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ABSTRACT 

 

Mid-surface of a part is currently used as an idealization of 3D shape for purposes of 

analysis/simulation of injection molding and other near net shape processes. The mid-surface has 

also been proposed as an intermediate representation for feature extraction, and feature 

suppression for analysis. 

 

This paper describes a completely automatic procedure to determine the mid-surface of an object 

using 2-D Medial Axis Transform (MAT) of each of its faces. Earlier efforts to generate the mid-

surface either rely on user intervention and expensive ray tracing procedure to identify pairs of 

faces that define mid-surface patches or work on a very restricted domain. In the proposed 

approach, the 2-D MAT of each face is used to define mid-curves for each face. These mid-curves 

are used to obtain the topology of the mid-surface. Pairs of faces corresponding to each mid-

surface patch are identified using the mid-curves. The mid-curves also form the boundary of the 

mid-surface patch in some special cases. Results of implementation on typical objects are presented 

and scope for further work has been identified. 
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1. INTRODUCTION : SKELETONS 

A type of solid representation called "skeleton/skeletal 

representation" is receiving much attention of late as an 

abstraction of 3D shape that can be used for design and 

engineering tasks. Any skeleton (or an abstracted model) 

should have the following properties [11]. 

• The skeleton should have no interior (in the 

sense of dimensional reduction [11]) in the 

dimension of the object of space. 

• The skeleton should have homotopic 

equivalence to the object - that is, number of 

holes, enclosed voids should remain the same. 

• The shape of the skeleton should abstract the 

shape of the object – that is, locations and 

relative dimensions of features should be the 

same as in the object. 

The dimensional reduction inherent in the skeleton 

enables abstraction of the 3D model of the part to 

obtain a model that can be used in the 

simulation/analysis programs typically used in injection 

molding and die casting. In these programs only shell or 

beam elements are used so that the third dimension 

needs to be suppressed. For the analysis to be correct it 

is important that the abstraction follow the local 

topology of the part as closely as possible [4].  Use of 

skeleton representations are also being explored in 

applications such as process planning, robot path 

planning, shape description and finite element modeling 

[3]. 

 

 Various skeletal representations [1] are possible 

depending on the norm used to derive the skeleton. 

Among these, Medial Axis Transform (MAT) [2] is the 

most widely studied and perhaps used as well.  Other 

skeleton representations such as the box skeleton [11], 

have also been proposed for applications like mesh 

generation and feature recognition.  

 

 
 

Fig. 1. Medial Axis and Mid-curve. 

 

Mid-surface [4], a variant of MAT, reflects the topology 

of an object to a greater extent than MAT and has been 

shown to be useful in various applications. The 2D 
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counterpart of the mid-surface is referred to as the mid-

curve [7].  While the MAT  is formally defined [2,10], no  

formal definition exists  for either mid-curve or mid-

surface. Fig. 1(a). shows referred to as the mid-curve 

[7]. While the MAT is formally defined [2,10], no formal 

definition exists for either mid-curve or mid-surface. Fig. 

1(a). shows the MAT and Fig. 1(b). shows the mid-curve 

of a 2D domain. As can be seen in the figure, the MAT 

falls short in its ability to reflect the local topology of the 

part exactly. This is because of the extraneous portions 

and non-linear entities that occur due to convex and 

concave corners in the domain. On the other hand, the 

skeleton (mid-curve) in Fig. 1(b). resembles the original 

geometry to a greater extent when compared to MAT. 

 

Based on the properties of a skeleton listed above, the 

mid-surface can perhaps be defined as follows. 

 

Definition 1  Mid-surface is an aggregation of surface 

patches (where each patch corresponds to a pair of non-

adjacent surface patches (faces) in the object that are 

closest to each other) that form a closed and connected 

set and that satisfy homotopy.  

 

Though the mid-surface has desirable properties as an 

abstraction of 3D shape, a formal definition of the mid-

surface is not available. This makes it difficult to develop 

algorithms for generating the mid-surface for an object. 

Also, unlike MAT, the mid-surface is not unique for a 

given object and this adds to the  difficulties in realizing 

the mid-surface. 

 

There have been very few efforts reported for the 

construction of mid-surface [4,6,7]. These approaches 

can be classified into direct and indirect approaches. 

