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ABSTRACT 

 

Dimension and tolerance specifications influence greatly the manufacturability of a part. However, 

initial design specifications usually reflect the functional point of view of dimensional specifications 

and result in a low manufacturability. To facilitate the required redesign process, a design rewriting 

system was proposed in an earlier paper to modify the shape of a design dimensional scheme. To 

complement the modification, to ensure the functionality of the design, and to reallocate tolerance 

values for the new derived dimensions, a constraint generation methodology is proposed here. 
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1. INTRODUCTION 

Design dimensions and tolerances can be satisfied by a 

process plan in one of two possible ways: directly or 

indirectly. A dimension and its tolerance are achieved 

directly if a single machining operation exists that 

generates the final state of dimension using the design 

datum(s) of that dimension as manufacturing and 

location datums. For indirect machining, as opposed to a 

direct case, there is not a single cut, which can finish a 

dimension (tolerance) using one of the surfaces 

constraint by the design dimension as datum to 

manufacture the other. In the direct machining case, the 

tolerance stack is minimal as it consists of one operation 

only and the accuracy and precision of this cut are alone 

responsible for the compliance with tolerance constraints. 

Direct machining has the advantage of requiring the least 

possible process tolerances. Unfortunately, direct 

machining is often difficult to achieve as designs specify 

dimensions that cannot be machined, or only under 

excessive costs. Note that in the following, the term 

dimension encompasses geometric relationship of two 
entities, as well as the associated tolerance. 

However, initial design specifications, including both size 

and geometric, are often unsuitable for efficient process 

plans (e.g. direct machining). This is in particular true if 

the designer has no process planning experiences, 

insufficient information on the machining environment 

or a complex design on hands. Process planners are 

consequently forced to:  

• either to introduce tolerance stacks into the 

plan, which in turn require excessive high 

machining capabilities, 

• to plan with frequent datum and fixture 

changes, causing high fixture and labour costs. 

• or to request a redesign of the part – in 

particular, to re-dimension it. 

The later is - not considering the logistic and work cost - 

the better option. These disadvantages can be reduced 

by the presented approach, as it semi-automatically re-

dimensions the design. The approach aims at replacing 

sub-optimal dimensions by alternatives without impact 

the functionality of the design.  

The general idea of alternative design specifications was 

already presented in [7], though with a limitation to size 

dimensions. This limitation was addressed in [8] and 

[12], where the authors outline a systematic procedure to 

rewrite both geometric and size dimensions.  

The design rewriting system proposed in [12] allows to 

inspect possible alternative design dimensions for any 

dimension desired to be removed. However, these 

design rewriting rules handle only geometric dimensions 

excluding the associated tolerances (see section 2.2). 

This represents a major difficulty as determining 

tolerance values of involved GD&Ts is much more 

involved as compared to basic size tolerances. To 

address this issue, a mechanism consisting of two 

relatively independent modules is designed in which one 

proposes alternative tolerance chain by manipulating 

types of dimensions and another to determine 

appropriate tolerance. The later is discussed hereafter. 
 

The whole approach is illustrated in fig. 1. Given the 

initial design and a set C of constraints on the machining 

environment (essentially best achievable tolerances for 

certain processes), the design is step-wise transformed 

towards a higher machinability. Two procedures take 

place in parallel: while design dimensions causing a low 

machinability are replaced one by one, constraints on 

tolerance values are added to C. These constraints are 
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such that, if they are fulfilled, the resulting design fulfils 

the original design intent.  

This publication proposes a scheme for the generation of 

constraints on the tolerances, which is depicted in the 

right section of fig. 1. In this part of the algorithm, 

parallel to the use of design rewriting rules, constraints 

are automatically created to restrict the resulting 

tolerance values in order to maintain the initial design 

intent.  

 

 
 

Fig. 1. An illustration of the approach 

 

This publication is less concerned with the choice of 

alternative design specifications (i.e. which alternative is 

better), but on providing the tool to transform a design 

dimension graph into another without compromising the 

design intent. A possible target of such a transformation 

is a design permitting direct machining [14]. 

Furthermore, this works does not intend to re-specify 

tolerance values to new-derived dimensions, but to 

create constraints which have to be respected during re-

specifications. The link between a design and direct 

machining is discussed in [11]. Note, that 

perpendicularity, parallelism, position, angularity and 

size tolerances are the main concern of this project, 

because other ANSI geometric tolerances are not 

expected to contribute to the decisions made during 

machining operation sequencing, set-up and fixture 

planning [6]. 

