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ABSTRACT 

 

Genetic algorithms constitute a class of search algorithms especially suited to solving complex 

optimization problems in engineering. In addition to parameter optimization, genetic algorithms are 

also suggested for solving problems in creative design, such as combining components in a novel, 

creative way. Genetic algorithms (GA) transpose the notions of evolution in Nature to computers 

and imitate natural evolution. Basically, they find solution(s) to a problem by maintaining a 

population of possible solutions according to the ‘survival of the fittest’ principle. We present here 

the main features of GAs and several ways in which they can solve difficult design problems. We 

briefly introduce the basic notions of GAs, and discuss how GAs work. We then give an overview 

of applications of GAs to different domains of engineering design.  
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1. INTRODUCTION 

Designing a new product, i.e. creating new technical 

structures characterized by new parameters, consists of 

several phases.  They differ in several details such as 

depth of the design, kind of input data, design strategy 

and procedures, and results. The design steps can often 

be interpreted as solving optimization problems.  In this 

case a structure and/or a set of parameters is sought, 

which results in the best value of some attribute 

characterizing the quality of the design. 

Analytical or numerical methods for calculating the 

extremes of a function have been applied to engineering 

computations for a long time. Although these methods 

may perform well in many practical cases, they may fail 

in more complex design situations. In real design 

problems the number of design parameters can be very 

large, and their influence on the value to be optimized 

(the goal function) can be very complicated, having 

nonlinear character. The goal function may have many 

local extrema, whereas the designer is interested in the 

global extremum. Such problems cannot be handled by 

classical methods (e.g. gradient methods) at all, or they 

only compute local extrema. In these complex cases 

stochastic optimization techniques including 

evolutionary algorithms such as genetic algorithms may 

offer solutions to the problem; they may find a solution 

(a design) near to the global optimum within reasonable 

time and computational costs.                                                  

Gradient methods start from a single point in the search 

space (a solution to the design problem), and search for 

a better solution in the direction of the gradient of the 

goal function (hill climbing). The method is efficient, 

because it requires just a few evaluations of potential 

solutions, which may be crucial in complex engineering 

problems. However, gradient methods have several 

difficulties. The basic problem is that gradient methods 

find only a local optimum, and no information is 

available on how good it is compared to the global one. 

Moreover, the local optimum found depends on the 

starting point; to improve results the computation is 

usually repeated for a number of starting points. 

Gradients of the goal function must be computed 

(analytically, or at least numerically), which implies that 

the goal function must be smooth. In real design 

problems — with complicated or possibly discontinuous 

goal functions, and discrete variables — these conditions 

are in general not fulfilled. 

The simulated annealing method eliminates some of the 

disadvantages of the gradient method. In this stochastic 

search method a new solution is obtained by perturbing 

the current solution. If the goal function value of the new 

solution is better than that of the previous solution, then 

it is accepted. A solution may also be accepted, 

however, which produces a worse value of the goal 

function. The probability of accepting a worse solution is 

reflected in the temperature of the system. The 

temperature is gradually lowered as the search proceeds 

through an annealing process (e.g. following 
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Boltzmann's law), thus allowing acceptance of worse 

solutions with greater probability at the beginning and 

with smaller probability later. The advantage of 

simulated annealing is that there is a good chance of 

finding the global optimum and that the solution does 

not depend on the starting point. However, simulated 

annealing method requires higher computational effort 

than the gradient method. 

Genetic algorithms strongly differ in conception from 

other analytic and stochastic search methods, including 

gradient and simulated annealing methods. The basic 

difference is that while other methods always process 

single points in the search space, GAs maintain a 

population of potential solutions.  

GAs constitute a class of search methods especially 

suited for solving complex optimization problems 

[3],[18],[22],[34]. They transpose the notions of natural 

evolution to the world of computers, and imitate natural 

evolution. They were initially introduced by J. Holland 

[22] for explaining the adaptive processes of natural 

systems and for creating new artificial systems that work 

on similar bases. In Nature new organisms adapted to 

their environment develop through evolution.  Genetic 

algorithms evolve solutions to the given problem in a 

similar way. They maintain a collection of solutions — a 

population of individuals — and perform a 

multidirectional search. The individuals are represented 

by chromosomes composed of genes. Genetic 

algorithms operate on the chromosomes, which 

represent the inheritable properties of the individuals.  