 

The direct approach [4,6] involves constructing the 3D 

mid-surface for a part model by connecting/sewing the 

mid-surface patches obtained for 'pairs of surfaces'. This 

requires a 'pairing strategy' that has thus far required 

human intervention. Connecting various mid-surface 

patches require 3D Boolean operations. Rezayat's [4] 

algorithm appears to work only for objects that are a 

combination of a few geometric configurations such as 

L, RIB, LRIB, and RAMP. 

 

The indirect approach involves generating the mid-

curves first and then obtaining the mid-surface using 

mid-curves. However generation of mid-curve has been 

addressed only for the restricted domain whose 

boundary consists of two boundary curves. In this case, 

the mid-curve can be constructed in a straight forward 

manner based on a predefined norm. Some post-

processing may be required due to the formations of 

undesirable 'loops'  [7] which should be eliminated to 

get a valid mid-curve between two boundary curves. 

When the domain consists of more than two boundary 

curves, correct pairing of the edge pairs is required to 

generate the mid-curve. This then becomes a direct 

approach albeit in 2D. 

 

 The generation of mid-surfaces from mid-curves has 

been addressed only for 2.5D objects generated through 

extrusion of the 2D profile [7]. However even for this 

class of solids, the result is correct only if the span of 

extrusion is above a threshold. 

 

The mid-surface construction technique described in this 

paper is also an indirect approach in that the mid-

surface is constructed from the mid-curves of the faces in 

the object. In contrast to the earlier indirect approaches, 

the mid-surface for a general object has been addressed 

and not restricted to extruded/revolved objects only. The 

2D MAT of the faces in the object are used to define the 

mid-curve for each face in the object. The problem of 

identifying the correct pair of edges in a face to define 

the mid-curve is solved by the use of the MAT. The mid-

curves in turn are used to identify the pairs of faces that 

define the mid-surface patches. As the MAT is formally 

defined and there are formal algorithms to generate the 

MAT (atleast in 2D [10]) the process of identifying 

correct face pairs is completely automatic. It must be 

mentioned that the MAT not only facilitates automatic 

pairing but the mid-curve consists largely of MAT 

segments. 

 

The rest of this article is structured as follows: section 2 

presents some preliminaries followed by an overview of 

the algorithm. Details of the construction are provided 

next. Results of implementation are presented followed 

by discussion. The paper concludes with a discussion on 

directions for future work. 

 

2. MAT 

The Medial Axis (MA) of the set D, denoted M(D), is 

defined as the locus of points inside D which lie at the 

centers of all closed discs (or balls in 3-D) which are 

maximal in D, together with the limit points of this locus.  

A closed disc (or ball) is said to be maximal in a subset D 

of the 2D (or 3D) space if it is contained in D but is not a 

proper subset of any other disc (or ball) contained in D. 

The radius function of the MA of D is a continuous, real-

valued function defined on M(D) whose value at each 

point on the MA is equal to the radius of the associated 

maximal disc or ball. The Medial Axis Transform (MAT) 

of D is the MA together with its associated radius 

function. The boundary and 

the corresponding MA of an object is shown in Fig. 1(a). 

 

2.1 Points on MAT 
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Points on the MAT can be classified based on the 

properties of their maximal disks [5]. A point whose 

maximal disc touches exactly two separate boundary 

segments is called normal point.  Point N (or any point 

on the line segment (A,E1) excluding the end points A 

and E1) in Fig. 2(a). is a normal point. Its underlying 

maximal disk is shown in Fig. 2(b). 

 

A point whose maximal disc touches the domain 

boundary in three or more separate segments is called 

branch point.  Points E1 and F1 in Fig. 2(a). are branch 

points. Fig. 2(c). shows the maximal disk corresponding 

to the branch point E1. 

 

A point whose maximal disc touches the boundary in 

exactly one contiguous set is called an end point. Fig. 

2(a)., shows the end points A,B,C and D. These points 

touch the boundary at a point and the corresponding 

maximal disc is of radius zero. 

 

A point of contact with the domain boundary, of the 

underlying disk of a point on the MAT is called the  

footpoint of the point on the MAT.  From the definition 

of the point types in a MAT, a normal point will have 

two footpoints (Fp1 and Fp2 in Fig. 2(b).), a branch 

point will have three or more (Fp1, Fp2, and Fp3 in Fig. 

2(c).) and an end point will have one or more footpoints. 

 
Fig. 2.  Classification of points on MAT. 

