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ABSTRACT 

 

This paper considers the problem of investigating the spherical regions owned by the maximum 

number of spherical polygons. We present a practical ))(( IvnO +  time algorithm for finding the 

approximating centroids for the maximum intersection of spherical polygons, where n , v , and I  

are, respectively, the numbers of polygons, all vertices, and intersection points. In order to elude 

topological errors and handle geometric degeneracies, our algorithm takes the approach of edge-

based partitioning of the sphere. Furthermore, the numerical complexity is avoided since the 

algorithm is completely spherical. 
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1. INTRODUCTION 

We can well establish many problems of orienting 

models or equipments in manufacturing [3,4,28] with 

the geometric technique of finding the maximum 

intersection of visibility maps derived from the surface 

normals of the models, which are represented as 

spherical convex polygons on the unit sphere 2S . 

 

For investigating the intersection of spherical convex 

polygons, there have been two kinds of approaches: 

tessellation approach [21,23] and partition approach 

[3,15,22]. The tessellation approach is a digital-image-

oriented method that subdivides 2S  into a set of small 

triangles, and computes the ownership of each triangle. 

The partition approach is a polygon-object-oriented 

method that partitions 2S  with the boundaries of 

polygons into a set of faces and computes the ownership 

of each face. 

 

The tessellation approach has been used in practical 

applications, since it can take robust computation. This 

approach has trade-off between the accuracy of solutions 

and the efficiency of computing time. Subdivision of the 

sphere has a disadvantage in geometric computations for 

choosing a preferred solution such as finding a centroid 

of all solutions. 

 

The partition approach is theoretically analyzed to be 

able to obtain the exact boundaries of all solutions in an 

efficient time complexity. Unfortunately, however, its 

implementation may fall into the numerical complexity 

as pointed out by Suh and Kang [21]. For example, 

infinite values can be obtained when the central 

projection is applied into points on 2S  for using planar 

algorithms. Another serious problem is the topological 

violation of nearby neighboring intersection points of the 

polygons, which is caused by the limit of numerical 

computation. A topological error makes the boundary 

representation [2,25,27] of the partition approach 

inconsistent. 

 

In this paper, we present a robust and practical algorithm 

for computing the approximating centroids of maximally 

intersected faces, which is a new method of the partition 

approach. In order to achieve the robustness by eluding 

topological errors such as the violation of nearby 

intersection points and handling geometric degeneracies 

such a point or an edge visibility map, our algorithm 

updates the ownerships of edges rather than those of 

faces whenever 2S  is incrementally partitioned by each 

polygon. The partition method of our algorithm will be 

called edge-based partition, while the previous method 

[3,15,22] is called face-based partition. Our edge-based 

partition excludes the central projection of spherical 

entities into 2S  in order to avoid the numerical 

complexity. 
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2. PRELIMINARIES 

2.1 Definitions and Notation 

Two points are visible to each other if there is a line 

segment joining them without any interference between 

them. The visibility map of a surface is a set of spherical 

points, which represents all directions in which any point 

on the surface is visible from infinity. The visibility map is 

closely related to the Gaussian map that is a set of 

normal vectors to the surface. If the Gaussian map of a 

surface iS  is },,{ 1 mi ggG L= , the (positive) visibility 

map of iS  is obtained by )(1 k
m
k gHS=I , while the 

negative visibility map of iS  is )(1 k
m
k gHS−=I , where 

)( kgHS  is the hemisphere of }0{ ≥⋅ kgpp  and kg  is 

called its pole. 

 

Let iP  and iV  be, respectively, the convex hulls of the 

Gaussian map and the visibility map of iS . Then, iP  

and iV  are dual to each other [13]. That is, a vertex kv  

of iP  corresponds to an edge ke  of iV  such that ke  is 

on the great circle defined by }0{ =⋅ kvxx , and the 

vertices of iP  are in the same order with the 

corresponding edges of iV ; and vice versa. 

 

Given a set of Gaussian maps },,{ 1 nGG L=� , we 

denote their convex hulls with },,{ 1 nPP L=� . The duals 

of  �, i.e., the convex hulls of positive visibility maps of 

� , are represented with },,{ 1 nVV L=� . We represent 

the convex hulls of negative visibility maps of �  with 

},,{ 1 nVV −−=− L� . 

