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ABSTRACT 

 
A method to scale a Catmull-Clark subdivision surface while holding the shape and size of specific 
features (sub-structures) unchanged is presented.  The concept of a previous approach for trimmed 
NURBS surfaces, fix-and-stretch [20], is followed here, i.e., the new surface is formed by fixing 
selected regions of the given subdivision surface that contain the features, and scaling and 
stretching the remaining part.  But the fixing process and the stretching process are performed 
differently because of the topology complexity of subdivision surfaces.  The resulting surface is 
again a Catmull-Clark subdivision surface and the method ensures that the resulting surface reflects 
the shape and curvature distribution of the original surface.  The contributions of the paper also 
include efficient strain energy computation techniques and energy optimization techniques for 
regions around extra-ordinary points.  The new method can handle shapes that can not be 
represented by trimmed NURBS surfaces and, consequently, can be used for more challenging 
applications.   

 
Keywords: constrained scaling, subdivision surfaces, constrained deformation, trimmed NURBS 
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1. INTRODUCTION 

Constrained shape modification refers to the process of 
altering the shape of an object while holding certain 
features unchanged.  The altering process may involve 
scaling and/or deformation.  This area has attracted the 
interest of industry recently in that it provides a 
possibility to reshape an existing model without affecting 
certain important features and, consequently, avoid 
expensive redesign process. 
 
   Constrained shape deformation has been studied for 
some time.  Topics that have been considered include 
axial deformation and free-form deformation.  Both of 
which have been thoroughly investigated [1, 3, 4, 5, 6, 
9, 10, 12, 15, 16, 17, 18] and some of the techniques 
have already been implemented by popular CAD/CAM 
software systems such as ACIS and CATIA. 
 
   Constrained shape scaling, as a design tool, has not 
been studied as extensively yet.  The only known results 
are two techniques for trimmed NURBS surfaces.  
Features are defined by trimming curves.  In the first 
case [19], an attach-and-deform based approach is 
used.  The new surface is formed by scaling the given 
NURBS surface according to the scaling requirement 
and then attaching the original features to the scaled 
surface at appropriate locations.  The attaching process 

requires a minor deformation of the scaled surface to 
ensure complete attachment.  The second case [20] is 
fix-and-stretch based.  The new surface is formed by 
fixing selected regions of the given trimmed NURBS 
surface that contain the trimming curves while 
scaling/stretching the remaining part of the surface to 
reach certain boundary condition.  The stretching 
process of the second approach and the deformation 
process of the first approach are both performed as an 
energy optimization process to ensure that the resulting 
surface reflects the shape and curvature distribution of 
the unconstrainedly scaled version of the given surface.  
The second method is more robust (can tolerate bigger 
scaling factors) while the first method is more efficient. 
These methods can only consider features not 
intersecting the boundary of the surface. 
 
   In this paper, we consider constrained scaling for 
Catmull-Clark subdivision surfaces.  Subdivision 

surfaces, with their capability in modeling/representing 
complex shape of arbitrary topology [7] and covering 
both parametric and discrete forms [13, 14], are 
replacing NURBS surfaces as the next representation 
scheme in geometric modeling and CAD/CAM.  
However, they are not used as a major surface 
representation in CAD/CAM systems yet because of 
lacking necessary geometric algorithms and modeling 
techniques in shape design.  The work developed in this 
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paper will fill up some gap in that direction and, 
consequently, will help the process of making 
subdivision surfaces the next generation surface 
representation for CAD/CAM applications. 
 
   The concept of fix-and-stretch [20] is followed in this 
paper.  However, the stretching process, performed as 
an energy optimization process, is handled differently 
because of the complexity of a subdivision surface's 
topology.  Efficient energy computation techniques and 
optimization techniques have been developed to deal 
with topological complexity of a subdivision surface.  
The new method is more powerful than the previous 
method [20] in that it can handle more complicated 
shapes and, consequently, can be used for more 
challenging applications. 
 