 

2. BACKGROUND 

In this section, the torsor model of design tolerances and 
the design rewriting system used to modify the 

dimensioning scheme of a design are briefly introduced 

to provide necessary background knowledge. 

 

2.1. Torsor model 

Here, tosors are used to mathematically represent 

geometric tolerance zones and to accommodate the 

propagation of geometric tolerances. These tolerances 

are expressed with respect to a reference system (Ri) at 
the origin of this reference system (point Oi) as defined 

as [12]: 

 Ta,b|RiOi = [w v]| RiOi    (1)  

Where w = [wx,wy,wz]
T is a small rotation vector 

(superscript T means vector transpose), and v the small 

displacement vector. 

Two types of torsors are used [3]: 

1. Deviation torsors (D-torsor) represent variations 
between nominal and actual features and 

2. Variation torsors (V-torsor) denote relative 

variations between two or more real features of 

a part. 

In order to allow the accumulation of several deviation 

or variation torsors (using matrix additions), they have to 

be expressed in a common reference system. To this 

means, equation (2) expresses the propagation of a 

torsor from its current reference frame to another 

reference frame [13]: 

 TRj = [Mi,jwRi  Mi,j(vRi+wRi×OiOj) ]   (2) 

Where OiOj describes the translation of the origin of 
reference frame Ri to the origin of Rj (relative to the 
earlier frame’s origin), and the matrix Mi,j rotates Ri onto 
Rj. 
Note, that this publication adopts the degree of 
invariance concept proposed in [3]. In this concept, 
elements of the variation and deviation torsors are 

undetermined as feature-specific rotations of translations 

leave the feature unchanged. These undetermined 

elements are denoted as U in the following. If, for 

example, a sphere is considered with the origin of its 

local coordinate is its center. As the rotation around the 

X-, Y- and Z-axis leave the sphere invariant, the D-torsor 

expressed at its center in its local reference system is 

 

 
x

sphere y

z

U v

T U v

U v

 
 =  
  

     (3) 
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2.1.1. Tolerance zones based on torsors 

A tolerance zone is a region of the Euclidean space, in 

which a fabricated surface is positioned. This zone is 

expressed relative to the ideal design surface [10]. Based 

on the concepts mentioned above, a tolerance zone can 

be defined mathematically by a V torsor combined with 

six interval constraints for components of the torsor. The 

result of this combination is an augmented torsor with 12 
elements, in which each of the six components of the 

original torsor is replaced by the lower and upper value 

of an interval constraint. In this augmented torsor, the 

first two columns are the extremes of the rotations of the 

real feature in either direction from the ideal position as 

given by the reference system. The third and fourth 

columns do the same for the translations. For the 

geometric tolerances considered in this publication, 

corresponding augmented torsors can be defined to 

mathematically model tolerance zones.  

Suppose Ti,j is an augmented torsor, then  −Ti,j (or Tj,i) is 
derived in this manner: multiply -1 to each element of 

Ti,j, exchange column 1 with column 2, and at the same 

time, exchange column 3 with column 4. 

In the torsor model, a substituting feature is assumed to 

reserve the topology of the nominal feature, and used to 

represent the real feature. In other words, a substituting 

feature has a perfect form. Therefore, the torsor model 

alone by far does not support form tolerances [9,15]. 

 

2.2. The design rewriting system 

The design rewriting system presented in [12] aims at 

transforming a design in a specific manner, and 

comprises rewriting rules, which will be explained in 

greater detail later in this section. The Design rewriting 

system was developed on the basis of term rewriting 
systems [2]. 
The purpose of the design rewriting rules is to modify 

design dimension schemes. These are graphs, also called 

overall dimension graph [7]. Such a graph is modified by 

a design rewriting system in two steps: first, the left side 

of a rewriting rule is matched, if possible, with a part of 

the design. Then, the part of the design is replaced by 

the right part of the rule. The application of a rule results 

in a new design dimension scheme. This procedure 

allows to remove problematic dimensions from the 

design. This approach is suitable for a computerized tool, 

as various applications of term rewriting systems show.  

Rewriting rules are the core of the system. A rewriting 
rule is an identity of two terms l and r, where l is not a 

variable and all variables occurring in r must also be in l 

and vice versa. The rule rl cond→ means the left-hand 

side is replaced by right-hand side if the (optional) 

condition cond is true. In this publication, a condition 

may make use of the following predicates: ρ(a, b, …) 

signifies that a, b are planes and L(a, b, …) constrains a, 

b,… to be lines. 