 

2.2 Ownership Vector and its Applications 

Assume that 2S  is partitioned with �� −U  and the 

ownerships of all faces are computed. We assign an 

ownership vector per each face for representing which 

visibility maps own (contain) the face. The i-th bit of the 

ownership vector of a face is set to 1+  if the face is 

owned by iV , while it is set to 1−  if the face is owned by 

iV− . The i-th bit will be set to 0 , if the face is owned by 

neither of the two visibility maps. Let +
kn  and −

kn  be, 

respectively, the numbers of 1+  bits and 1−  bits of the 

ownership vector of a partitioned face kF . We will call 

these numbers ownership numbers. 

 

Let  � be the set of convex hulls of Gaussian maps 

derived from pocket surfaces of a designed D3  model, 

which is a set of faces obtained by the difference of the 

model from the convex hull of the model. Then, we can 

solve the geometric problems of orienting models or 

equipments in manufacturing by counting +
kn  and −

kn  as 

the follows. 

 

In the mould design forming the seal of the model, the 

maximum intersection of �� −U  is the set of optimal 

directions for orienting the model to minimize the 

number of auxiliary devices. In other words, we have to 

find the faces such that +
kn  is maximized. See the 

reference [4] for the details. 

 

The optimal orientation problem on NC machining has 

been formulated into five geometric problems [3] on the 

sphere; find the densest hemispheres containing the 

maximum subset of �, great circles separating �, great 

circles bisecting �, and great circles intersecting the 

minimum or the maximum subset of �. Surprisingly, 

four problems among them are solved by computing the 

maximum intersection of �  or �� −U . (One problem 

is solved by computing the minimum intersection of 

�� −U .) The poles of the densest hemispheres 

containing the maximum subset of �  are in the 

spherical region of the maximum intersection of � . To 

determine the minimum subset intersection of � is to 

find the spherical region of the maximum intersection of 

�� −U . That is, we have to find the faces such that 

−+ + kk nn  is maximized. Determining the separators of � 

is to find the faces such that nnn kk =+ −+ , where n  is the 

number of spherical polygons in �. Since nnn kk ≤+ −+ , 

the separators can be determined with the minimum 

subset intersection of �. The bisectors of � are the 

special separators such that 1≤+ −+
kk nn . See the 

reference [3] for the details. 

 

3. MAXIMUM INTERSECTION OF VISIBILITY 

MAPS 

For solving orientation problems with geometric 

techniques on 2S , first we have to construct visibility 

maps �  and �−  from a given Gaussian map � . Next 
2S  is partitioned with �  and �− , and the ownership 

of each partitioned face is computed for finding the faces 

with the maximum ownership number. 

 

A robust spherical algorithm for constructing �  and �−  

from �  is described in Appendix. In this section, 

focusing on the methods of partitioning 2S  with 

�� −U , we briefly review the previous approach 

partitioning 2S  for finding the faces with the maximum 

ownership number. In order to make the partition 
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approach practical, we present a robust algorithm that 

finds approximating centroids for the maximum 

intersection with efficient computations. 

 

3.1 Limitations of Face-based Partition 

In the previous partition approach [3,15,22] which we 

call the face-based partition, they directly manipulates 

the ownership vectors of partitioned faces. 2S  is 

incrementally partitioned into a set of faces by each 

polygon of �� −U , and then the ownership of each 

face is updated at each partitioning. 

 

This approach is a fundamental solution to be analyzed 

to get the boundary of all solutions in an efficient time 

)log( nnvO , where n  and v  are, respectively, the 

numbers of polygons and all vertices. Unfortunately, 

however, its implementation has not been reported yet 

as far as the authors know, since it has serious problems 

from the practical viewpoint of implementation. 

 

: intersection point  
 

Fig. 1. Topological violation of nearby intersection points 

 

A face can be described with ordered edges or ordered 

vertices that form the face and their relations such as 

topology. The typical data structure for representing the 

face is the boundary representation [2,25,27]. These 

kinds of data structures representing the face become 

inconsistent to be useless under the topological violation 

of nearby neighboring intersection points as illustrated in 

Fig. 1. The treatment of this ill-condition remains an 

active topic of research [1,10,12]; however, its 

implementation needs a heavy computation burden. 

 

There is another limitation of the face-based partition. It 

stems from the degeneracy cases of the visibility maps 

such as a point or an edge. Although these cases can be 

found very often in CAD/CAM models including 

orthogonal parts, they cannot be dealt with by this 

approach. 