   The remaining part of the paper is arranged as follows.  
A formal description of the problem is given in Section 
2.  The basic idea of the proposed method is presented 
in Section 3.  Techniques needed in constructing the 
new surface are described in Sections 4-8.  Test results 
of the proposed method are shown in Section 9.  
Concluding remarks are given in Section 10.  
 
2. PROBLEM FORMULATION 

The problem of constrained scaling of Catmull-Clark 
subdivision surfaces can be described as follows: Given a 
Catmull-Clark subdivision surface S and a set of features 

Ci on the surface, construct a new surface S  whose 

representation is a scaled version of the given surface S, 
but carries all the original features Ci. 
 
  Given a control mesh, a Catmull-Clark subdivision 

surface (CCSS) is generated by recursively refining the 
mesh [2, 8].  Each mesh-refining step involves the 
construction of three new types of points: face points, 
edge points and vertex points.  New points are 
connected to form a new control mesh.  These control 
meshes converge to a limit surface.  The limit surface is 
called a subdivision surface because the mesh refining 
process is a generalization of the uniform B-spline 
surface subdivision technique.  Therefore, CCSSs include 
uniform B-spline surfaces, piecewise Bezier surfaces and 
NURBS as special cases [13]. They can model/represent 
complex shapes of arbitrary topology because there is no 
limit on the shape and topology of the control mesh[7].  
See Figure 1(d) for the representation of a ventilation 
control component with a single CCSS.  The initial 
control mesh of the surface and the control mesh after 
one refinement and two refinements are shown in (a), 
(b) and (c), respectively.  The part can not be 
represented by a single trimmed B-spline or NURBS 
surface. 

  
(a) (b) 

  
                      (c)                                            (d) 
Fig. 1. (a) Initial control mesh, (b) control mesh after one 
refinement, (c) after two refinements, and (d) limit surface of a 
ventilation control component. 

 
   A feature is a sub-structure defined by a set of 
connected patches of the surface.  Therefore, each Ci of 
S is defined by a set of control points with related 
topological information whose limit surface defines a 
sub-structure of the surface. For instance, each hole in 
the above figure can be regarded as a feature.  Features 
do not intersect each other and they do not intersect the 
boundary of the surface if the surface is not closed. 
 
   If the given scaling factors in the x, y and z directions 

are Sx, Sy and Sz, respectively, then the new surface S  is 

expected to be as close to Ŝ = TsS as possible, where 

Ŝ is the unconstrainedly scaled version of S by Ts, a 

scaling matrix with scaling factors Sx, Sy and Sz.  The 
requirement that the new surface carries all the original 
features Ci means that Ci are also features of the new 

surface S , subject to some translation and rotation.    

 
3. BASIC IDEA 

In general, due to change of curvature distribution after a 

scaling process, it is not possible for the new surface S to 

have exactly the same shape and dimension as the 

unconstrainedly scaled surface Ŝ = TsS while carrying 

all the original features.  An approximation method has 

to be used to construct S .  In this work, the new surface 

will be constructed using a fix-and-stretch based 
approach [20]. 
 
   The main idea of this approach is to fix regions of the 
given subdivision surface that contain the features while 
scaling and stretching the remaining part of the surface 
until some conditions are reached (see Figure 2).  The 
surface is divided into three parts, the features (region I 
of the smaller ellipse in Figure 2), neighboring regions of 
the features (region II in Figure 2), and the remaining 
part (region III in Figure 2).  The features that need to be 
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fixed during the scaling and stretching process have to be 
transformed to appropriate locations first (see region I of 
Figure 2).  Region III is simply scaled using the given 
scaling factors.  Region II is stretched to provide a 
smooth connection between the relocated features and 
the scaled region III. 
 

 
 

Fig. 2. Basic idea of the fix-and-stretching approach. 

 
   The stretching process ensures that the shape and 

curvature distribution of S are as close to those of the 

unconstrainedly scaled version of the given CCSS, Ŝ , as 

possible, while carrying all the original features Ci.  This 
is achieved by minimizing a shape-preserving objective 
function defined on the difference of these two surfaces 
on neighboring regions of the features.  Efficient 
techniques have been developed for the energy 
evaluation process and the optimization process.  The 
stretching process does not change the topological 
structure of the subdivision surface.  Therefore, the 

resulting surface S is again a CCSS. 