By analogy with Nature, through selection the fit 

individuals —potential solutions to the optimization 

problem — live to reproduce, and the weak individuals, 

which are not so fit, die off. New individuals are created 

from one or two parents by mutation and crossover, 

respectively. They replace old individuals in the 

population and they are usually similar to their parents. 

As a consequence, in a new generation there will appear 

individuals that resemble the fit individuals from the 

previous generation.  

 

2. THE GENETIC ALGORITHM  

Genetic algorithms – as representatives of artificial 

evolutionary systems (1) maintain a population of 

solutions, (2) allow the fitter individuals to reproduce, 

and (3) let the less fit individuals die off. The new 

individuals inherit the properties of their parents, and the 

fitter ones survive for the next generation. The final 

solutions will be much better than their ancestors from 

the previous generations.  

The process of evolution is directed by fitness. The 

evolutionary search is conducted towards better regions 

of the search space on the basis of the fitness measure. 

Each solution in a population is evaluated based on how 

well it solves the given problem.  

GAs use a separate search space and solution space. The 

search space is the space of coded solutions, i.e., 

genotypes or chromosomes consisting of genes.  The 

solution space is the space of actual solutions, i.e., 

phenotypes. The genotype must be transformed into the 

corresponding phenotype before its fitness is evaluated. 

 

2.1 The Genetic Process  

Solving a problem with GA starts with designing a proper 

representation, fitness measure and termination criterion. 

Many representations are possible for a given problem, 

some are better than the others, however. The 

termination criterion usually allows at most some 

predefined number of generations and checks whether 

an acceptable solution has been found. The genetic 

algorithm then works as follows (Fig 1): 

  

Create initial population 

Evaluate initial population 

repeat 

 Create new population  

• select individuals for mating 

• create offspring by crossover 

• mutate selected individuals 

• keep selected individuals from  

previous population 

 Evaluate new individuals 

until termination criteria satisfied 

 
Fig 1. Life cycle of the genetic process 

 

1. The initial population is filled with individuals that are 

generally created at random.  

2. Individuals in the initial population are evaluated using 

the fitness measure. 

3. From the current population individuals are selected 

for reproduction, based on the fitness values of the 

individuals. Different types of selection mechanisms 

can be used (e.g. fitness proportional, ranked, 

tournament selection). 

4. New individuals (offspring) are created by applying the 

genetic operators to parent individuals. Reproduction 

copies selected individuals from the current 

population. Crossover combines the genetic code of 

two parent individuals. Local changes are introduced 

into the genetic code of one individual by mutation. 

Different types of crossover and mutation operators 

can be used according to the features of the specific 

problem (some of them are shown in Fig. 2).  

5. New individuals are evaluated using the fitness 

measure. New population is created by extending the 

current population with the new individuals and then 

omitting the least fit individuals.  

6. If the termination criterion is met, the best solution is 

returned. 
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7. Steps starting from 3. are repeated until the 

termination criterion is satisfied. An iteration is called 

generation. 

The above process can easily be transferred into an 

algorithm and a computer code. To predict the behavior 

of a GA, especially on a specific problem in a complex, 

highly nonlinear domain, is very difficult — if not 

impossible. However, there are theoretical results 

highlighting why and how GAs work for idealized 

settings. The so-called schema theorem [18], [22] states 

that previously evolved good parts of solutions 

(schemata) appear at exponentially increasing rates in 

consecutive generations. 

 

Parents 

Parent 1   

Parent 2   

Offspring 

One point crossover   

Two point crossover   

Uniform crossover   

Merging crossover   

 
Fig. 2. Crossover operations 

 

A more detailed discussion of the genetic process and its 

components can be found in [34] and [40]. 

 

2.2 Constraints in Genetic Algorithms 

Problems are of particular interest in design where 

optimization and constraint satisfaction are coupled. In 

many cases the constraints can be expressed as well-

defined intervals for the design parameters, but 

sometimes it is quite difficult to specify them (e.g. 

forbidden regions in robot path design). Several 

techniques have been developed to introduce constraint 

handling into different components of GAs [35]. 

A popular method of constraint satisfaction in GAs is to 

reject individuals that violate constraints, i.e., the 

infeasible individuals. Infeasible individuals that appear 

as the result of the genetic operators are not admitted to 

the new generation. 