 

3.2 Edge-based Partition 

We present another partition approach called edge-

based partition, which manipulates the ownership vector 

of each partitioned edge rather than those of partitioned 

faces. It does not employ the data structures for 

representing the face, but uses a simpler data structure 

such as circular lists for representing only edges in the 

face boundary. This approach is freed from the 

topological violation and also it can treat the degeneracy 

cases of the visibility maps, since the edges are handled 

discretely without constructing the face boundary; in 

other words, their topological relations are not 

represented. The face boundary representing the whole 

region within the face can not be obtained directly. 

Hence, we also develop a method to get a reasonable 

point within the face by exploiting the discrete edges. 

 

3.2.1 Updating the ownerships of partitioned edges 

The most important procedure of edge-based partition is 

to partition edges and compute ownerships of the 

partitioned edges. Whenever a pair of polygons in 

�� −U  are intersected incrementally one by one, the 

intersected edges are partitioned and ownership vectors 

of edges within other polygon are updated. Since the 

order of incremental intersections is independent of the 

final result, the order of intersections can be randomized. 
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Fig. 2. Incremental intersection and the ownerships of edges 

 

An example of edge-based partition including the 

degeneracy case of an edge is illustrated in Fig. 2. 

Conceptually, it starts from an empty space and 

polygons come out one after another. Whenever a 

polygon comes out, the polygon is intersected 

respectively with every polygon in the space.  

 

There are several linear algorithms [18,20,24] for 

intersecting a pair of convex polygons in the plane. For 

adapting those planar algorithms for the spherical case, 

great circles are often mapped into lines in a plane by 

the central projection. This projection technique is an 

elegant technique from theoretical point of view, but it 

results in the serious problem of unbounded numerical 

values from the view of implementation.  

 

In this paper we employ the algorithm of Ha and Shin 

[9], inspired by the method in O’Rourke et al [18]. The 

algorithm is based on an edge-advancing rule that 
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proceeds edge by edge around the polygons for 

computing the intersection. The main rule is to advance 

an edge if it chases another edge, but this rule becomes 

ambiguous in the spherical space since arcs on the 

sphere always chase each other. The spherical algorithm 

is based on the facing relation between edges and their 

relative positions. See the reference [9] for the detailed 

formulation and algorithm of the edge advancing 

mechanism on the sphere. 

 

3.2.2 Finding centroids for the maximum intersection 
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Fig. 3. Counting ownership numbers of partitioned edges 

 

As illustrated in Fig. 3., assume that 2S  is partitioned by 

n2   number of polygons in �� −U  and each 

partitioned edge keeps the number of polygons owning it. 

A spherical entity such as an edge or a face with k  

ownership number is said to be k-intersected. We denote 

MIN and MAX, respectively, the minimum and 

maximum ownership numbers in the partition. The 

interior and exterior of an edge are defined from the 

view of the polygon containing the edge. 

 

As shown in Tab. 1., we can observe that k-intersected 

faces are in the interior of k-intersected edges or the 

exterior of (k+1)-intersected edges. Theoretically, we 

can construct the boundary of a k-intersected face by 

gathering edges and then sorting them. However, the 

boundary obtained by the sorting still has inconsistency 

under the topological error of intersection points. In this 

paper, we develop a robust method for finding the 

approximating centroids of MAX-intersected faces, that is, 

the maximum intersection. 

 
Tab. 1. Edges forming k-intersected faces 

 

 

MAX-intersected faces have nice properties for an 

efficient computation as the following: 

• MAX-intersected faces are always convex. 

• MAX-intersected faces have no hole. 

• The edges forming one particular MAX-

intersected face have the same ownership 

vector. (In general, the MAX-intersected edges 

may have ownership vectors differently to each 

other.) 

From this observation, our algorithm first determines the 

maximum ownership number by examining all edges. All 

edges are examined again for gathering edges with the 

determined ownership number, and grouping the edges 

according to the ownership vector. If we try to construct 

the exact boundaries of all solution faces by ordering the 

grouped edges, the topological error can not be avoided. 

By exploiting their convexity and applying geometric 

techniques, we find appropriate points within the 

solution faces, which are more useful in practice. 
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Fig. 4. Inscribing and circumscribing circles of dual polygons 

 

The center of the circle inscribing a convex polygon, 

which is the largest circle within the polygon, is a good 

approximation to the centroid of the polygon. The center 

of the inscribing circle coincides with the center of the 

circle circumscribing its dual polygon [13], as illustrated 

in Fig. 3. Finding the inscribing circle is complicated 

since there are many candidate edges in the polygon. 