 
   The main steps of our approach are: (1) surface 
partitioning, (2) feature relocation, (3) setting up shape-
preserving objective function, (4) energy evaluation, and 
(5) energy optimization. The last two steps are 
technically more difficult.  But the first two steps are 
functionally more important because they determine the 
outcome of the stretching process.  Details of these steps 
are given subsequently. 
 

4. SURFACE PARTITIONING 

This step first subdivides the surface three times to 
ensure the precision of the energy computation process 
(Section 7), then constructs a neighboring region for 
each specified feature Ci of the surface.  These regions 
effectively divide the control vertices of S into three 
groups: Type-I, Type-II and Type-III.  Type-I vertices are 
control vertices of patches that contain the features.  
Type-II vertices are vertices in the neighboring regions of 
the features.  Type-III vertices are the remaining vertices.  
Type-III vertices will be unconstrainedly scaled using the 

given scaling factors; Type-I vertices will be moved to 
new locations through a translation and a rotation.  The 
optimization process is performed on Type-II vertices 
only.  The construction of the neighboring regions for the 
features is tricky.  A small neighboring region will make 
the stretching process more efficient, but at the cost of 
getting sharp turns around boundaries of the features.  A 
large neighboring region will give smoother curvature 
distribution around the boundaries of the features, but 
might generate sharp edges or corners around the 
boundaries of Type-III region (actually, if Type-III region 
is empty, one can not perform constrained scaling at all, 
due to lack of boundary conditions).  Here the 
neighboring region is obtained by expanding outward 
uniformly (for a fixed number of patches) for each 
feature edge.  The width of the band depends on the 
complexity of the features and the entire object.  A 
guideline is to expand to an area where the curvature 
variation of the surface is small. 
 
5. RELOCATING FEATURES 

This step is to move each feature of S, Ci, to an 
appropriate location that is not only as close to the 

unconstrainedly scaled surface Ŝ = TsS as possible but 

also with an appropriate orientation.  The first 
requirement is to ensure that the Euclidean distance 

between the new surface S and the unconstrainedly 

scaled version Ŝ around the features is as small as 

possible.  The second requirement is to ensure that the 

curvature difference between the new surfaceS  and the 

unconstrainedly scaled version Ŝ around the features is 

small as well. 
 
   To achieve the second requirement, for each feature Ci 
of S, a least squares method is used to find a plane Pi 
whose distance to the boundary points of the feature is a 

minimum.  For each scaled feature TsCi of Ŝ , a least 

squares method is used to find a plane 
iP′whose 

distance to the boundary points of the scaled feature is a 
minimum.  A rotation is then performed on Ci to make 
the normal of Pi the same as that of 

iP ′ . 

 
   After that, a least squares method is used to compute a 

displacement vector ΔΔΔΔi for each (rotated) feature Ci so 
that by adding ΔΔΔΔi to the control points of the (rotated) 
feature Ci, one would move the (rotated) feature to a 
location satisfying the first requirement.  ΔΔΔΔi is computed 
by minimizing the following summation 

∑ ′−Δ+
j

jiiji |)(| ,, VV  

where 
ji,V  are boundary points of the feature Ci and 

ji,V′  

are boundary points of the scaled feature TsCi. 
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6. SETTING UP SHAPE-PRESERVING 

    OBJECTIVE FUNCTION 

A shape-preserving objective function is used to 

determine type two control points of the new surface S  
in an optimization process.  The object function is 
defined as an energy function of the displacement 
function 

                        Q = S − TsS                                      (1) 

for region II, so that by minimizing the energy of the 
displacement function Q, one can minimize the shape 
change of the new surface in region II.  The energy 
function is defined as follows: 
                 E(Q) = αEb + βEst + γEsp                          (2) 
where Eb, Est and Esp are bending strain energy, 
stretching strain energy and spring potential energy [11, 
21] of Q, 
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and α, β and γ are weights to be determined.  The values 
of the weights α, β and γ in (2) are set one here.  This 
leads to the minimization of the average energy of Eb, Est 
and Esp.  A more complicated setting of these weights is 
considered in [20]. 
 
