
 691

Genetic Algorithms in Computer-Aided Design

Gábor Renner

Hungarian Academy of Sciences, renner@sztaki.hu

ABSTRACT

Genetic algorithms constitute a class of search algorithms especially suited to solving complex

optimization problems in engineering. In addition to parameter optimization, genetic algorithms are

also suggested for solving problems in creative design, such as combining components in a novel,

creative way. Genetic algorithms (GA) transpose the notions of evolution in Nature to computers

and imitate natural evolution. Basically, they find solution(s) to a problem by maintaining a

population of possible solutions according to the ‘survival of the fittest’ principle. We present here

the main features of GAs and several ways in which they can solve difficult design problems. We

briefly introduce the basic notions of GAs, and discuss how GAs work. We then give an overview

of applications of GAs to different domains of engineering design.

Keywords: Genetic algorithms, CAD, Optimization, Geometric design

1. INTRODUCTION

Designing a new product, i.e. creating new technical

structures characterized by new parameters, consists of

several phases. They differ in several details such as

depth of the design, kind of input data, design strategy

and procedures, and results. The design steps can often

be interpreted as solving optimization problems. In this

case a structure and/or a set of parameters is sought,

which results in the best value of some attribute

characterizing the quality of the design.

Analytical or numerical methods for calculating the

extremes of a function have been applied to engineering

computations for a long time. Although these methods

may perform well in many practical cases, they may fail

in more complex design situations. In real design

problems the number of design parameters can be very

large, and their influence on the value to be optimized

(the goal function) can be very complicated, having

nonlinear character. The goal function may have many

local extrema, whereas the designer is interested in the

global extremum. Such problems cannot be handled by

classical methods (e.g. gradient methods) at all, or they

only compute local extrema. In these complex cases

stochastic optimization techniques including

evolutionary algorithms such as genetic algorithms may

offer solutions to the problem; they may find a solution

(a design) near to the global optimum within reasonable

time and computational costs.

Gradient methods start from a single point in the search

space (a solution to the design problem), and search for

a better solution in the direction of the gradient of the

goal function (hill climbing). The method is efficient,

because it requires just a few evaluations of potential

solutions, which may be crucial in complex engineering

problems. However, gradient methods have several

difficulties. The basic problem is that gradient methods

find only a local optimum, and no information is

available on how good it is compared to the global one.

Moreover, the local optimum found depends on the

starting point; to improve results the computation is

usually repeated for a number of starting points.

Gradients of the goal function must be computed

(analytically, or at least numerically), which implies that

the goal function must be smooth. In real design

problems — with complicated or possibly discontinuous

goal functions, and discrete variables — these conditions

are in general not fulfilled.

The simulated annealing method eliminates some of the

disadvantages of the gradient method. In this stochastic

search method a new solution is obtained by perturbing

the current solution. If the goal function value of the new

solution is better than that of the previous solution, then

it is accepted. A solution may also be accepted,

however, which produces a worse value of the goal

function. The probability of accepting a worse solution is

reflected in the temperature of the system. The

temperature is gradually lowered as the search proceeds

through an annealing process (e.g. following

 692

Boltzmann's law), thus allowing acceptance of worse

solutions with greater probability at the beginning and

with smaller probability later. The advantage of

simulated annealing is that there is a good chance of

finding the global optimum and that the solution does

not depend on the starting point. However, simulated

annealing method requires higher computational effort

than the gradient method.

Genetic algorithms strongly differ in conception from

other analytic and stochastic search methods, including

gradient and simulated annealing methods. The basic

difference is that while other methods always process

single points in the search space, GAs maintain a

population of potential solutions.

GAs constitute a class of search methods especially

suited for solving complex optimization problems

[3],[18],[22],[34]. They transpose the notions of natural

evolution to the world of computers, and imitate natural

evolution. They were initially introduced by J. Holland

[22] for explaining the adaptive processes of natural

systems and for creating new artificial systems that work

on similar bases. In Nature new organisms adapted to

their environment develop through evolution. Genetic

algorithms evolve solutions to the given problem in a

similar way. They maintain a collection of solutions — a

population of individuals — and perform a

multidirectional search. The individuals are represented

by chromosomes composed of genes. Genetic

algorithms operate on the chromosomes, which

represent the inheritable properties of the individuals.

By analogy with Nature, through selection the fit

individuals —potential solutions to the optimization

problem — live to reproduce, and the weak individuals,

which are not so fit, die off. New individuals are created

from one or two parents by mutation and crossover,

respectively. They replace old individuals in the

population and they are usually similar to their parents.

As a consequence, in a new generation there will appear

individuals that resemble the fit individuals from the

previous generation.

2. THE GENETIC ALGORITHM

Genetic algorithms – as representatives of artificial

evolutionary systems (1) maintain a population of

solutions, (2) allow the fitter individuals to reproduce,

and (3) let the less fit individuals die off. The new

individuals inherit the properties of their parents, and the

fitter ones survive for the next generation. The final

solutions will be much better than their ancestors from

the previous generations.

The process of evolution is directed by fitness. The

evolutionary search is conducted towards better regions

of the search space on the basis of the fitness measure.

Each solution in a population is evaluated based on how

well it solves the given problem.