 

3. OVERVIEW OF THE ALGORITHM 

The algorithm takes as input a boundary representation 

(B-rep) model of the part and the 2D MAT of each face 

in the B-rep. The 2D MAT is obtained by the algorithm 

described in [10]. Mid-curves for each face are first 

constructed from the 2D MAT.  This step involves 

removal of some MAT segments and addition of some 

new segments to account for the corners (convex and 

concave) in each face.  Based on the connectivity and 

the associated radius function, mid-curve segments  

across the faces in the part are connected to form chains 

or loops.  The face-pairs that define the mid-surface are 

then identified from these chains (and loops) of mid-

curve segments.  The chains/loops that result in valid 

face-pairs are flagged. In some special cases, the loops of 

mid-curve segments directly yield bounding edge loop of 

a mid-surface patch. The identification of face-pairs 

terminates when all the faces in the object either have 

their mid-curves flagged or are one of the faces in the 

face pair associated with a mid-curve that has been 

flagged. The mid-surface patches are constructed from 

each face pair identified, by an offset based procedure.  

The information available with the mid-curve 

loops/chains is then used to connect/trim the mid-surface 

patches to obtain the mid-surface. 

 

4. ALGORITHM DETAILS 

The algorithm for constructing the mid-surface consists of 

the following steps. 

 

• Constructing mid-curves from MAT 

• Connecting mid-curves to form mid-curve 

graphs 

• Identifying valid face pairs 

• Constructing mid-surface patches 

 

4.1 Constructing Mid-curves from MAT 

In this step, mid-curve for each face in the part is 

constructed from the 2D MAT of that face. The 

construction of the mid-curve involves deletion of MAT 

segments that correspond to corners (convex and 

concave) and addition of segments that account for the 

portion of the boundary in the vicinity of the corners, 

that is not accounted for by the modified MAT. As 

mentioned earlier, it is the MAT segments corresponding 

to convex and concave corners that prevent the MAT 

from reflecting the local topology exactly. The remaining 

MAT segments (with some modifications as mentioned 

above) are part of the mid-curve. By definition of MAT, 

these segments are equidistant to their corresponding 

boundary segments 

that are not adjacent to each other. Hence they form 

part of the mid-curve. 

 

4.1.1 Replacing MAT Segments due to Concave Corner 

For each concave vertex in the face, the extreme points 

of MAT segments corresponding to the concave vertex 

are identified. There will be two such extreme points that 

have as their corresponding boundary entities - the 

concave vertex and one of the two edges incident at the 

concave vertex respectively. Continuity of the MAT 

ensures that these two points exist. The non-linear 

segment between these two points are removed. The 

removed segment is replaced by segments that are 

parallel to the respective edge incident at the concave 

vertex, through the extreme points identified. Intersection 
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of these two segments is a new branch point, termed the 

secondary branch point (SBP).  The new segments are 

trimmed at the SBP. Fig. 3. illustrates this process. 

 

4.1.2  Replacing MAT Segments at Convex Corners 

MAT segments emanating from a convex corner are 

removed. If these segments (starting from a convex 

corner) share a branch point then these are replaced by 

a new segment between the branch point and the mid-

point of the boundary segment formed by the two 

convex corners. 

 

 
 

Fig. 3. Replacing MAT at a concave corner. 

 

The new point on the boundary segment is called 'mid-

curve-end (mc-end)' point. In Fig. 4., S1 is the mc-end 

point and S1-E1 is the equidistant segment replacing the 

MAT segments A-E1 and B-E1. The radius function for 

the points on the new segment (S1-E1) is defined by the 

disk centered at a point on S1-E1 and that has foot 

points on the other edge incident on the two convex 

vertices respectively. The disk is therefore termed to be 

locally maximal as it need not be maximal with respect 

to the entire object. 

 

The addition of the new segment is required to account 

for the portions of the domain that is left uncovered due 

to the removal of the MAT segments at the convex 

corners. As can be seen in Fig. 4., the domain covered 

by the segment E1-S1 (that has been added) is the 

rectangle A-B-Fp1-Fp2. This is equal to the sum of the 

areas covered by the MAT segment A-E1 (area A-Fp1-

E1-S1) and the MAT segment B-E1 (area B-Fp2-E1-S1). 

Hence the segment E1-S1 can replace the MAT 

segments A-E1 and B-E1.  

 

It is now shown that the above construction of the mid-

curve from the MAT satisfies the properties of a skeleton 

(Theorems 1 and 2). 

 

Theorem 1 The result of the above procedure has no 

interior. 