7. ENERGY EVALUATION 
The energy items required in the shape-preserving 
objective function (2) are evaluated here for patches 
contained in region II.  We present compact energy 
forms for patches not adjacent to an extra-ordinary point 
first. 
 
   A patch S not adjacent to an extra-ordinary point is a 
regular bicubic B-spline surface patch and can be 
express as 
                      S (u,v) = U M G MT V T 
where U is the u-parameter vector, V is the v-parameter 
vector, M is the B-spline coefficient matrix and G is the 

4×4 control point matrix.  All the vectors used in this 
paper are row vectors.  The spring energy, stretching 
energy and bending energy of such a patch S can be 
expressed as follows: 
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respectively, where 
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The proof of (4) is shown in Appendix A.  If we define  

ƒ(U, G1, G2, X, V) as follows: 

 TTTT VMXMGMUMGVXGGUf 2121 ),,,,( =            (6) 

then the total energy of S can be expressed as: 

bstsp EEEE ++=  

∑ ++= ),,,,2/)(( iiii YDGGDCAf  

∑ ++ ),,,,2/)2(( iii YAGGDAf                              (7) 

∑+ ),,,,( ii YBGGBf  

∑+ ).,,,,2/( ii YCGGDf  

   The total energy of an extra-ordinary patch (a patch 
that has an extra-ordinary vertex) has to be computed 
with care. The current energy definition of a regular 4×4 
bicubic B-spline surface patch S is not divisible, i.e., the 
energy of S is not equal to the sum of the energies of its 
four subpatches (S1, S2, S3, S4) after a subdivision.  
Hence, to make the energy items defined in (3) 
comparable, they must be calculated to the same 
subdivision level.  This requirement, however, presents a 
problem for extra-ordinary patches. 
 



 11 

 
 
Fig. 3. A Catmull-Clark subdivision on S generates three regular 
bicubic B-spline patches S11, S12 and S13. 

 
   Let V be an extra-ordinary point of valence n.  Let S 
be a patch adjacent to V and the control point vector of 
S be N. N contains 2n + 8 points (see Figure 3 for an 
example when n = 5.  The control point vector of S in 
this case is shown below). 

,32154321 ,,,,,,,,{ FFFEEEEEV=N  

},,,,,,,, 2322211413121154 IIIIIIIFF                (8) 

The energies of S can not be calculated using the above 
formulas directly because the control point set of S is not 
a 4×4 grid.  If we perform a Catmull-Clark subdivision 
on S, three of the resulting subpatches, S11, S12 and S13, 
are regular bicubic B-spline patches (see Figure 3) and, 
consequently, can be evaluated using the above 
formulas.  If we perform a Catmull-Clark subdivision on 
the new extra-ordinary subpatch S14, one gets three 
more regular bicubic B-spline patches, S21, S22 and S23; 
and a new extra-ordinary subpatch S24.  By iteratively 
repeating this process, one gets a sequence of regular 
bicubic B-spline patches { SL1, SL2, SL3 | L = 1, 2, 3, ... 
}.  But we can not use the sum of their energies to 
represent the energy of the extra-ordinary patch because 
these subpatches are of different subdivision levels. To 
overcome this problem, note that for a regular (4×4) 
bicubic B-spline surface patch SL-1 and its four 
subpatches (SL1, SL2, SL3, SL4) after a subdivision, we 
have the following result for their energies: 
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This follows from the observation that when L is 
sufficiently large, SL-1  and its subpatches all have the 
same height.  On the other hand, they all have the same 
parameter space [0, 1] × [0, 1].  Therefore, the energy of 
each subpatch is the same as SL-1.  The ratio converges 
to 1/4 quite fast.  According to our experiments, the ratio 
is already close enough to 1/4 when L = 3 (see Figure 4 

for the rates of convengence on ten randomly chosen 
4×4 patches).  This shows that energies of subpatches 
from different levels can be considered together if the 

energy of a subpatch is divided by 4L first where L (L ≥ 
3) is the subdivision level of the subpatch.  Therefore, 
the total energy of S can be expressed as 
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with E(SLd) = Esp(SLd) + Est(SLd) + Eb(SLd), d = 1, 2, 3. 
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Fig. 4. Rates of convergence of eq. (9) on ten randomly chosen 
4×4 patches. 