GAs use a separate search space and solution space. The

search space is the space of coded solutions, i.e.,

genotypes or chromosomes consisting of genes. The

solution space is the space of actual solutions, i.e.,

phenotypes. The genotype must be transformed into the

corresponding phenotype before its fitness is evaluated.

2.1 The Genetic Process

Solving a problem with GA starts with designing a proper

representation, fitness measure and termination criterion.

Many representations are possible for a given problem,

some are better than the others, however. The

termination criterion usually allows at most some

predefined number of generations and checks whether

an acceptable solution has been found. The genetic

algorithm then works as follows (Fig 1):

Create initial population

Evaluate initial population

repeat

 Create new population

• select individuals for mating

• create offspring by crossover

• mutate selected individuals

• keep selected individuals from

previous population

 Evaluate new individuals

until termination criteria satisfied

Fig 1. Life cycle of the genetic process

1. The initial population is filled with individuals that are

generally created at random.

2. Individuals in the initial population are evaluated using

the fitness measure.

3. From the current population individuals are selected

for reproduction, based on the fitness values of the

individuals. Different types of selection mechanisms

can be used (e.g. fitness proportional, ranked,

tournament selection).

4. New individuals (offspring) are created by applying the

genetic operators to parent individuals. Reproduction

copies selected individuals from the current

population. Crossover combines the genetic code of

two parent individuals. Local changes are introduced

into the genetic code of one individual by mutation.

Different types of crossover and mutation operators

can be used according to the features of the specific

problem (some of them are shown in Fig. 2).

5. New individuals are evaluated using the fitness

measure. New population is created by extending the

current population with the new individuals and then

omitting the least fit individuals.

6. If the termination criterion is met, the best solution is

returned.

 693

7. Steps starting from 3. are repeated until the

termination criterion is satisfied. An iteration is called

generation.

The above process can easily be transferred into an

algorithm and a computer code. To predict the behavior

of a GA, especially on a specific problem in a complex,

highly nonlinear domain, is very difficult — if not

impossible. However, there are theoretical results

highlighting why and how GAs work for idealized

settings. The so-called schema theorem [18], [22] states

that previously evolved good parts of solutions

(schemata) appear at exponentially increasing rates in

consecutive generations.

Parents

Parent 1

Parent 2

Offspring

One point crossover

Two point crossover

Uniform crossover

Merging crossover

Fig. 2. Crossover operations

A more detailed discussion of the genetic process and its

components can be found in [34] and [40].

2.2 Constraints in Genetic Algorithms

Problems are of particular interest in design where

optimization and constraint satisfaction are coupled. In

many cases the constraints can be expressed as well-

defined intervals for the design parameters, but

sometimes it is quite difficult to specify them (e.g.

forbidden regions in robot path design). Several

techniques have been developed to introduce constraint

handling into different components of GAs [35].

A popular method of constraint satisfaction in GAs is to

reject individuals that violate constraints, i.e., the

infeasible individuals. Infeasible individuals that appear

as the result of the genetic operators are not admitted to

the new generation.

If the initial population consists of infeasible individuals

only, they could be repaired instead of being rejected.

The disadvantage of this method is that for each problem

a specific repair algorithm must be devised. Meanwhile,

evaluation can be tuned in such a way that individuals

slightly violating the constraints are still accepted.

A frequently applied technique for handling constraints is

to apply a penalty term in the fitness function.

Individuals that do not fulfill the constraints are given

penalties that depend on the extent of violating the

constraints. Selection is based on a weighted sum of

fitness and penalty. Thus, the infeasible individuals

participate in the genetic process, as they are still

considered capable of delivering useful offspring.

However, careful adjustment of the penalty weight is

needed. If the penalty weight is too low, ''very'' infeasible

individuals could be preferred to slightly less fit but much

more feasible individuals. On the other hand,

application of high penalty weight may push promising

individuals out of the population, and the process may

converge to feasible but unfit individuals. In many cases

a good strategy is to start with relaxed constraints, i.e.,

low penalty weights, and then continue with

strengthened constraints, i.e., higher penalty weights, as

the GA proceeds, thus ensuring a path to promising

solutions.

Another approach is to incorporate all constraints into

the genetic representation, i.e., to construct a

representation which does not allow any individual to

violate any constraints. However, incorporating too

much problem specific knowledge into the representation

largely limits the size of the search space and may

require the careful definition of specific crossover and

mutation operators.

2.3 Advanced Genetic Algorithms

Genetic algorithms work well for many practical

problems. In their application to complex design

problems, however, simple GAs may converge slowly,

evaluations may be computationally intensive, or GAs

may fail because of convergence to an unacceptable

local optimum. Considerable research effort has been

made to improve the efficiency of GAs, which has

resulted in advanced genetic algorithms. The most

important extensions shown to be advantageous in the

application of GAs to design problems are multiobjective

GAs, parallel GAs (including injection island GAs) and

methods for preventing the population from converging

too early to some local optimum (niching methods,

fitness sharing, speciation). Discussion of these methods

can be found in [40]. An overview of other useful

extensions of GAs is given by Bentley [3].

3. GENETIC ALGORITHMS IN DESIGN

Engineering design — as an intelligent activity — can be

characterized as a goal oriented, constrained, decision

making process [16], which is aimed at creating artifacts

(products) that satisfy well-defined human needs.