If the initial population consists of infeasible individuals 

only, they could be repaired instead of being rejected. 

The disadvantage of this method is that for each problem 

a specific repair algorithm must be devised. Meanwhile, 

evaluation can be tuned in such a way that individuals 

slightly violating the constraints are still accepted. 

A frequently applied technique for handling constraints is 

to apply a penalty term in the fitness function. 

Individuals that do not fulfill the constraints are given 

penalties that depend on the extent of violating the 

constraints. Selection is based on a weighted sum of 

fitness and penalty. Thus, the infeasible individuals 

participate in the genetic process, as they are still 

considered capable of delivering useful offspring. 

However, careful adjustment of the penalty weight is 

needed. If the penalty weight is too low, ''very'' infeasible 

individuals could be preferred to slightly less fit but much 

more feasible individuals.  On the other hand, 

application of high penalty weight may push promising 

individuals out of the population, and the process may 

converge to feasible but unfit individuals. In many cases 

a good strategy is to start with relaxed constraints, i.e., 

low penalty weights, and then continue with 

strengthened constraints, i.e., higher penalty weights, as 

the GA proceeds, thus ensuring a path to promising 

solutions.  

Another approach is to incorporate all constraints into 

the genetic representation, i.e., to construct a 

representation which does not allow any individual to 

violate any constraints. However, incorporating too 

much problem specific knowledge into the representation 

largely limits the size of the search space and may 

require the careful definition of specific crossover and 

mutation operators.  

 

2.3 Advanced Genetic Algorithms 

Genetic algorithms work well for many practical 

problems.  In their application to complex design 

problems, however, simple GAs may converge slowly, 

evaluations may be computationally intensive, or GAs 

may fail because of convergence to an unacceptable 

local optimum. Considerable research effort has been 

made to improve the efficiency of GAs, which has 

resulted in advanced genetic algorithms. The most 

important extensions shown to be advantageous in the 

application of GAs to design problems are multiobjective 

GAs, parallel GAs (including injection island GAs) and 

methods for preventing the population from converging 

too early to some local optimum (niching methods, 

fitness sharing, speciation). Discussion of these methods 

can be found in [40]. An overview of other useful 

extensions of GAs is given by Bentley [3]. 

 

3. GENETIC ALGORITHMS IN DESIGN 

Engineering design — as an intelligent activity — can be 

characterized as a goal oriented, constrained, decision 

making process [16], which is aimed at creating artifacts 

(products) that satisfy well-defined human needs. 

Expectations and requirements concerning the product 

are described in design specifications. The design 

process can be seen as the transformation of the 

specifications into design descriptions. The design 

description must contain sufficient information 

(numerical, graphical, and symbolic) for manufacturing 

the product. Functionality and manufacturability impose 

constraints on the structure and parameters of the 

product. 
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 Engineering design typically involves exploration and 

learning. While exploration is needed to identify what 

kinds of structures and variables are appropriate to fulfill 

the requirements, learning attempts to use experience 

gained from previous design processes and from 

emerging solutions.  

Design can be conceived as a search for a suitable or 

optimal construction, where the term search is used in a 

technical sense. A search problem consists of a desired 

state (goal state), a search space and a search process. In 

design the goal state represents the characteristics of the 

final design. The goal state is consistent and complete: its 

characteristics are non-conflicting and fully specify the 

final design. The search space is the set of all designs 

characterized by all possible (or allowable) values of the 

design parameters. The search process (deterministic or 

heuristic) consists of searching for the goal state in the 

search space, in this case searching for the optimal 

design in the space of all designs.  

The relationship between the functional requirements 

and the structure needed to satisfy those requirements is 

known in many design situations. In this case — referred 

to as routine design — the parameters allowing variation 

in the design are also known. The design task consists of 

defining appropriate values for the parameters, which 

frequently means searching for their optimal values. 

The concepts of routine design can be directly mapped 

to genetic algorithms: the parameters are encoded as 

genes that form chromosomes, which are evolved by the 

genetic algorithm. There is a close relation — usually a 

one to one mapping — between the chromosomes 

(genotype) and the parameters (phenotype). Addition 

and deletion of genes (parameters) is generally not 

performed during evolution.  