For the sake of the design rewriting system, dimensions 

are attributed (have the states): Original O, Implicit I, 

Removed R or Created C. A dimension is in the state O, 

if it was specified by the designer, and it may change into 

state R, if it is replaced by some other dimensions. A 

dimension that is implicit in the original design has the 

state I and may change its state to C when it replaces 

some other dimension(s). By convention, the first 

parameter of a primitive term is the state of a dimension 

and variables s and t designate states. 

 //(I, a, b) ⊥ (O, a, c) ⊥ (I, b, c) ( , ) ( )

( , , ) ( , , )

a b L c

L a b c a b c

ρ
ρ
∧ ∨
∨

→  

                                //(C, a, b) ⊥ (R, a, c) ⊥ (C, b, c)   (4) 

 //(O, a, b) //(O, a, c) //(I, b, c) 
( , ) ( , , )b c L a b cρ ∨→  

                                //(R, a, b) //(O, a, c) //(C, b, c)   (5) 
 //(O, a, b) //(I, a, c) //(s, b, c) { , }

( ( , ) ( , , ))

s

b c L a b cρ
∈ ∧
∨→I C   

                               //(R, a, b) //(C, a, c) //(C, b, c)   (6) 
Three example rules are listed above [12]. Rule (4) is 

used to replace perpendicularity, while rule (5) and (6) 

for parallelism. In the following, the meaning of rule (6) 

is illustrated. It intends to substitutes the initial parallelism 

between features a and b by two parallelism 

specifications between features a and c and between 

features b and c (see [12] for a larger set of rules). This 

rule is only applicable when the following conditions are 

satisfied: 

1. b and c are planes (and a line or plane), or a, b 

and c are lines; 

2. the parallelism between b and c must be 

implicit or the result of an earlier application of 

a rule. 

 

3. TOLERANCE CONSTRAINT 

In [12], many more rules suitable to deal with 

perpendicularity, parallelism, angularity, position and 

size tolerances were presented. However, the rewriting 

rules alone are insufficient to maintain the design 

functionality, as they do not determine the tolerance 

values of dimensions in state C. In the following, the 

general method to create such constraints is introduced, 

followed by detailed descriptions on how to define 

tolerances for parallelism and size dimensions. Other 

types of dimensions can be handled in a similar manner. 

Given a design or a solid model with design 

specifications conform to ANSI Y14.5M [1], an 

unequation for a rewriting rule is created as follows: 

1. Identify the dimension chain designated by the 

rewriting rule, and features Fi (i = 1, 2, … n) 
involved in this chain; 

2. Suppose features controlled by the original 

specification are F1 and Fn. Then, define the 
augmented V-torsor T1,n representing the 

tolerance zone of the original specification; 
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3. Define augmented V-torsor Ti,i+1, (i =1, 2, … 
n-1) denoting tolerance zone between features 
Fi and Fi+1;  

4. Transfer all torsors and their component 

interval bounds into one common reference 

system. 

5. Generate unequation  

n

n

i

ii TT ,1

1

1

1, ≤∑
−

=
+

 

 

3.1. Parallelism 

 

The most common geometrical design constraint is 

parallelism. If such a dimension cannot be machined 

directly, another plane must be inserted into the 

tolerance chain to make it possible, which is done by the 

appropriate rewriting rule. 

For example, three planes with local reference frames 

attached to their nominal position, respectively, are 

shown in fig. 2. These planes are attached to a common 

rigid body with reference frame R0, a convention used 

throughout in following examples. Plane P1 is of size 

a1× b1 (length×width), plane P2 of size a2× b2, and 

plane P3 of size a3 × b3. Suppose that the initial 

specification is P1//P2, and the specified tolerance value 

is t. 

 

 
 

Fig. 2. Planes with parallelism constraints 

 

If rule (6) is selected to rewrite the design, and the 

variables in the rewriting rule are chosen to be 

instantiated as: a := P1, b := P2, c := P3, s := I. Then 

the alternative tolerance chain of this modification is 

//(P2,P3)-//(P3,P1). Obviously, there are three 

augmented torsors involved in this chain: //(P1,P2), 

//(P1,P3), and //(P2,P3). The calculation of these three 

augmented torsors is demonstrated hereafter. 

As the parallelism constraint concerns only two rotations 

of a plane, the D-torsor representing the allowable 

deviation zone of real plane P1 from its nominal position 

comprises several undetermined elements. Here, only 

the rotations around the x- and y-axis are relevant for 

T1,1* , as shown in equation (7). 