Expectations and requirements concerning the product

are described in design specifications. The design

process can be seen as the transformation of the

specifications into design descriptions. The design

description must contain sufficient information

(numerical, graphical, and symbolic) for manufacturing

the product. Functionality and manufacturability impose

constraints on the structure and parameters of the

product.

 694

 Engineering design typically involves exploration and

learning. While exploration is needed to identify what

kinds of structures and variables are appropriate to fulfill

the requirements, learning attempts to use experience

gained from previous design processes and from

emerging solutions.

Design can be conceived as a search for a suitable or

optimal construction, where the term search is used in a

technical sense. A search problem consists of a desired

state (goal state), a search space and a search process. In

design the goal state represents the characteristics of the

final design. The goal state is consistent and complete: its

characteristics are non-conflicting and fully specify the

final design. The search space is the set of all designs

characterized by all possible (or allowable) values of the

design parameters. The search process (deterministic or

heuristic) consists of searching for the goal state in the

search space, in this case searching for the optimal

design in the space of all designs.

The relationship between the functional requirements

and the structure needed to satisfy those requirements is

known in many design situations. In this case — referred

to as routine design — the parameters allowing variation

in the design are also known. The design task consists of

defining appropriate values for the parameters, which

frequently means searching for their optimal values.

The concepts of routine design can be directly mapped

to genetic algorithms: the parameters are encoded as

genes that form chromosomes, which are evolved by the

genetic algorithm. There is a close relation — usually a

one to one mapping — between the chromosomes

(genotype) and the parameters (phenotype). Addition

and deletion of genes (parameters) is generally not

performed during evolution.

In routine design, the search space is fully determined by

the structure and range of the design parameters. The

fitness function evaluates all states, and the goal state is

determined by the optimum of the fitness function. The

search space is defined by the chromosomes, and the

search process is the artificial evolution. The high

efficiency of applying GAs to parameter optimization can

be explained by the intensive exploration and

exploitation of the search space through selection,

crossover and mutation.

Genetic algorithms have also been suggested for creative

design, i.e. to generate new forms, or to combine

components in a novel way, guided purely by functional

performance criteria.

In creative design GA techniques are applied non-

traditionally: only the tools for constructing the solution

are made available to the system, not possible solutions

[4]. One way of doing this is to relax constraints in order

to explore more potential solutions [4],[36]. By allowing

modification of the representation, we could expect the

GA system to be able to solve problems beyond

optimization.

In the new approach, the parameters do not represent

the solution itself, but the components from which the

solution is constructed. The genetic representation

consists of a set of rules for the construction of a solution.

These rules are mapped into a solution through so-called

embryogeny [4]. The phenotype is then evaluated for

fitness. Embryogenies are used for exploring the search

space, as they allow the construction of solutions from

components, contrary to genetic optimization where the

parameters of a fixed system are optimized.

4. APPLICATION OF GENETIC ALGORITHMS

TO DESIGN

Genetic algorithms are being applied to many areas of

engineering design in mechanical engineering, electrical

engineering, aerospace engineering, architecture and

civil engineering, etc. It is practically impossible to give a

comprehensive overview of all existing applications even

for one such area. Instead, we discuss branches of

engineering design in which GAs are extensively used:

conceptual design, shape optimization, data fitting,

reverse engineering. The common feature of all these

areas is their strong geometric nature, which is also

important in most engineering design problems. This

also indicates that genetic algorithms can be efficient in

solving problems with very different engineering content

within a similar framework and by using similar

procedures.

4.1 Conceptual Design

Conceptual design of a product takes place in an early

stage of design and usually requires the designer to act

creatively. The designer either uses novel components or

combines known components in a novel way. The

design parameters to be optimized are decided at this

stage of the design process. There could be several ways

of constructing good conceptual designs, but there is no

fixed methodology to follow.

Bentley and Wakefield [5] describe a GA-based system

that evolves new conceptual designs from scratch. They

apply the system to designing geometries of optical

prisms such that light is directed through the prisms

according to the design specifications. Only the function

of the design is pre-specified, the shape of the prism is

not. For more complicated problems they start from

previously found good components and optimize for

their positions and for the choice of components.

Cvetković and Parmee [12] use a genetic algorithm as a

component in a hybrid system for conceptual airframe

design. Rasheed et al. [39] have devised a GA for

continuous design space search that uses new genetic

operators corresponding to the structures and properties

of the engineering design domains. They apply the new

 695

GA to conceptual supersonic aircraft design. Gero and

Kazakov [17] use GAs to enlarge the state space, so that

the set of possible designs changes. They generalize

crossover in such a way that it can move the population

outside the original state space. This strategy supports

creative design, and therefore can be used in the

conceptual stage of the design.

4.2 Shape Optimization

One of the most important characteristics of technical

objects is their shape; functionality, and production costs

strongly depend on shape. Considerable efforts are

continuously exerted in engineering science to find better

shapes, or to optimize the shape of a component subject

to engineering constraints.