In routine design, the search space is fully determined by 

the structure and range of the design parameters. The 

fitness function evaluates all states, and the goal state is 

determined by the optimum of the fitness function. The 

search space is defined by the chromosomes, and the 

search process is the artificial evolution. The high 

efficiency of applying GAs to parameter optimization can 

be explained by the intensive exploration and 

exploitation of the search space through selection, 

crossover and mutation.  

Genetic algorithms have also been suggested for creative 

design, i.e. to generate new forms, or to combine 

components in a novel way, guided purely by functional 

performance criteria. 

In creative design GA techniques are applied non-

traditionally: only the tools for constructing the solution 

are made available to the system, not possible solutions 

[4]. One way of doing this is to relax constraints in order 

to explore more potential solutions [4],[36]. By allowing 

modification of the representation, we could expect the 

GA system to be able to solve problems beyond 

optimization.  

In the new approach, the parameters do not represent 

the solution itself, but the components from which the 

solution is constructed. The genetic representation 

consists of a set of rules for the construction of a solution. 

These rules are mapped into a solution through so-called 

embryogeny [4]. The phenotype is then evaluated for 

fitness. Embryogenies are used for exploring the search 

space, as they allow the construction of solutions from 

components, contrary to genetic optimization where the 

parameters of a fixed system are optimized. 

 

4. APPLICATION OF GENETIC ALGORITHMS 

TO DESIGN 

Genetic algorithms are being applied to many areas of 

engineering design in mechanical engineering, electrical 

engineering, aerospace engineering, architecture and 

civil engineering, etc. It is practically impossible to give a 

comprehensive overview of all existing applications even 

for one such area. Instead, we discuss branches of 

engineering design in which GAs are extensively used: 

conceptual design, shape optimization, data fitting, 

reverse engineering. The common feature of all these 

areas is their strong geometric nature, which is also 

important in most engineering design problems. This 

also indicates that genetic algorithms can be efficient in 

solving problems with very different engineering content 

within a similar framework and by using similar 

procedures. 

 

4.1 Conceptual Design 

Conceptual design of a product takes place in an early 

stage of design and usually requires the designer to act 

creatively. The designer either uses novel components or 

combines known components in a novel way. The 

design parameters to be optimized are decided at this 

stage of the design process.  There could be several ways 

of constructing good conceptual designs, but there is no 

fixed methodology to follow. 

Bentley and Wakefield [5] describe a GA-based system 

that evolves new conceptual designs from scratch. They 

apply the system to designing geometries of optical 

prisms such that light is directed through the prisms 

according to the design specifications. Only the function 

of the design is pre-specified, the shape of the prism is 

not. For more complicated problems they start from 

previously found good components and optimize for 

their positions and for the choice of components.  

Cvetković and Parmee [12] use a genetic algorithm as a 

component in a hybrid system for conceptual airframe 

design. Rasheed et al. [39] have devised a GA for 

continuous design space search that uses new genetic 

operators corresponding to the structures and properties 

of the engineering design domains. They apply the new 
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GA to conceptual supersonic aircraft design. Gero and 

Kazakov [17] use GAs to enlarge the state space, so that 

the set of possible designs changes. They generalize 

crossover in such a way that it can move the population 

outside the original state space. This strategy supports 

creative design, and therefore can be used in the 

conceptual stage of the design. 

 

4.2 Shape Optimization 

One of the most important characteristics of technical 

objects is their shape; functionality, and production costs 

strongly depend on shape. Considerable efforts are 

continuously exerted in engineering science to find better 

shapes, or to optimize the shape of a component subject 

to engineering constraints.  

Shapes can be described by a great variety of different 

representations; a structured set of shape parameters 

(scalars, vectors), or discrete representations such as 

pixels or voxels may be appropriate.  In shape 

optimization, values of the shape variables have to be 

determined which result in an optimal value of a target 

parameter. This latter characterizes the object from some 

technical, economical or aesthetic aspect or some 

combination of these. In engineering applications, the 

relation between the target value and the shape variables 

— the fitness function for GAs — may be very complex, 

highly nonlinear, having many local extrema, and even 

discontinuities. While classical methods for optimization 

often fail under such complicated conditions, genetic 

algorithms may offer solutions in many practical 

situations. In addition to this, design constraints that are 

hard to handle by analytic methods (e.g. forbidden 

regions of the space) can be directly incorporated into a 

genetic optimization.  