 

Proof : The MAT does not have any interior in the same 

dimensional space as that of the object [11]. Deleting a 

MAT segment does not create any interior. The segments 

between branch points that are retained belong to MAT 

segments and hence they also create no interior. Assume 

that there is an interior formed by segments added to 

form the mid-curve. Let 'q' be a point on such a segment 

(refer Fig. 4.) and 'f' be its footpoint. Let the 

corresponding radius of the locally maximal ball be r. If 

there exists an interior, then some point in the vicinity of  

'q' such as 'p' should belong to the interior. Clearly there 

cannot be a locally maximal ball at 'p' that has the same 

radius. Therefore 'p' cannot be on the mid-curve. Similar 

argument holds if 'q' were to be in the interior. Hence the 

theorem. 

 

 
 

 
Fig. 4. Illustration of mc-end point. 

 

Theorem 2 The above procedure preserves homotopy. 

 

Proof : Proof is by contradiction. Assume the above 

procedure 'creates' holes. MAT segments that have holes 

as their corresponding boundary edge will have at least 

one branch point. The above procedure only modifies 

an existing branch point (corresponding to concave 

corner) but does not create any extra branch points.  

Therefore no extra holes are created. Similar argument 

holds for 'deleting' holes. Hence the procedure preserves 

homotopy. 

 

Fig. 5. illustrates the steps in the construction of mid-

curve from the MAT for a simple domain. The 2D MAT 

for the L-section is input (Fig. 5(a).). B1, B2 and B3 are 

the primary branch points. Replacing the non-linear 

segments due to the concave corner results in the 

secondary branch point B2' (Fig. 5(b).). Processing the 

MAT segments at convex corners that share a branch 

point results in the segments B1-S1 and B3-S2 along 

with the removal of corresponding MAT segments (Fig. 

5(c).). Finally, the MAT segment between convex corner 

B and branch point B2 is removed to obtain the mid-

curve (Fig. 5(d).). 
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The mid-curve of a face is stored in the form of a graph.  

The nodes/vertices of this graph are the end points of 

each mid-curve segment and the edges of this graph are 

the mid-curve segments. The nodes carry an attribute 

indicating the type of vertex to be either a mc-end point 

or SBP. The edges have three attributes. The first 

attribute is the face on which the mid-curve is defined. 

This is also referred to as the parent face. The second is 

the radius of the mid-curve segment (which is the radius 

of the locally maximal disk).  The third attribute is the 

face pair which consists of the two faces (other than the 

parent face) respectively incident at the two edges 

defining the mid-curve segment. The structure 

representing the mid-curve is referred to as attribute mid-

curve graph (AMG). 

 

 
 

Fig. 5. Constructing mid-curve of a face from the 2D MAT. 

 

 

4.2 Connecting Mid-curves to Form Mid-curve 

Graphs  

In this step mid-curve segments obtained for each face 

are connected to form chains or loops.  The mc-end 

points associated with the mid-curve of each face are 

used to connect mid-curves across the faces of the 

object. 

 

Definition 2 (correspondence): A vertex (having mc-

end point as its attribute) of a mid-curve of a face is said 

to have correspondence if that vertex is a mc-end 

point in the mid-curve of an adjacent face (that shares an 

edge). 

 

mc-end points in the mid-curve of a face are used to 

connect mid-curves. 

 

Definition 3 (Union of AMG's through mc-end points): 

Union of mid-curve graph through mc-end points is 

defined as follows. The nodes or the vertices of the graph 

union are the set union of vertices of all the mid-curves 

of the faces having common mc-end points. The edges 

of the union are the union of the edges of the mid-curves 

of all such faces having common mc-end points. 

 

The union of AMGs across faces is also an AMG. The  

resulting mid curve graph is classified  further as a loop-

graph or a chain as follows. Union of AMGs obtained 

above is said to form a cross loop graph (CLG), if there 

exists correspondence for every mc-end point on a face. 

Otherwise, it is labelled as  a Chain (CH).  

 

Fig. 6(b). and Fig. 6(c). show a CLG and CH 

respectively obtained for the object in Fig. 6(a). 

 

 
 
Fig. 6. (a) Mid-curve segments for L-section (b) Cross loop 

graph (c) Chain. 
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Fig.  7.  (a) Object with a hole (b) Mid-curve of the multiply 

connected face (c) Self loop. 

 

If there is no mc-end point present on the face, then the 

AMG on that face is tested for 'cycles'. An AMG having a 

cycle but no mc-end point in its vertex attribute is called 

a self loop (SL). 

