a goal to expand. Not having any knowledge of

how to achieve this directly, a contract net protocol is

instantiated to ask whether any agent in the system can

assist it. The Petri net there was drawn and simulated

 708

using Renew, hence all messages are shown as strings so

as not to confuse the diagram with other Java bean

instantiations. Zone2 sends a call for proposals (CFP) to

all agents in the society, or to all nearby agents. This

means that Zone2 does not need to maintain a

representation of the topology of agents and objects in

it's neighbourhood, and so can behave reactively in new

situations. Receiving agents either respond with a

proposal that it believes will satisfy the initiators

requirements, or respond with a refusal. Zone2 selects

one of the proposals received within the deadline and

sends an accept proposal message to that agent. In this

case it will be to a wall, resulting in that wall moving. As

before, the effects of that movement propagate to other

neighbouring agents.

 There is therefore an amount of adaption by

system as well as the individual. The system adapts

because the effects of changes propagate to

neighbouring agents. Indeed we could increase the

amount of adaption and self-organization by having

zones automatically enlarge according to the amount of

furniture present. Individuals adapt by learning from

communications with designers.

6. CONCLUSION

Virtual worlds as 3D multi-user environments provide the

potential for a different kind of support for design

processes. Designers can interact with each other and

manipulate the components of the design while being

immersed in the virtual design. Further, making the

world agent based allows it to reason about the design

and the design changes, and to interact with the human

designers in response to their design decisions.

Combining adaptive virtual worlds with situated FBS

leads to a different kind of design support.

7. REFERENCES

[1] Gero, J. S., Design prototypes: A knowledge

representation schema for design, AI Magazine

11(4) (1990) 26-36.

[2] Gero, J. S. and Kannengiesser, U., The situated

function-behaviour-structure framework, in: J. S.

Gero (Ed.), Artificial Intelligence in Design '02,

Dordrecht: Kluwer, 2002, pp. 89-102.

[3] Brooks, R., The intelligent room project, in:

Proceedings of the Second International Cognitive

Technology Conference (CT'97), Aizu, Japan

(1997).

[4] Maher, M. L., Smith, G. J. and Gero, J. S., Design

agents in 3D virtual worlds, IJCAI'03 Workshop on

Cognitive Modeling of Agents and Multi-Agent

Interactions (2003).

[5] Lacey, A. R., A Dictionary of Philosophy, London:

Routledge, 1996.

[6] Maher, M. L., G. J. Smith and Gero, J. S., Situated

agents in virtual worlds,upcoming (2003).

[7] Gero, J. S. and Kannengiesser, U., Towards a

framework for agent-based product modelling, in:

K. Gralen, U. Sellgren (Eds.), International

Conference on Engineering Design, ICED 03,

Stockholm, Sweden, The Design Society, August

2003.

[8] Steels, L., The origins of syntax in visually

grounded robotic agents, Artificial Intelligence 103

(1998) 1-24.

[9] Lawson, B., How Designers Think: The Design

Process Demystified, Oxford; Boston: Architectural

Press, 1997.

[10] Maher, M. L., Simoff, S. J. and Cicognani, A.,

Understanding Virtual Design Studios, London:

Springer, 2000.

[11] Haymaker, J., Ackermann, E. and Fischer, M.,

Meaning mediating mechanism: Prototype for

constructing and negotiating meaning in

collaborative design, in: J. S. Gero (Ed.), Artificial

Intelligence in Design'00, Dordrecht: Kluwer

Academic, 2000, pp. 691--715.

[12] Horswill, I. D., Grounding mundane inference in

perception, Autonomous Robotics 5(1) , 1998), 63-

77.

[13] Chapman, D., Vision, Instruction and Action,

Cambridge, MA: MIT Press, 1991.