Below, we discuss typical genetic solutions to shape 

optimization problems. Because of the rapid expansion 

of genetic applications, our overview may not be 

complete, and other ideas may be relevant as well.   

 

4.2.1 Parametric GA 

Different types of technical problems can be 

characterized by different kinds of shape parameters. 

Sometimes we are able to characterize the technical 

problem just by one parameter. In [11], for example, the 

optimum diameter of a rotor shaft is sought by a GA, to 

yield a critical speed as far as possible from the operating 

speed.  

To describe more complex shapes, more parameters are 

needed. Eby et al. [15] optimize by GA the shape and 

material placement for a flywheel to give the maximum 

specific energy density when having an upper bound on 

the maximum allowable angular velocity. An injection 

island genetic algorithm is applied that searches at 

various levels of model resolution. The shape of a disk 

on which turbine blades are mounted in a jet engine is 

optimized for minimal stress and mass by Smith et al. 

[42].  

Deb [13] demonstrates the robustness and efficiency of 

GA optimization by solving mechanical component 

design problems in pressure vessel design, spring design, 

and hydrostatic thrust bearing design. The genetic 

representations include geometric parameters of the 

components, which can be discrete or continuous. The 

results show that even if the initial population is away 

from the optimal solution, the GA can find a nearby 

optimal solution, which is better than the results obtained 

by traditional methods.  

A large number of publications address the optimization 

of truss and bridge structures, including geometrical 

parameters such as size and cross sections 

[1],[25],[38],[43],[47]. Grierson and Pak [19] present 

optimal design of skeletal building structures accounting 

for discrete sizing as well as geometrical and topological 

variables. Several papers evaluate different types of 

crossover operations, with respect to the exploration and 

exploitation aspects of the search process, and relative 

effectiveness [25],[43],[47]. New types of crossover 

techniques have also been suggested. The mixed 

crossover technique of Hasancebi and Erbatur [20] 

provides a tool for controlling the exploration of the 

design space (at the beginning of optimization), then its 

exploitation (in later stages of the genetic process).  

In many cases, complex shapes can be optimized by 

optimizing the shape of characteristic curves. Whenever 

the ordering of the defining curve data has a close 

geometric relation to consecutive parts of the curve (e.g., 

points of interpolation, control points of a Bèzier or B-

spline representation), they provide a natural 

transformation of curve characteristics into a sequential 

genetic code; segments of the curve correspond to 

segments of the chromosome. Accordingly, good 

segments of the curve correspond to good substructures 

of the genetic code, and the probability of disrupting a 

promising short code segment by crossover may be kept 

small.  

Mäkinen et al. [29] use as shape parameters the control 

points of a planar Bèzier curve which describes the 

profile of an airfoil. The cost function which must be 

minimized depends on the scattered electromagnetic 

wave and the pressure distribution of the airfoil. Marco 

and Lanteri [31] use the same two-dimensional curve 

representation for the optimum shape design of 

aerodynamic configurations. 

Different tasks in designing characteristic curves can also 

be supported by genetic algorithms. Márkus et al. [32] 

present a GA based method for degree reduction of 

Bèzier curves. The approximating curve is defined to lie 

in a strip around the given high degree curve, as a 

constraint, and to have an optimal shape characterized 

by its minimal curvature integral. The fitness of a curve is 
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composed of two parts: one is the curvature integral, and 

the other is a penalty. The penalty depends upon the 

degree of constraint violation, i.e., the length of curve 

segment that leaves the predefined strip. Strategies are 

developed to use different types of crossover operations 

and varying weights of the two components of fitness 

during the genetic process.  

A GA based method for the computation of curve-curve 

intersections is presented in [21], which is independent 

of the parametrization of the curve and of its topological 

properties (e.g. cusps, loops, zero curvature spans, etc.). 

Pairs of randomly selected points on each curve are 

represented in the chromosome. A genetic algorithm 

works on the generations of point pairs, and by 

minimizing the distance between them, it converges to 

one of the points of intersection. 