 

Fig. 7(a). shows an object with a through hole and Fig. 

7(b). shows the mid-curve on a face of that  object. Fig. 

7(c) illustrates the self-loop. 

 

 

4.3 Identifying Valid Face Pairs 

In this step, the graphs of mid-curves obtained in the 

previous step are used to identify the face pairs forming 

the mid-surface patches.  The CLG is used to identify the 

edges of the mid-surface of an object while  SL, CH are 

used to identify face pairs for which the mid-surface 

patch is to be generated. 

 

Mid-curve identifies non-adjacent edges in a face that 

are closest to each other. Consequently, the mid-curve 

also establishes a distance norm between the faces (other 

than the face for which mid-curve is defined) incident at 

these two edges. For example in Fig. 8., the ball Ba1 

connects the edges AB and EF in face F7 and this can be 

treated as a distance metric between faces F1 and F3 

incident on these two edges. The 'maximal ball' 

constraint of MAT and the locally maximal ball constraint 

of mid-curve ensures that these two edges (and therefore 

the two faces) are closest to each other. The above 

properties of mid-curve along with the presence of mc-

end points facilitates the identification of pairs of faces 

that could form the mid-surface. Connecting the mid-

curves across faces then allows identifying valid face 

pairs that would define mid-surface patches. 

 

 
 

Fig. 8. Proximity relation between faces through mid-curves. 

 

If there are more than one cross-loop-graph or chains 

then parallel cross-loop-graph and parallel chains from 

amongst these are identified. Two cross-loop-graphs are 

said to be parallel if every edge in the cross-loop-graph is 

associated with the same face pair (Fig. 9(a).). Similarly, 

two chains are said to be parallel if the mc-end point of 

the terminal edge in each chain share a common face 

(Fig. 9(b).). Once pairs of parallel cross-loop-graphs or 

chains have been identified, face pairs forming the mid-

surface patches are obtained as follows. For every pair of 

parallel cross-loop-graph or chain, parent faces of the 

edges in the respective cross-loop-graph/chain that are 

parallel form a valid face-pair. If there are more than two 

edges parallel to each other, a procedure similar to the 

scan-line algorithm  [8] is used to pick the right pair. 

 

 
 

Fig. 9. (a) Parallel Loop (b) Parallel Chain. 
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If there is only one chain then if the edges in the chain 

correspond to the same face pair then that face pair is a 

valid face pair. 

 

If there are self loops identified in the mid-curve of the 

faces, the face pair associated with each mid-curve 

segment forms a valid face pair. 

 

It may be noted that some valid face pairs may be 

identified twice (usually in the presence of self loops). 

Since the face pairs have unique identifiers (in terms of 

the labels of each object face in the pair) the repetition 

can be trapped.  The edges (mid-curve segments) in the 

loop-graphs (cross and self) and chains used to identify 

the face pairs are flagged. 

 

4.4 Constructing the Mid-surface Patches 

Once the face pairs are identified, the mid-surface 

patches are generated. The mid-surface patches can be 

generated using a geometric interpolation [4] or by 

generating an offset-surface between the given face pair. 

Each patch definition can then be obtained using the 

corresponding surfaces in the object. 

 

In special cases (described below) mid-curve segments 

form the edges of the mid-surface. The converse is not 

true because the mid-surface patches do not always 

terminate on the faces of the object. The edges (mid-

curve segments) in cross-loop-graphs (that are not 

parallel to any other cross-loop-graph) form the edges of 

a mid-surface patch. Mid-curve segments in the self loops 

also form the edges of the mid-surface patches. This can 

be used to trim and connect the mid-surface patches. For 

example, consider the object shown in Fig. 9(b). The 

self-loop, parallel chain and the chain in that object 

determine the respective face pairs. Since the parallel 

chains terminate on a face corresponding to that with the 

self loop, the edges forming the self loop are used to trim 

and connect the mid-surface patches obtained from the 

face pairs identified from the parallel chain. In a similar 

manner the connection between the mid-surface patch 

obtained from the single chain to the mid-surface patch 

identified from the parallel chain/self loop can then be 

established from the fact that the chain terminates on 

one of the faces in the face pair obtained from the self 

loop. Therefore, the mid-curve segments not only help in 

automatically identifying face pairs but also enable 

establishing the connectivity of the mid-surface patches. 

 

4.5 Termination of the Algorithm 

The procedure to identify valid face pairs terminates 

when one of the following is true for all the faces. 