 

1 1

1 1

1,1*

x x

y yR O

R O

r R U U

T r R U U

U U U U

 
 =  
  

    (7) 

Analogously, the augmented D-torsor standing for the 

allowable deviation zone of P2 is 

2 2

2 2

2,2*

x x

y yR O

R O

r R U U

T r R U U

U U U U

 
 =  
  

    (8) 

where 1* and 2* are the nominal planes of features 1 

and 2. To calculate the stackup of involved torsors, it is 

necessary to convert them into a common reference 

system prior to the addition of the matrices. In this case, 

R1 is chosen as the common reference system. The 

reference frame of T2,2*|R2O2  is then changed from R2O2 
to R1O1 by using equation (2), resulting into  T2,1*|R1O1. 
The augmented V-torsor denoting the tolerance zone of 

//(P1, P2) is: 

 
( )

( )

1 1

1 1

1 1

1 1

1,2

1,1* 1*,2

1,1* 2,1*

1,1* 2,1* 1,1* 2,1*

1,1* 2,1* 1,1* 2,1*

R O

R O

R O

x x x x

y y y y

R O

T

T T

T T

r R R r U U

r R R r U U

U U U U

= +

= −

− − 
 = − − 
  

   (9) 

There are eight unknown variables in torsor (9). 

However, rx1,1* − Rx2,1*, Rx1,1* − rx2,1*, ry1,1* − Ry2,1* and 
Ry1,1* − ry2,1* can be calculated respectively. To do this, 
several extreme points of plane P1 must be picked out, 

and create unequations to limit their displacements 

within the tolerance zone of //(P1, P2). All created 

unequations are linear, therefore, maximal and 

minimum bounds of the variables in the generated 

unequations can be determined by the simplex-
algorithm, depending on the original tolerance 

specification as well as the length and width of planar 

surface P1. The derived bounds for the rotation around 

x- and y- axis are worst cases. The substituting plane of 

the actual planar surfaces may deviate up and down 

from the nominal position of the plane. 

Similarly, the augmented V-torsors for the tolerance 

zones of //(P1, P3) and //(P2, P3) are: 

 ( )
1 1 1 1

1',3' 1',1* 1*,3'R O R O
T T T= +   (10) 

 ( )
1 1 1 1

2',3' 2 ',1* 1*,3'R O R O
T T T= +   (11) 

where 1’, 2’, and 3’ represent real surfaces after re-

design. They use different notations instead of 1, 2 and 



 679 

3, because real surfaces before and after redesign may 

have different D-torsors, and have to be distinguished. 

 ( )
1 11 1

1',3' 3',2 ' 1,2 R OR O
T T T+ ≤   (12) 

Equation (12) constrains the tolerances zones: the sum of 

the two involved torsors in the alternative chain has to be 

inferior to the torsor representing the initial tolerance 

zone. Provided this constraint is satisfied, the allowable 

deviation region can be allocated to the two V-torsors 

according to optimization criteria, as, for example, those 

proposed in [4] and [5]. 

Similar procedures can be applied to other dimensions 

like perpendicularity, angularity, and position tolerances. 

 

3.2. Size dimensions 

A size dimension can be specified between any 

combination of planes, lines, or points. 

Fig. 3 shows the most common case, two planar surfaces 

constrained by a size dimension. Suppose that rule (13) 

is used to rewrite the design in fig. 3, where   a := P1, b 

:= P2, c := P3. Then the combined tolerance between 

surfaces P1, P2 and P3 has to be inferior or equal to the 

original design tolerance. 

 S (O, a, b) S (s, b, c) S (I, c, a) { , } //( , , )s a b c∈ ∧→O C  

            S (R, a, b) S (s, b, c) S (C, c, a)  (13) 

This constraint for size dimensions can be expressed by 

the means of the augmented torsors. The D-torsor 

standing for the deviation zone of plane P1 is 

1 1

1 1

1,1*

x x

y yR O

z z R O

r R U U

T r R U U

U U t T

 
 =  
  

 

 

 
 

Fig. 3. Size dimension and tolerance 

 

Analogously, the one for P2 is 

2 2

2 2

2,2*

x x

y yR O

z z R O

r R U U

T r R U U

U U t T

 
 =  
  

 

Note that, although the situation is similar to replacing 

parallelism constraint, the D-torsors for P1 and P2 are 

different. For size tolerances, an additional constraint is 

added (the translation along z-axis). The augmented V-

torsor represents the tolerance zone of dimension   S (P1, 

P2) is 

( )
1 1 1 1

1,2 1,1* 1*,2R O R O
T T T= +   

The alternative chain implied by rule (13) is S (P2, 

P3)—S (P3, P1), for which the augmented torsors for S 

(P2, P3) and S (P3, P1) are: 