Complex shapes can be represented by two or three-

dimensional grids of control points of Bèzier, B-spline, 

NURBS surfaces or volumes. Following the discussion 

for curves, a grid structure of control points may be 

suitable for genetic representation. Simple genetic codes 

are not applicable directly to these structures, and new 

genetic operators must also be developed. For example, 

crossover operating on grids of the same size can be 

defined by first randomly selecting subgrids at the same 

position in the two individuals and then exchanging 

them in the offspring. A frequently occurring problem is 

the appearance of self-intersecting grids, which may 

result in self-intersecting shapes. To avoid this, 

intersecting grids may be locally deformed or they may 

be strongly penalized in the fitness calculation. Variants 

of the control point representations can also be used as 

genetic representation of shapes. For example, Wataba 

and Okino [46] use the free form deformation lattice 

(deformation of a grid of Bèzier control points) as shape 

chromosomes, and solve a minimum weight design 

problem with constraint conditions, and limitation of 

maximum stress. 

In many practical shape optimization problems, 

evaluation of the fitness function for a given set of shape 

parameters is computationally demanding; it frequently 

requires the solution of nonlinear state equations in two 

or three dimensions. A potential problem is that GA 

search may exploit weaknesses of the evaluation process; 

e.g. finite element evaluations may give completely 

misleading results outside the normal design space. If this 

results in good — but incorrect — fitness values, the 

whole search will be corrupted. The lesson is that careful 

coordination of the search and the evaluation process is 

necessary for a successful optimization. 

 

4.2.2 Cell GA 

An alternative way of representing the shape of an object 

to be optimized is to subdivide the space into small 

rectangular domains (pixels in 2D, voxels in 3D), and 

assign them a binary full value (1) for material or empty 

value (0) for void (see Fig. 3.), or integers for different 

materials.  

The cellular representation has the advantage that any 

shape can be represented with a certain accuracy, which 

can be increased by increasing the resolution.  At the 

same time, the cellular representation can be mapped 

directly into a two or three-dimensional binary genetic 

representation, resulting in a two or three-dimensional 

array chromosome. By applying this representation, 

domain specific knowledge and geometric constraints 

can easily be built into the genetic process. 

 
 

Fig. 3. The cell representation  

 

It is a great advantage compared to a parametric GA, 

that the structure and topology of the object need not be 

fixed in advance, but develop through the optimization 

process. As a result, a properly designed genetic process 

can work in an extended search space and give better 

results. However, unwanted small holes may appear in 

the final shape, and lack of smoothness of the boundary 

may not be acceptable in certain engineering problems. 

When a genetic algorithm for shape optimization is 

designed based on two or three dimensional arrays as a 

genetic representation, specific two or three dimensional 

crossover operators must be developed. One practical 

solution — a direct generalization of one point crossover 

— is first to select randomly a point in the middle of the 

array. Then complementary parts of the parents' 

chromosomes in blocks determined by the selected point 

are used to form the chromosomes of the children (see 

Fig. 4.).  
Parent 1

Parent 2

Child2Child1

 
 

Fig. 4. The diagonal crossover for 2D arrays 
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For this type of genetic representation, fitness evaluation 

is more complicated and time consuming than in the 

case of a simple sequential genetic code. Typically, 

planar or spatial distribution of geometrical or physical 

quantities need to be evaluated, often by using 

demanding analysis programs (e.g., finite element 

programs). 

Baron et al. [2] study the shape optimization of a beam 

and an annulus. In order to reduce the number of small 

holes, they apply a smoothness operator; the most 

common value for cells in a rectangular region with 

random position is applied to all the cells in that region. 

It is rather interesting that the design produced by the 

cell representation compares well with that produced by 

a parametric GA; however the cell GA requires more 

time to find a solution 

Duda and Jakiela [14] describe a speciating genetic 

algorithm for shape optimization. The speciation is based 

on a sharing function computed from the distance in the 

genotype and phenotype space. The sharing function is 

also used for mating restriction during evolution. As a 

result of the genetic process, the speciated final 

population contains not only one solution, but good 

designs with different topology and shape. The method 

has been shown to be efficient for solving planar strain 

problems based on cell shape representation.  

Two-dimensional cell (pixel) representation is also used 

for shape optimization by Kane and Schoenauer [26]. 

The inadequacy of one dimensional (bitstring) 

representation is emphasized and an evolutionary choice 

made among different two dimensional genetic 

operators.  