Shapes can be described by a great variety of different

representations; a structured set of shape parameters

(scalars, vectors), or discrete representations such as

pixels or voxels may be appropriate. In shape

optimization, values of the shape variables have to be

determined which result in an optimal value of a target

parameter. This latter characterizes the object from some

technical, economical or aesthetic aspect or some

combination of these. In engineering applications, the

relation between the target value and the shape variables

— the fitness function for GAs — may be very complex,

highly nonlinear, having many local extrema, and even

discontinuities. While classical methods for optimization

often fail under such complicated conditions, genetic

algorithms may offer solutions in many practical

situations. In addition to this, design constraints that are

hard to handle by analytic methods (e.g. forbidden

regions of the space) can be directly incorporated into a

genetic optimization.

Below, we discuss typical genetic solutions to shape

optimization problems. Because of the rapid expansion

of genetic applications, our overview may not be

complete, and other ideas may be relevant as well.

4.2.1 Parametric GA

Different types of technical problems can be

characterized by different kinds of shape parameters.

Sometimes we are able to characterize the technical

problem just by one parameter. In [11], for example, the

optimum diameter of a rotor shaft is sought by a GA, to

yield a critical speed as far as possible from the operating

speed.

To describe more complex shapes, more parameters are

needed. Eby et al. [15] optimize by GA the shape and

material placement for a flywheel to give the maximum

specific energy density when having an upper bound on

the maximum allowable angular velocity. An injection

island genetic algorithm is applied that searches at

various levels of model resolution. The shape of a disk

on which turbine blades are mounted in a jet engine is

optimized for minimal stress and mass by Smith et al.

[42].

Deb [13] demonstrates the robustness and efficiency of

GA optimization by solving mechanical component

design problems in pressure vessel design, spring design,

and hydrostatic thrust bearing design. The genetic

representations include geometric parameters of the

components, which can be discrete or continuous. The

results show that even if the initial population is away

from the optimal solution, the GA can find a nearby

optimal solution, which is better than the results obtained

by traditional methods.

A large number of publications address the optimization

of truss and bridge structures, including geometrical

parameters such as size and cross sections

[1],[25],[38],[43],[47]. Grierson and Pak [19] present

optimal design of skeletal building structures accounting

for discrete sizing as well as geometrical and topological

variables. Several papers evaluate different types of

crossover operations, with respect to the exploration and

exploitation aspects of the search process, and relative

effectiveness [25],[43],[47]. New types of crossover

techniques have also been suggested. The mixed

crossover technique of Hasancebi and Erbatur [20]

provides a tool for controlling the exploration of the

design space (at the beginning of optimization), then its

exploitation (in later stages of the genetic process).

In many cases, complex shapes can be optimized by

optimizing the shape of characteristic curves. Whenever

the ordering of the defining curve data has a close

geometric relation to consecutive parts of the curve (e.g.,

points of interpolation, control points of a Bèzier or B-

spline representation), they provide a natural

transformation of curve characteristics into a sequential

genetic code; segments of the curve correspond to

segments of the chromosome. Accordingly, good

segments of the curve correspond to good substructures

of the genetic code, and the probability of disrupting a

promising short code segment by crossover may be kept

small.

Mäkinen et al. [29] use as shape parameters the control

points of a planar Bèzier curve which describes the

profile of an airfoil. The cost function which must be

minimized depends on the scattered electromagnetic

wave and the pressure distribution of the airfoil. Marco

and Lanteri [31] use the same two-dimensional curve

representation for the optimum shape design of

aerodynamic configurations.

Different tasks in designing characteristic curves can also

be supported by genetic algorithms. Márkus et al. [32]

present a GA based method for degree reduction of

Bèzier curves. The approximating curve is defined to lie

in a strip around the given high degree curve, as a

constraint, and to have an optimal shape characterized

by its minimal curvature integral. The fitness of a curve is

 696

composed of two parts: one is the curvature integral, and

the other is a penalty. The penalty depends upon the

degree of constraint violation, i.e., the length of curve

segment that leaves the predefined strip. Strategies are

developed to use different types of crossover operations

and varying weights of the two components of fitness

during the genetic process.

A GA based method for the computation of curve-curve

intersections is presented in [21], which is independent

of the parametrization of the curve and of its topological

properties (e.g. cusps, loops, zero curvature spans, etc.).

Pairs of randomly selected points on each curve are

represented in the chromosome. A genetic algorithm

works on the generations of point pairs, and by

minimizing the distance between them, it converges to

one of the points of intersection.

Complex shapes can be represented by two or three-

dimensional grids of control points of Bèzier, B-spline,

NURBS surfaces or volumes. Following the discussion

for curves, a grid structure of control points may be

suitable for genetic representation. Simple genetic codes

are not applicable directly to these structures, and new

genetic operators must also be developed. For example,

crossover operating on grids of the same size can be

defined by first randomly selecting subgrids at the same

position in the two individuals and then exchanging

them in the offspring. A frequently occurring problem is

the appearance of self-intersecting grids, which may

result in self-intersecting shapes. To avoid this,

intersecting grids may be locally deformed or they may

be strongly penalized in the fitness calculation. Variants

of the control point representations can also be used as

genetic representation of shapes. For example, Wataba

and Okino [46] use the free form deformation lattice

(deformation of a grid of Bèzier control points) as shape

chromosomes, and solve a minimum weight design

problem with constraint conditions, and limitation of

maximum stress.