1. The mid-curve associated with the face is 

flagged. 

2. The face belongs to the face pair associated 

with a mid-curve that has been flagged. 

These two conditions ensure that all the valid face pairs 

have been identified. The construction procedure 

terminates when the mid-surface patch for all the valid 

face pairs identified have been constructed and trimmed 

with the other patches.  

 

5. RESULTS AND DISCUSSION 

The algorithm described has been implemented and this 

section presents the results obtained for some typical 

objects. The input to the algorithm is the B-rep of the 

object. Curved edges are discretised into straight lines. At 

present the implementation is not linked with a 

procedure to generate offset surfaces.  Once the face 

pairs are identified, the implementation will determine 

the connectivity between the patches denoted by face 

pairs. Results shown here therefore do not have objects 

where the edges of the mid-surface patches are in the 

interior (and therefore not mid-curve segments). 

 

Mid-surface obtained for some typical objects are shown 

in Fig. 10. to Fig. 16. Mid-surface is generated for objects 

having multiply connected segments as well (Fig. 10. to 

Fig. 13.). 

 

 
 

Fig. 10. Object with a slot and its mid-surface. 

 

 

 

 
 

Fig. 11. Test object and its mid-surface. 



 672 

Tab. 1. shows the time taken for generating mid-surface 

(including the generation of MAT for each face) for some 

of the figures. These times do not however include the 

time for generating offset surfaces. The implementation is 

on a PIII 450 MHz machine with 256MB RAM. 

 

 

5.1 Discussion 

Fig. 14. shows the results for a 2.5D test object obtained 

by extruding the same profile across different 

lengths (frames (a) and (c) respectively). The 

corresponding mid-surfaces are shown in frames (b) and 

(d) in the same figure. Note that there is a significant 

change in the geometry of the mid-surface because of 

this difference in the span of extrusion.  

 

 
 

Fig. 12. Test object and its mid-surface. 

 

Therefore the mid-surface of a 2.5D object can not 

always be obtained by just extruding/rotating the mid-

curve of the profile curves from which the object is 

generated [7].  While the mid-surface for the object in 

Fig. 14(a). can be obtained by extruding the mid-curve 

of the profile curve, this is not the case for the object in 

Fig. 14(c). This is only possible if the span of extrusion is 

above a threshold value. 

 

Unlike the method in [7], the method described here 

does not create any loops and hence loop elimination 

procedures are not required. This method can also be 

applied to parts that are obtained by rotating the profile 

curve of the object (Fig. 15., Fig. 16.). This algorithm 

also requires no separate procedure to get the mid-

surface for RAMP part as in [4]. 

 

The proposed algorithm uses the mid-curve to generate 

each face pairs for which the mid-surface patch is to be 

generated rather than using a complex ray-tracing 

procedure which avoids the need to use separate pairing 

strategy. Moreover, no user intervention is required. It 

also generates the mid-surface of variety of part models 

and not restricted to shell and extruded geometries. The 

result will be as accurate as the 2D MAT used.  

 

 
 

(a) Test object. 

 

 
 

(b) Mid-surface. 

 

Fig. 13.  Test object and its mid-surface. 

 

 
 

           (a)                                       (b) 

 

 
 

          (c)                                        (d) 

 

Fig. 14.  (a) Test object (b) Mid-surface (c) Thinner object (d) 

Mid-surface. 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

(d) 

 

Fig. 15. (a) Test object (b) MAT of the profile (c) Mid-curve of 

the profile (d) Mid-surface. 

 

 
 

( a) 

 

 
 

(b) 

 

Fig. 16.  (a) Test object (b) Mid-surface. 

 

Figure No. Time (s) 

11 37 

12 70 

13 46 

 
Tab. 1. Time taken for generation of mid-surface (including 

MAT of each face)  for typical objects. 

 

 

6. CONCLUSION 

In this paper, a new method for determining the mid-

surface of a 3D object using a 2D MAT has been 

described. Computational complexities are alleviated 

because of a dimension reduction in solving the 

problem. At present, the curved edges are discretised 

into line segments. Moreover, the present algorithm for 

generating mid-curve from MAT works on one level 

only. For example, for a rounded corner, in its piecewise 

linear approximation, the MAT will look like a tree of 

several levels. Future work includes solving for curved 
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edges without discretisation, handling more than one 

level in the MAT and providing formal proofs for some of 

the assertions regarding the loop-graphs and chains, and 

the face pairs forming the mid-surface.  
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