Chapman and Jakiela [7] apply cell representation for 

the geometric and topological design of truss structures 

having a maximum stiffness-to-volume ratio. In order to 

obtain realistic structures a connectivity analysis is 

performed; all material elements in the topology which 

are not connected to another one through an edge are 

set to void. Chen and Rajan [8] consider simultaneous 

sizing, shape and topology optimization of structural 

framed systems subject to static and dynamic loads. 

Raich and Ghaboussi [37] develop an implicit redundant 

representation genetic algorithm, which allows the 

representation of a variable number of location 

independent parameters. In this way the fixed parameter 

limitations of usual genetic algorithms can be overcome. 

A special type of cell representation called cell division 

model is introduced by Taura et al. [44]. The shape of a 

free form object is represented by dots (cells) on the 

surface of a sphere; the distance between a point on the 

surface of the free-form object and the center of the 

sphere is proportional to the local density of cells on the 

sphere. Shape evolves through a series of cell divisions, 

which are governed by a set of rules. These rules 

indirectly hold the features of the shapes, and are 

encoded as bit strings. A GA is applied for adaptive 

generation of new rules and for testing the effectiveness 

of existing ones. The whole mechanism resembles the 

early development of a living creature. In nature, cell 

divisions divide the fertilized egg (a single cell) into a 

population of smaller cells, which form the early embryo. 

Shape features of the evolving multicellular system are 

determined by rules of cell division. Although the 

complexity and accuracy of shapes which can be 

handled by the model is questionable, first experiments 

show that shape features can be represented, held, 

combined and manipulated by the method, which is 

useful and especially valuable in the early phase of 

design.  

 

4.3 Data Fitting 

Fitting of continuous curves and surfaces to discrete data 

points is often needed in solving a number of 

engineering tasks. Well established fitting methods 

(usually variants of the least-squares technique) are 

known, but they perform well only if several parameters 

are defined in advance. E.g., for spline fitting, the 

process is computationally feasible (linear) if the degree, 

knot distribution, and parametrization of the data points 

are given and fixed for the computation. In practical 

situations, however, these are not known to the designer. 

At the same time, these parameters strongly influence the 

quality of the fit, because they determine the structure 

and the basic geometric properties of the approximating 

function. If they are not defined properly, either the 

accuracy will be poor or the shape quality will not be 

satisfactory. The complicated and strongly nonlinear 

interdependence of the parameters and their influence 

on the fitting process is hard to keep under control, but is 

relatively easy to include into a GA. Successful 

experiments have been made to replace the complicated 

and unreliable process of determining the fitting 

parameters or a subset of them with genetic algorithms. 

A genetic algorithm was developed by Márkus et al. [33] 

for the computation of parameter values, associated with 

given data points, as knots of an interpolating cubic 

spline curve. The curve has optimal shape in the sense 

that its curvature integral is minimal. An additional 

constraint can also be handled; namely, the curve must 

not pass outside a strip around a predefined curve 

(which is here the interpolating curve with chord length 

parameter). 

Limaiem et al. [28] propose the application of a 

statistical technique called kriging for curve and surface 

fitting. The kriging model consists of a drift function 

describing the average shape and fluctuations, derived 

from the general covariance function. The model 

parameters are set by a GA to yield the minimum 
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average error between the kriged (continuous) curve or 

surface and the data points.  

The special case of data fitting when a polygonal 

approximation of an object curve is sought is 

fundamental in computer graphics, image processing 

and pattern recognition, and also plays an important role 

in engineering design (e.g. NC tool path calculation). 

The GA based technique developed by Huang and Sun 

[23] significantly reduces the integral square error 

between the polygon and the curve, and is insensitive to 

the selection of starting point for a closed curve and 

initial solutions. 

Manela et al. [30] apply genetic search to finding the 

best combination of the number of knots and the factor 

that balances the interpolating and smoothness 

capabilities of a univariate cubic spline function fitted to 

noisy data points.  

The difficulties in defining the fitting parameters are even 

more serious if not just a low dimensional shape, but a 

large set of high dimensional data with a large number of 

variables (say 20 or 30) must be fitted. Rogers [41] 

describes a multidimensional (multivariate) adaptive 

linear regression algorithm, which determines linear 

spline parameters using a GA. The fitness function is 

based on the least squared error with an additional 

penalty term related to the size of the model. 