In many practical shape optimization problems,

evaluation of the fitness function for a given set of shape

parameters is computationally demanding; it frequently

requires the solution of nonlinear state equations in two

or three dimensions. A potential problem is that GA

search may exploit weaknesses of the evaluation process;

e.g. finite element evaluations may give completely

misleading results outside the normal design space. If this

results in good — but incorrect — fitness values, the

whole search will be corrupted. The lesson is that careful

coordination of the search and the evaluation process is

necessary for a successful optimization.

4.2.2 Cell GA

An alternative way of representing the shape of an object

to be optimized is to subdivide the space into small

rectangular domains (pixels in 2D, voxels in 3D), and

assign them a binary full value (1) for material or empty

value (0) for void (see Fig. 3.), or integers for different

materials.

The cellular representation has the advantage that any

shape can be represented with a certain accuracy, which

can be increased by increasing the resolution. At the

same time, the cellular representation can be mapped

directly into a two or three-dimensional binary genetic

representation, resulting in a two or three-dimensional

array chromosome. By applying this representation,

domain specific knowledge and geometric constraints

can easily be built into the genetic process.

Fig. 3. The cell representation

It is a great advantage compared to a parametric GA,

that the structure and topology of the object need not be

fixed in advance, but develop through the optimization

process. As a result, a properly designed genetic process

can work in an extended search space and give better

results. However, unwanted small holes may appear in

the final shape, and lack of smoothness of the boundary

may not be acceptable in certain engineering problems.

When a genetic algorithm for shape optimization is

designed based on two or three dimensional arrays as a

genetic representation, specific two or three dimensional

crossover operators must be developed. One practical

solution — a direct generalization of one point crossover

— is first to select randomly a point in the middle of the

array. Then complementary parts of the parents'

chromosomes in blocks determined by the selected point

are used to form the chromosomes of the children (see

Fig. 4.).
Parent 1

Parent 2

Child2Child1

Fig. 4. The diagonal crossover for 2D arrays

 697

For this type of genetic representation, fitness evaluation

is more complicated and time consuming than in the

case of a simple sequential genetic code. Typically,

planar or spatial distribution of geometrical or physical

quantities need to be evaluated, often by using

demanding analysis programs (e.g., finite element

programs).

Baron et al. [2] study the shape optimization of a beam

and an annulus. In order to reduce the number of small

holes, they apply a smoothness operator; the most

common value for cells in a rectangular region with

random position is applied to all the cells in that region.

It is rather interesting that the design produced by the

cell representation compares well with that produced by

a parametric GA; however the cell GA requires more

time to find a solution

Duda and Jakiela [14] describe a speciating genetic

algorithm for shape optimization. The speciation is based

on a sharing function computed from the distance in the

genotype and phenotype space. The sharing function is

also used for mating restriction during evolution. As a

result of the genetic process, the speciated final

population contains not only one solution, but good

designs with different topology and shape. The method

has been shown to be efficient for solving planar strain

problems based on cell shape representation.

Two-dimensional cell (pixel) representation is also used

for shape optimization by Kane and Schoenauer [26].

The inadequacy of one dimensional (bitstring)

representation is emphasized and an evolutionary choice

made among different two dimensional genetic

operators.

Chapman and Jakiela [7] apply cell representation for

the geometric and topological design of truss structures

having a maximum stiffness-to-volume ratio. In order to

obtain realistic structures a connectivity analysis is

performed; all material elements in the topology which

are not connected to another one through an edge are

set to void. Chen and Rajan [8] consider simultaneous

sizing, shape and topology optimization of structural

framed systems subject to static and dynamic loads.

Raich and Ghaboussi [37] develop an implicit redundant

representation genetic algorithm, which allows the

representation of a variable number of location

independent parameters. In this way the fixed parameter

limitations of usual genetic algorithms can be overcome.

A special type of cell representation called cell division

model is introduced by Taura et al. [44]. The shape of a

free form object is represented by dots (cells) on the

surface of a sphere; the distance between a point on the

surface of the free-form object and the center of the

sphere is proportional to the local density of cells on the

sphere. Shape evolves through a series of cell divisions,

which are governed by a set of rules. These rules

indirectly hold the features of the shapes, and are

encoded as bit strings. A GA is applied for adaptive

generation of new rules and for testing the effectiveness

of existing ones. The whole mechanism resembles the

early development of a living creature. In nature, cell

divisions divide the fertilized egg (a single cell) into a

population of smaller cells, which form the early embryo.

Shape features of the evolving multicellular system are

determined by rules of cell division. Although the

complexity and accuracy of shapes which can be

handled by the model is questionable, first experiments

show that shape features can be represented, held,

combined and manipulated by the method, which is

useful and especially valuable in the early phase of

design.

4.3 Data Fitting

Fitting of continuous curves and surfaces to discrete data

points is often needed in solving a number of

engineering tasks. Well established fitting methods

(usually variants of the least-squares technique) are

known, but they perform well only if several parameters

are defined in advance. E.g., for spline fitting, the

process is computationally feasible (linear) if the degree,

knot distribution, and parametrization of the data points

are given and fixed for the computation. In practical

situations, however, these are not known to the designer.