 
   The control point matrix GLd of each SLd can be 
computed as follows: 
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where S is the K×K Catmull-Clark subdivision matrix (K 

= 2n + 8), S  is the (K + 9)×(K + 9) extended 

Catmull-Clark subdivision matrix [14], Pdj is a 4×(K + 9) 
picking matrix and Yj are defined in (5).  Each row of the 
picking matrix Pdj picks an appropriate entry from 

TL N1S −
S and Pdj depends on d and j only.  The proof of 

(10) is shown in Appendix B.  The computation of each 
of the three energies involved in (9) requires the 
evaluation of the function ƒ defined in (6) for each GLd.  
With these values, the energy E(S) of the extraordinary 
patch S can then be expressed as 
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The proof of (11) is shown in Appendix C. 
 
8. ENERGY OPTIMIZATION 

This step is to minimize the energy of the displacement 

function SQ sT−= S  to find new locations of Type-II 

vertices.  In the following, for the sake of convenience, 
we shall also use E(G) to denote the energy of a surface 
whose control mesh is G.  The energy of a CCSS is the 
sum of its patches' energies.  Therefore, the energy of Q 
can be expressed as 

∑ −=−
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where G  and Ĝ  are the control meshes of S  and TsS, 

respectively, and iG  and 
iĜ   are the control meshes of 

patch i of S  and TsS, respectively.  G  is unknown.  To 

minimize E, we set partial derivative of E with respect to 
each control point in region II to zero, 
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Each )ˆ( ii GGE −  is a quadratic expression, so equation 

(14) is a system of linear equations Ax = b where x is the 
vector of unknowns Pk.  By solving this system, we get 
new location of each point in region II.  The point is how 
to efficiently find A and b.  It is sufficient to show the 

process for a patch of SQ sT−= S  only.  For the sake of 

notation simplicity, we shall use G and G1, instead of iG  

and 
iĜ , to represent the control meshes of a patch of S  

and TsS in region II, respectively. 
 
   We first consider the case of a 4×4 patch.  Let 
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Since F(U, G, G1, X, V) is a quadratic polynomial in Pij, 
the partial derivative of F(U, G, G1, X, V)  is linear in Pij 
and, consequently, can be put in the following form 
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where θθθθ and ψψψψmn are constants.  θθθθ can be obtained by 
setting all Pmn to zero, i.e., setting G = G0 in (17) where 
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ψψψψmn, the coefficient of Pmn, can be obtained by setting all 
other variable Pij to zero, setting Pmn to one and then 

subtracting θθθθ from the result.  θθθθ and ψψψψmn  can be 
expressed as follows. 
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where G0 is defined in (18). 
 
   Therefore, following eq. (7), the energy of the 
displacement function for a 4×4 patch is 
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Then the partial derivative of E(G − G1) can be put in a 
linear form, similar to eq. (17), as follows: 

∑ +=
∂
−∂

nm

mnmn

ij

P
GGE

,

1)(
ζξ

P

 

where the constant term is 

∑ =
++Θ=

3

0 1 ),,,,2/)((
i iiii YDGGDCAζ  

∑ =
+Θ+

3

0 1 ),,,,2/)2((
i iii YAGGDA  

∑ =
Θ+

3

0 1 ),,,,(
i ii YBGGB                                       (22) 

∑ =
Θ+

3

0 1 ),,,,2/(
i ii YCGGD  

and the coefficient of Pmn is  

∑ =
++Ψ=

3

0 1 ),,,,2/)((
i iiiimnmn YDGGDCAξ  

∑ =
+Ψ+

3

0 1 ),,,,2/)2((
i iiimn YAGGDA  

∑ =
Ψ+

3

0 1 ),,,,(
i iimn YBGGB                                (23) 