However, the circumscribing circle can be found in linear 

time by finding the smallest enclosing sphere ［16］ of 

the vertices of the polygon. 

 

For each edge ie  of a MAX-intersected face, we find a 

vertex iv  such that ie  is on the great circle defined by 

}0{ =⋅ ivxx . The vertex iv  is the pole of the great circle 

passing the edges ie . The set }{ iv  is just the vertices of 

the dual polygon of the MAX-intersected face. We can 

treat the set }{ ie  discretely, since the smallest enclosing 

sphere algorithm does not use the order of }{ iv  in the 

boundary of the dual polygon. In other words, we get 

the inscribing circle of the MAX-intersected face without 

constructing the face boundary. 

 

Case Edges forming k-intersected faces 

k=MIN  - the exterior of k-intersected edges 

 

MIN<k 

k <MAX 

- the interior of k-intersected edges  

- the interior of k-intersected edges and 

the exterior of (k+1)-intersected edges 

- the exterior of (k+1)-intersected edges 

k=MAX - the interior of k- intersected edge 
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Finally, we describe the algorithm of edge-based 

partition for finding centroids of the maximum 

intersection as follows. 

 
Procedure MaximumIntersection ( �� −U )  

Input: A set of spherical convex visibility maps 

},,,,,{ 211 nnn VVVV LL +  (We replaced iV−  with inV +  for a 

simpler description.) 

Output: Approximating centroids of maximally intersected 

faces 

Initialize the ownership vectors of all edges �� −∈ U  

for 1=i  to 12 −n  do 

for 1+= ij  to n2  do 

Compute the intersection points between iV  and jV  [9]. 

Partition the edges ji VV U∈ . 

if ( ni ≤ ) then 

Set the i-th bit of the positive ownership vector of each 

edge jV∈ , if iV  owns it. 

else 

Set the (i-n)-th bit of the negative ownership vector of 

each edge jV∈ , if iV  owns it. 

endif 

Update the ownership vector of each edge iV∈  

symmetrically. 

endfor 

endfor 

Find the maximum ownership number among all 

edges �� −∈ U . 

Gather edges with the maximum ownership number, and 

group them into },,{ 1 lEE L  according to their ownership 

vectors. 

for 1=i  to l  do 

if (the number of edges of 3<iE ) then 

Compute a centroid directly. 

else 

Compute the poles of great circles passing each 

edge iE∈ . 

Find the smallest sphere enclosing those poles [16]. 

endif 

endfor 

endProcedure MaximumIntersection 

 

 

3.3 Analysis of Time Complexity 

The time complexity of the algorithm 

MaximumIntersection is dominated by the reiterated 

loop for intersecting all pairs of visibility maps in �� −U .  

We can intersect a pair of iV  and jV  in linear time 

)( ji vvO +  [9], where iv  and jv  denote the numbers of 

vertices of iV  and jV , respectively. However, we have 

to carefully analyze the time complexity of our algorithm, 

since the number of edges of a polygon increases 

whenever an edge is partitioned. 

 

The total number of scanning all vertices in the reiterated 

loop is ∑ +∑
+=

−

=

n

ij
ji

n

i

vv
2

1

12

1

)( . Each intersection point 

generated in the loop is scanned at most )12( −n  times. 

Let I  be the number of intersection points in �� −U .  

Then, the time complexity is described as 

Invv
n

ij
ji

n

i

×−+∑ +∑
+=

−

=
)12()(

2

1

12

1

 = ))(( IvnO + , where 

∑=
=

n

i
ivv

2

1

 and )( 2nOI = . 

 

Finally, we get the following result. 

Theorem 1.  The approximating centroids of the 

maximally intersected faces of spherical convex polygons 

can be found in ))(( IvnO +  time, where n , v , and I  

are, respectively, the numbers of polygons, all vertices, 

and intersection points. 

 

3.3 Experimental results 

Our algorithms for constructing visibility maps and 

finding the centroids of the maximum intersection have 

been implemented as a class of C++ programming 

language in the environments of PC Windows 98. We 

used the public codes of Hohmeyer [11], and Erickson 

and Honda [8] for the two parts of the linear 

programming and the smallest enclosing sphere. The 

execution results of our implementation were visualized 

in the IRIT system [7] as shown in Fig. 5.  and Fig. 6. 