Classical least squares methods can be quite sensitive to 

noise and errors in the data, and especially to outliers 

(points that are not consistent with the rest of the data 

set).  Robust statistical procedures, such as median least 

squares, have been developed for these cases; they are 

superior to least squares techniques in a strongly noisy 

environment. Their basic characteristic is that they are 

powerful, if they are combined with an efficient search 

algorithm. Karr et al. [27] utilize the search capability of 

a GA to develop a least median square curve-fitting 

algorithm.  

 

4.4 Reverse Engineering 

Reverse engineering is the process of creating a 

geometric or a CAD model on the basis of a set of data 

points generated by a measurement of a physically 

existing object [45]. It starts with registration, i.e., 

matching and fusing of point sets from separate views. 

Then a topology (usually a triangulation) is built over the 

unstructured point cloud, which reflects neighborhood 

relations. The main parts of the reconstruction are to 

separate subsets of data that belong to the constituting 

geometrical elements, and to determine types and 

parameters of the extracted elements. For each phase, 

the application of GA techniques has been investigated.    

In registration, a 3D transformation is to be determined, 

which brings a pair of point sets describing the same 

shape into correspondence. GAs were used for 

registration of 3D images in medical applications by Jacq 

and Roux [24], and for free form surface matching by 

Brunnström and Stoddart [6]. Although accurate 

registration is usually based on gradient descent 

algorithms (e.g. iterative closest point, ICP), they work 

only if an initial guess reasonably close to the actual 

solution is known.  In [6] chromosomes represent a 

correspondence between the two point sets. The fitness 

reflects the quality of the match by evaluating quantities 

that are invariant under translation and rotation 

(distances and relative orientation of normal vectors 

between point pairs). In Yamany et al. [48] registration is 

based on a grid closest point technique. The genetic 

code is composed of the parameters of the 

transformation matrix, and the genetic search minimizes 

the distances between associated points. 

Chen and Wang [10] discuss the construction of an 

optimized triangulation of a point set. Although the 

method was developed for creating optimized STL files 

(a standard for rapid prototyping), it seems to be suitable 

for preparing surface reconstruction as well. Starting 

from an initial triangulation, triangles which are coplanar 

or nearly coplanar are removed. Then blank regions, 

bounded by a set of straight-line segments, are re-

triangulated by a genetic algorithm. To obtain a valid 

triangulation, constraints are built into the initial 

population, the crossover and the mutation operators (a 

geometry constraint and a crossing constraint). Fitness is 

evaluated according to the smoothness of the 

triangulation in the blank region, the smoothness of its 

connection to the surroundings, and the shape of the 

individual triangles (equiangularity). 

A GA based algorithm which is capable of extracting 

quadric surfaces from a set of data points is given by 

Chen and Liu [9] The genetic representation is a string 

containing the indexes of a set of data points (gene 

points) as elements. For the fitness evaluation, the 

(pseudo geometric) distances of data points to a quadric 

— least-squares fitted to the gene points — are 

evaluated. The evolution of the surface representation is 

achieved through the genetic improvement of the gene 

points.  

 

5. CONCLUSION 

Genetic algorithms have increasingly been applied in 

engineering in the past decade. GAs have been 

considered mainly as tools for optimization and 

parameter tuning, but they are also used for creative 

design.  

Genetic algorithms conduct a search through the space 

of potential solutions to the problem. They provide a 

balance between two search strategies — exploration 

and exploitation —: they explore the search space and in 

the mean time exploit the good features of already found 

promising solutions. GAs perform an independent 

sampling on a population of design solutions, then select 
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members of the population, i.e., highly fit designs, for 

survival, and create new designs by crossover 

(combination of building blocks from different 

individuals) and by mutation. Crossover ensures the 

inheritance and dominance of valuable features, whereas 

mutation introduces variability. Together with the 

selection mechanism, they drive the artificial evolution 

process towards generating better and better solutions.   

The strength of genetic algorithms in design can be 

attributed to several factors. They are flexible and can be 

adapted to different design problems. Realization of  

GA procedures results in robust and stable algorithms 

and computer codes. Complexity of a problem can be 

handled by their ability to work with many parameters 

simultaneously in a search space of complicated 

structure. In design applications it is very important that 

there is a built-in tendency to find global optima. GAs 

can also be used beyond parameter optimization, for 

creative design. 
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