∑ =
Ψ+

3

0 1 ).,,,,2/(
i iimn YCGGD  

   We now consider the case of an extraordinary patch.  
From equation (13), we have 

)()(
4

1

4

1
11)()( 11
NNNNSSRR TT

NNNN −−=− −−
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)( 1NNR −
 is an implicit function of (N – N1)

T(N – N1).  N1 is 

fixed and N is unknown.  If Pk is a variable in N then 

))()(( 11
′−−′ NNNNR T  

TT SNNNNRS ))()((
4

1
11

′−−′−                    (24) 

))()((
4

1
11

′−−= NNNN T  

where 

))()(( 11
′−− NNNN T  

)()()()( 11 NNNNNN TT ′−+−′=                    (25) 

and 'R  and 'N  are the derivatives of 
)( 1NNR −
 and N 

with respect to Pk, respectively.  This is a system of linear 
equations.  Assume the solution of equation (24) is 

)( 1NNR −′  = g(N, N1, N’), where 'N  is defined as follows: 



 =

=′
otherwise.

if

,0

,1
)(

km
N m

 

Then the partial derivative of the energy of an extra-
ordinary patch can be put in the following form 

∑ +=
∂
−∂

m

mm

k

NNE
ζξ P

P

)( 1  

where the constant term and the coefficients of Pk can be 
obtained similarly to those obtained in (19) and (20).  
They can be expressed as follows: 

∑ ∑ ∑= = ≤≤
=

3

1

3

0 3,0d i kj
ζ  

),(),,(),,2/)(({ 10 dYhNNNgdDDCAh ikiiijk
′++  

),(),,(),,2/)2(( 10 dYhNNNgdADAh ikiijk
′++  

),(),,(),,( 10 dYhNNNgdBBh ikijk
′+               (26) 

)},(),,(),,2/( 10 dYhNNNgdCDh ikijk
′+               
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=

3

1

3
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′′+++

     ),(),,(),,2/)2(( 10 dYhNNNNddADAh ikiijk
′′+++  

),(),,(),,( 10 dYhNNNNgdBBh ikijk
′′++       (27) 

ζ−′′++ )},(),,(),,2/( 10 dYhNNNNgdCDh ikijk
   

with N0 being defined as follows: 





=
G.inpointfixedaisif

Ginvariableaisif

,

,0
)( 0

m

m

m

m
N

N

N
N  

   Once we have the ζζζζ and ξξξξ values for each patch and 
variable point, we combine them to form a linear system 
Ax = b.  The new locations of the control points in 
region II are obtained by solving this system for x. 
 
 
9. IMPLEMENTATION & TEST RESULTS 

The proposed approach has been implemented in C++ 
using OpenGL as the supporting graphics system on an 

SGI platform.  Three test cases are presented here.  
These include a rocker arm (Figures 5 and 6), a 
ventilation control component (Figures 7 and 8) and a 
marker cap (Figure 9).  These examples are mechanical 
parts with holes.  Since the boundary representations of 
these mechanical parts are closed surfaces with handles, 
none of them can be represented by a single trimmed 
NURBS surface.  

    
Fig. 5. Constrained scaling of a rocker arm: before scaling (left), 
after scaling (right) with Sx = 1.3, Sy = 1.2 and Sz = 1.1. 

 

 
 
Fig. 6. Constrained scaling of a rocker arm: before scaling (left), 
after scaling (right) with Sx = 0.8, Sy = 0.85 and Sz = 0.9. 

 
   In each example, the original object is shown on the 
left and its shape after the constrained scaling process is 
shown on the right.  In the first and the third cases 
(Figures 5, 6 and 9), only one feature is fixed in the 
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constrained scaling process.  These features are shown in 
blue.  In the second case (Figures 7 and 8), three holes 
and five holes are fixed in the constrained scaling 
process, respectively.  Those fixed holes are also shown 
in blue even though they can not be seen due to the 
direction of projection.  It is easy to see that the features 
remain the same in both shape and dimension after the 
constrained scaling process in all cases.  These examples 
represent great challenge in practical applications 
because of the complexity of the shape around the 
features. 
 