At the same time, these parameters strongly influence the

quality of the fit, because they determine the structure

and the basic geometric properties of the approximating

function. If they are not defined properly, either the

accuracy will be poor or the shape quality will not be

satisfactory. The complicated and strongly nonlinear

interdependence of the parameters and their influence

on the fitting process is hard to keep under control, but is

relatively easy to include into a GA. Successful

experiments have been made to replace the complicated

and unreliable process of determining the fitting

parameters or a subset of them with genetic algorithms.

A genetic algorithm was developed by Márkus et al. [33]

for the computation of parameter values, associated with

given data points, as knots of an interpolating cubic

spline curve. The curve has optimal shape in the sense

that its curvature integral is minimal. An additional

constraint can also be handled; namely, the curve must

not pass outside a strip around a predefined curve

(which is here the interpolating curve with chord length

parameter).

Limaiem et al. [28] propose the application of a

statistical technique called kriging for curve and surface

fitting. The kriging model consists of a drift function

describing the average shape and fluctuations, derived

from the general covariance function. The model

parameters are set by a GA to yield the minimum

 698

average error between the kriged (continuous) curve or

surface and the data points.

The special case of data fitting when a polygonal

approximation of an object curve is sought is

fundamental in computer graphics, image processing

and pattern recognition, and also plays an important role

in engineering design (e.g. NC tool path calculation).

The GA based technique developed by Huang and Sun

[23] significantly reduces the integral square error

between the polygon and the curve, and is insensitive to

the selection of starting point for a closed curve and

initial solutions.

Manela et al. [30] apply genetic search to finding the

best combination of the number of knots and the factor

that balances the interpolating and smoothness

capabilities of a univariate cubic spline function fitted to

noisy data points.

The difficulties in defining the fitting parameters are even

more serious if not just a low dimensional shape, but a

large set of high dimensional data with a large number of

variables (say 20 or 30) must be fitted. Rogers [41]

describes a multidimensional (multivariate) adaptive

linear regression algorithm, which determines linear

spline parameters using a GA. The fitness function is

based on the least squared error with an additional

penalty term related to the size of the model.

Classical least squares methods can be quite sensitive to

noise and errors in the data, and especially to outliers

(points that are not consistent with the rest of the data

set). Robust statistical procedures, such as median least

squares, have been developed for these cases; they are

superior to least squares techniques in a strongly noisy

environment. Their basic characteristic is that they are

powerful, if they are combined with an efficient search

algorithm. Karr et al. [27] utilize the search capability of

a GA to develop a least median square curve-fitting

algorithm.

4.4 Reverse Engineering

Reverse engineering is the process of creating a

geometric or a CAD model on the basis of a set of data

points generated by a measurement of a physically

existing object [45]. It starts with registration, i.e.,

matching and fusing of point sets from separate views.

Then a topology (usually a triangulation) is built over the

unstructured point cloud, which reflects neighborhood

relations. The main parts of the reconstruction are to

separate subsets of data that belong to the constituting

geometrical elements, and to determine types and

parameters of the extracted elements. For each phase,

the application of GA techniques has been investigated.

In registration, a 3D transformation is to be determined,

which brings a pair of point sets describing the same

shape into correspondence. GAs were used for

registration of 3D images in medical applications by Jacq

and Roux [24], and for free form surface matching by

Brunnström and Stoddart [6]. Although accurate

registration is usually based on gradient descent

algorithms (e.g. iterative closest point, ICP), they work

only if an initial guess reasonably close to the actual

solution is known. In [6] chromosomes represent a

correspondence between the two point sets. The fitness

reflects the quality of the match by evaluating quantities

that are invariant under translation and rotation

(distances and relative orientation of normal vectors

between point pairs). In Yamany et al. [48] registration is

based on a grid closest point technique. The genetic

code is composed of the parameters of the

transformation matrix, and the genetic search minimizes

the distances between associated points.

Chen and Wang [10] discuss the construction of an

optimized triangulation of a point set. Although the

method was developed for creating optimized STL files

(a standard for rapid prototyping), it seems to be suitable

for preparing surface reconstruction as well. Starting

from an initial triangulation, triangles which are coplanar

or nearly coplanar are removed. Then blank regions,

bounded by a set of straight-line segments, are re-

triangulated by a genetic algorithm. To obtain a valid

triangulation, constraints are built into the initial

population, the crossover and the mutation operators (a

geometry constraint and a crossing constraint). Fitness is

evaluated according to the smoothness of the

triangulation in the blank region, the smoothness of its

connection to the surroundings, and the shape of the

individual triangles (equiangularity).

A GA based algorithm which is capable of extracting

quadric surfaces from a set of data points is given by

Chen and Liu [9] The genetic representation is a string

containing the indexes of a set of data points (gene

points) as elements. For the fitness evaluation, the

(pseudo geometric) distances of data points to a quadric

— least-squares fitted to the gene points — are

evaluated. The evolution of the surface representation is

achieved through the genetic improvement of the gene

points.

5. CONCLUSION

Genetic algorithms have increasingly been applied in

engineering in the past decade. GAs have been

considered mainly as tools for optimization and

parameter tuning, but they are also used for creative

design.