( )
2 2 2 2

2',3' 2',2* 2*,3'R O R O
T T T= +  

( )
1 1 1 1

1',3' 1',1* 1*,3'R O R O
T T T= +  

resulting in the constraint: 

( )
1 11 1

1',3' 3',2 ' 1,2 R OR O
T T T+ ≤  

 

4. EXAMPLE 

The generation of constraints is demonstrated by the 

means of the part in fig. 4. Assume that the part is cut to 

shape except for the slot, the top surface, the step and 

the hole. Then, in practice, the machine tool is usually 

set such that the step surfaces 12Y and 4Z, as well as top 

surface 1Z are milled parallel to the control surface 5Z 

defined by a 3-point locator. Surface 10X is adopted as 

the 2-point location surface to meet dimension 10X-9X. 

Surface 13Y is used as the 1-point location surface in 

order to achieve size dimension 13Y-12Y. 

This set-up results into a tolerance stack for the 

perpendicularity tolerance between surfaces 8X-4Z, and 

the position tolerance for the hole 14XY, due to both 

machining and setting variations. The design is such that 

any single set-up causes excessive tolerance stacks. 

Direct machinability of these three features in a single 

setup can be achieved by applying two rewriting rules 

[12], however, only one is examined here. After 

instantiation, rule (4) reads: 

 //(I, 4Z, 5Z) ⊥ (O, 8X, 4Z) ⊥ (I, 8X, 5Z) →   

//(C, 4Z, 5Z) ⊥ (R, 8X, 4Z) ⊥ (C, 8X, 5Z) 
This rule replaces the original dimension 8X-4Z and 

adopts the alternative chain 8X-5Z-4Z. 

As argued in the previous sections, this redesign must be 

complemented by unequations limiting the tolerances of 

the dimensions in states O and C on the right side of he 

rules. 
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Fig. 4. Drawing and 3-D model of the example part 

 

The local reference systems of features 4Z, 5Z and 8X 

(R4Z, R5Z and R8X, respectively) are as indicated in the 3-
D model of fig. 4. It can be inferred from this figure that 

the rotations and translations in equations (14) to (17) 

permit the adoption of a common reference system. 

 
4 ,8

0 0 1

0 1 0

1 0 0

Z XM

 
 =  
 − 

   (14) 

 [ ]4 8 3.5 45 60
T

Z XO O =   (15) 

 
5 ,8

0 0 1

1 0 0

0 1 0

Z XM

− 
 =  
 − 

  (16) 

 [ ]5 8 30 3.5 100
T

Z XO O = −    (17) 

Based on the information given and the procedure to 

construct augmented D-torsor presented above, the 

augmented V-torsor for ⊥ (8X, 4Z) derived is 

( )
8 8

8 8

8 8

8 ,4

8 ,8 * 4 ,8 *

X X

X X

X X

X Z R O

X X Z X
R O

R O

T

T T

U U U U

m n U U

U U U U

= −

 
 =  
  

  

where m = ry8X,8X* − Ry4Z,8X*, and n = Ry8X,8X* − ry4Z,8X*. 
According to the simplex algorithm, m=−0.025, and 
n=−0.025. Therefore, 

8 8

8 8

8 ,4

0.025 0.025

X X

X X

X Z R O

R O

T

U U U U

U U

U U U U

 
 = − 
  

 (18) 

And the resulting constraint is 

( )
8 88 8

8 ',5 ' 4 ',5 ' 8 ,4
X XX X

X Z Z Z X Z R OR O
T T T+ ≤  (19) 

Substituting equation (18) into unequation (19), it is 

clear that for rotations around the y-axis of the two 

augmented torsors on the left side of unequation (19), 

the sum of their ranges cannot exceed [-0.025, 0.025]. 

How to allocate this range to two augmented torsors 

corresponding to tolerance zones in the alternative 

tolerance chain depends on the optimization criteria 

selected. One possible way is to distribute it equally, i.e. 

each gets [-0.0125, 0.0125]. 

 

5. CONCLUSION 

A methodology to create constraints for new derived 

geometric dimensions & tolerances is presented. It allows 

for a semiautomatic redesign process, while maintaining 

the functionality of the changed design. The approach is 

exemplified for parallelism and dimensional constraints 

and uses the torsor model to mathematically represent 

geometric tolerance zones. Tolerance chains are 

manipulated and unequations are created to maintain 

the design intent. 

This constraint generation approach is a part of a design 

rewriting system, targeting a better manufacturability of a 

design through redesign. Notably, the method is 

independent from a particular machinability measure, as 

well as of the tolerance accumulation model, and can 

therefore be considered generic. 
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