 
 
Fig. 7. Constrained scaling of a ventilation control component 
with three features: before scaling (left), after scaling (right) with 
Sx = 1.0, Sy = 1.2 and Sz = 1.0.   

 

 
 
Fig. 8. Constrained scaling of a ventilation control component 
with five features: before scaling (left), after scaling (right) with 
Sx = 1.0, Sy = 1.2 and Sz = 1.0. 

 
 

  
 
Fig. 9. Constrained scaling of a marker cap: before scaling (left), 
after scaling (right) with Sx = 1.2, Sy = 1.2 and Sz = 1.0.  

 

10. CONCLUSION 
A fix-and-stretch based constrained scaling method for 
CCSSs is presented.  The new surface is constructed by 
fixing the regions containing the features and stretching 
the remaining parts until certain conditions are reached.  

The stretching process is realized through an energy 
optimization process to ensure the resulting surface 
reflects the shape and curvature distribution of the 
unconstrainedly scaled version of the given surface.  
Efficient energy computation techniques and elegant 
optimization techniques for regions with extra-ordinary 
points have been developed to handle the topological 
complexity of a subdivision surface.  The new method is 
more powerful than the previous method [20] in that it 
can handle more complicated shapes; it can be used for 
most free-form objects as long as a CCSS representation 
of the object is available. 
 
   The new method can not tolerate scaling factors bigger 
than 1.4.  The safe scaling range provided by this 
method is between 0.8 to 1.3.  This is enough for most 
of the reshaping tasks in the automotive industry as the 
scaling factors used in the reshaping process there are 
usually smaller than 1.2. 
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11. APPENDIX A: PROOF OF (4) 

Let K = MGMTVTVMGTMT. K is a 4×4 matrix.  Then Esp 
can be expressed as 
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where D and Y are defined in (5).  For each i = 0, 1, 2, 
3, we have 
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two equations can be proved similarly. 
 
12. APPENDIX B: PROOF OF (10) 

Note that if N is the set of (2n + 8) control vertices 
around the extra-ordinary point (n is the degree of the 
extraordinary point, see Figure 3 for an example of n = 

5), then TL N1−SS is the set of (2n + 17) control vertices 

around the extraordinary point after L levels of Catmull-
Clark subdivision. 
 
   Our problem now is to retrieve 4×4 vertices from this 
vector to form a 4×4 matrix GLd (d = 1, 2, 3).  First, we 
select 4 vertices to form the first column of GLd from 

TL N1−SS by using pick matrix Pd0, i.e. 

TL

d

T NPC 1

00

−= SS .  TC0
is a column vector.  We extend 

this column vector to a 4×4 matrix by multiplying it with 
a row vector Y0 (defined in (5)).  The result is a 4×4 

matrix: )0,0,0,( 00

TCM = .  Second, we select another 4 

vertices to form the second column of GLd from 
TL

N
1−

SS by using pick matrix Pd1, i.e. TL

d

T NPC 1

11

−= SS .  

This is again a column vector.  We also extend this 
vector to a 4×4 matrix by multiplying another row vector 
Y1 (defined at (5)).  The result is a 4×4 matrix: 

)0,0,,0( 11

TCM = .  Similarly, we can generate 

)0,,0,0( 22

TCM =  and ),0,0,0( 33

TCM = .  Adding them 

together, we have (10).  (Note: Pdj is a 4 by (2n + 17) 
matrix, with all the entries equal to zero except one "1" 
each row.  The value of d varies from 1 to 3, indicating 
which regular bicubic B-spline patch after a subdivision 
is being considered.) 
 
13. APPENDIX C: PROOF OF (11) 
First note that 
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where hjk(U, X, d) and h k(V, d) are defined in (12).  

And then 
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where RN is defined in (12).  Note that RN satisfies (13).  
But then for each fixed d (d = 1, 2, 3), we have 
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The energy of the entire extra-ordinary patch is then 
simply the sum for d = 1, 2, and 3 which is (11). 