Genetic algorithms conduct a search through the space

of potential solutions to the problem. They provide a

balance between two search strategies — exploration

and exploitation —: they explore the search space and in

the mean time exploit the good features of already found

promising solutions. GAs perform an independent

sampling on a population of design solutions, then select

 699

members of the population, i.e., highly fit designs, for

survival, and create new designs by crossover

(combination of building blocks from different

individuals) and by mutation. Crossover ensures the

inheritance and dominance of valuable features, whereas

mutation introduces variability. Together with the

selection mechanism, they drive the artificial evolution

process towards generating better and better solutions.

The strength of genetic algorithms in design can be

attributed to several factors. They are flexible and can be

adapted to different design problems. Realization of

GA procedures results in robust and stable algorithms

and computer codes. Complexity of a problem can be

handled by their ability to work with many parameters

simultaneously in a search space of complicated

structure. In design applications it is very important that

there is a built-in tendency to find global optima. GAs

can also be used beyond parameter optimization, for

creative design.

6. ACKNOWLEDGEMENTS

The author is grateful to Anikó Ekárt for numerous

comments and suggestions.

7. REFERENCES

[1] Adeli, H. and Cheng, N.-T., Concurrent genetic

algorithms for optimization of large structures,

Journal of Aerospace Engineering, Vol. 7, No. 3,

1994, pp 276–296.

[2] Baron, P., Fisher, R., Tuson, A., Mill, F. and

Sherlock, A., A voxel-based representation for

evolutionary shape optimization, Artificial

Intelligence for Engineering Design, Analysis and

Manufacturing, 13., 1999, pp 145–156.

[3] Bentley, P., An introduction to evolutionary

design by computers, In Evolutionary Design by

Computers, Morgan Kaufmann, 1999.

[4] Bentley, P. J. and Corne, D. W., An introduction

to creative evolutionary systems, In P. J. Bentley

and D. W. Corne, editors, Creative Evolutionary

Systems, Academic Press, 2002, pp 1–75.

[5] Bentley, P. J. and Wakefield, J. P., Conceptual

evolutionary design by a genetic algorithm,

Engineering Design and Automation, Vol. 3, No.

2, 1997, pp 119–131.

[6] Brunnström, K. and Stoddart, A. J., Genetic

algorithms for free-form surface matching, In

Proceedings of Int. Conf. on Pattern Recognition,

Vol. IV, 1996, pp 689–693.

[7] Chapman, C. D. and Jakiela, M. J., Genetic

algorithm-based structural topology design with

compliance and topology simplification

considerations, Journal of Mechanical Design,

118., 1996, pp 89–98.

[8] Chen, S. Y. and Rajan, S. D., A robust genetic

algorithm for structural optimization, Structural

Engineering and Mechanics, Vol. 10, No. 4,

2000, pp 313–336.

[9] Chen, Y. H. and Liu, C. Y., Quadric surface

extraction using genetic algorithms, Computer-

Aided Design, Vol. 31, No. 2, 1999, pp 101–110.

[10] Chen, Y. H. and Wang, Y. Z., Genetic algorithms

for optimized retriangulation in the context of

reverse engineering, Computer-Aided Design,

Vol. 31, No. 4, 1999, pp 261–271.

[11] Choi, B. G. and Tang, B. S., Optimum shape

design of rotor shafts using genetic algorithm,

Journal of Vibration and Control, Vol. 6., 2000,

pp 207–222.

[12] Cvetković, D. and Parmee, I. C., Genetic

algorithms based systems for conceptual

engineering design, In International Conference

on Engineering Design, 1999.

[13] Deb, K., GeneAS: A robust optimal design

technique for mechanical component design, In

Evolutionary Algorithms in Engineering

applications, Springer, 1997, pp 497–514.

[14] Duda, J. W. and Jakiela, M., Generation and

classification of structural topologies with genetic

algorithm speciation, Journal of Mechanical

Design, Vol. 119, 1997, pp 127–131.

[15] Eby, D., Averill, R. C., Punch, W. F. and

Goodman, E. D., Optimal design of flywheels

using an injection island genetic algorithm,

Artificial Intelligence for Engn. Des., Analysis and

Manufacturing, 99., 1999, pp 327–339.

[16] Gero, J., Design prototypes: a knowledge

representation schema for design, AI Magazine,

Vol. 11, No. 4, 1990, pp 26–36.

[17] Gero, J. and Kazakov, V., Adaptive enlargement

of state spaces in evolutionary designing, Artificial

Intelligence for Engn. Des., Analysis and

Manufacturing, 14., 2000, pp 31–38.

[18] Goldberg, D. E., Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-

Wesley, 1989.

[19] Grierson, D. E. and Pak, W. H., Optimal sizing,

geometrical and topological design using a

genetic algorithm, Structural Optimization, Vol. 6,

No. 3, 1993, pp 151–159.

[20] Hasancebi, O. and Erbatur, F., Evaluation of

crossover techniques in genetic algorithms based

optimum structural design, Computers &

Structures, Vol. 78, No. 1–3, 2000, pp 435–448.

[21] Hawat, R. N. and Piegl, L. A., Genetic algorithm

approach to curve-curve intersection, Math.

Engn. in Ind., Vol. 7, No. 2, 1998, pp 269–282.

 700

[22] Holland, J. H., Adaptation in Natural and

Artificial Systems, Ann Arbor: The University of

Michigan Press, 1975.

[23] Huang, S. C. and Sun, Y. N., Polygonal

approximation using genetic algorithms, Pattern

Recognition, 32., 1999, pp 1409–1420.

[24] Jacq, J. J. and Roux, C., Registration of 3D

images by genetic optimization, Pattern

Recognition, Vol. 16, No. 8, 1995, pp 823–856.

[25] Jenkins, W. M., On the application of natural

algorithms to structural design optimization,

Engn. Struct., Vol. 19, No. 4, 1997, pp 302–308.

[26] Kane, C. and Schoenauer, M., Genetic algorithms

for two dimensional shape optimization, In

Artificial Evolution, 1996, pp 355–369.

[27] Karr, C. L., Weck, B., Massart, D. L. and

Vankeerberghen, P., Least median squares curve

fitting using a genetic algorithm, Engineering

Applications of Artificial Intelligence, Vol. 8, No.

2, 1995, pp 177–189.

[28] Limaiem, A., Nassef, A. and El-Maraghy, H. A.,

Data fitting using dual kriging and genetic

algorithms, Annals of the CIRP, Vol. 45, No. 1,

1996, pp 129–134.

[29] Mäkinen, R., Periaux, J. and Toivanen, J., Shape

design optimization in 2D aerodynamics using

genetic algorithms on parallel computers, In

Parallel Computational Fluid Dynamics:

Implementations and Results Using Parallel

Computers, Proceedings of the Parallel CFD’95

conference, 1996, pp 395–402.

[30] Manela, M., Thornhill, N. and Campbell, J. A.,

Fitting spline functions to noisy data using a

genetic algorithm, In Proceedings of the Fifth

International Conference on Genetic Algorithms,

1993, pp 549–553.

[31] Marco, N. and Lanteri, S., A two level

parallelization strategy for genetic algorithms

applied to optimum shape design, Parallel

Computing, Vol. 26, No. 4, 2000, pp 377–397.

[32] Márkus, A., Renner, G. and Váncza, J., Genetic

algorithms in free form curve design, In

Mathematical Methods for Curves and Surfaces,

1995, pp 343–354.

[33] Márkus, A., Renner, G. and Váncza, J., Spline

interpolation with genetic algorithms, In Shape

Modeling and Applications, 1997, pp 47–54.

[34] Michalewicz, Z., Genetic Algorithms + Data

Structures = Evolution Programs, Springer-

Verlag, 1992.

[35] Michalewicz, Z., Dasgupta, D., Riche, R. G. L.

and Schoenauer, M., Evolutionary algorithms for

constrained engineering problems, Computers

and Industrial Engineering, Vol. 30, No. 4, 1996,

pp 851–870.

[36] Parmee, I., Exploring the design potential of

evolutionary search, exploration and

optimization, In P. J. Bentley, editor, Evolutionary

Design by Computers, Morgan Kaufmann, 1999,

pp 119–143.

[37] Raich, A. M. and Ghaboussi, J., Evolving

structural design solutions using an implicit

redundant genetic algorithm, Structural and

Multidisciplinary Optimization, Vol. 20, No. 3.,

2000, pp 222–231.

[38] Rajeev, S. and Krishnamoorty, C. S., Discrete

optimization of structures using genetic

algorithms, Journal of Structural Engineering,

Vol. 118, No.5, 1992, pp 1233–1250.

[39] Rasheed, K., Hirsh, H. and Gelsey, A., A genetic

algorithm for continuous design space search,

Artificial Intelligence in Engineering, 11., 1997,

pp 295–305.

[40] Renner, G. and Ekárt, A., Genetic algorithms in

computer-aided design, Computer-Aided Design,

Vol. 35, No. 8, 2003, pp 709-726.

[41] Rogers, D., G-splines: a hybrid of Friedman’s

multivariate adaptive regression splines (MARS)

algorithm with Holland’s genetic algorithm, In

Proceedings of the Fourth International

Conference on Genetic Algorithms, 1991, pp

384–391.

[42] Smith, R., Warrington, S. and Mill, F., Shape

representation for optimization, In Genetic

Algorithms in Engineering Systems: Innovations

and Applications, 1995, pp 112–117.

[43] Syswerda, G., Uniform crossover in genetic

algorithms, In Proceedings of the Third

International Conference on Genetic Algorithms,

1989, pp 2–9.

[44] Taura, T., Nagasaka, I. and Yamagishi, A.,

Application of evolutionary programming to

shape design, Computer-Aided Design, Vol. 30,

No. 1, 1998, pp 29–35.

[45] Várady, T., Martin, R. and Cox, J., Reverse

engineering of geometric models - an

introduction, Computer-Aided Design, Vol. 29,

No. 4, 1997, pp 255–268.

[46] Wataba, H. and Okino, N., A study on genetic

shape design, In Proceedings of the Fifth

International Conference on Genetic Algorithms,

1993, pp 445–450.

[47] Wu, S.-J. and Chow, P.-T., Steady-state genetic

algorithms for discrete optimization of trusses,

Computers & Structures, Vol. 56, No. 6, 1995,

pp 979–991.

[48] Yamany, S M., Ahmed, M. N. and Farag, A. A., A

new genetic-based technique for matching 3D

curves and surfaces, Pattern Recognition, 32.,

1999, pp 1817–1820.