 

(b)(a)  
 

Fig 5. Construction of visibility maps 

 

Fig. 5. illustrates a visibility map that was constructed by 

our implementation for a given Gaussian map iG : (a) a 

simple polygon that was generated by angular sorting 

around an extreme point, and (b) the convex hull iP  of 

the polygon versus its dual polygon iV . 
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(c)

(b)

(a)

 
 

Fig. 6. Finding the centroids of solution faces 

 

Fig. 6. illustrates the maximum intersection that was 

computed by our implementation: (a) the set � of 

convex hulls for a given set �  of Gaussian maps, (b) the 

centroids of the maximum intersection of the set �  of 

visibility maps, and (c) the centroids of the maximum 

intersection of �� −U . 

 

We tested our implementation with randomly generated 

data for comparing the time complexity ))(( IvnO +  with 

the running time in practical cases. The size of I  is 

)( 2nO  in the worst case, but the experimental running 

time was almost proportional to )(nvO . This is because 

vI <  in our random data that is colser to practical cases. 

 

4. CONCLUSIONS 

We have presented a robust and practical algorithm for 

partitioning a sphere with spherical convex polygons and 

finding the maximum intersection of the polygons. To 

avoid topological errors and numerical complexity, we 

developed the approach of edge-based partition that 

treats edges discretely and runs directly on the spherical 

space. It also can handle geometric degeneracies such as 

point or edge visibility maps that often appear in 

CAD/CAM models. 

 

Our algorithm for finding the approximating centroids of 

all maximally intersected faces has the ))(( IvnO +  time 

complexity, while the algorithm of Chen et al. [3] for 

finding the complete boundary of the faces takes 

)log( nnvO  time, where n , v , and I  are, respectively, 

the numbers of polygons, all vertices, and intersection 

points. Note that the approximating centroids are 

preferred to the boundary itself for the maximum 

intersection in many manufacturing optimizations. We 

also suggest that our algorithm runs more efficiently by 

assuming that vI <  in practical cases. 
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APPENDIX. ROBUST COMPUTATION OF 

VISIBILITY MAPS 

A spherical algorithm using the bounded values on 2S  is 

described for constructing the visibility maps without the 

central projection causing the nemerical complexity. 

Prior to computing the visibility map iV  of a given 

surface iS , we have to construct the convex hull iP  of 

its Gaussian map iG . We test the hemisphericity of iG  

before constructing iP  since iP  exists if and only if iG  is 

hemispherical. After constructing iP , we test degenerate 

cases such as a point or an edge. In ordinary cases, iV  is 

obtained by simple calculation with iP . 

 

A1.  Hemisphericity 

iG  is hemispherical if and only if ∅≠= )(1 k
m
k gHSI . 

This intersection of hemispheres is represented by a 

homogeneous system of linear inequalities: 

0≥++ zzyyxx kkk  for all ikkkk Gzyxg ∈),,( . If we 

apply the linear programming (LP) to this system, it may 

result in a trivial solution, since the LP algorithms 

[6,16,17] always give an extreme point of the feasible 

region. 

    Using the central projection of iG , the hemisphericity 

checking has been transformed into the 2D linear 

separability between two sets of points in a plane [5]. 

This transformation is very elegant in the geometrical 

sense, but some points may be projected into infinitely 

distant place. By exploiting the central projection from 

another viewpoint, we develop two LP systems that can 

be robustly implemented. The great circle bounding 

)( kgHS  is projected into two planes 1: =+ zE  and 

1: −=− zE , while the point kg  is projected into one 

plane +E  in the previous transformation. The part of a 

great circle in the half-space 0>z  corresponds to a line 

in +E , and the other part of the great circle corresponds 

to a line in −E . Then, the inequality 0≥++ zzyyxx kkk  

is represented as 0≥++ kkk zyyxx  in +E  and 

0≥−+ kkk zyyxx  in −E , respectively. Hence, we can 

get a non-trivial solution by applying LP into the two 

systems of linear inequalities as: 

• Linear inequalities 1: 

0≥++ kkk zyyxx  for all kg  in +E  

• Linear inequalities 2: 

0≥−+ kkk zyyxx  for all kg  in −E , 

The hemisphericity checking has only two degenerate 

cases: there are two anti-podal points kg  and lg  such 

that lk gg −= , or there are three points in the general 

position of a great circle gc , that is, the three points are 
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on gc  but not on any hemi-circle of gc . In the former 

case, the visibility map is composed of only one edge. 

The latter case has only one hemisphere that contains 

iG , i.e., the surface is visible from only one direction. 

Hence, we do not construct iP , but directly compute iV  

in these cases. 

    In order to find the degeneracy, we exploit the 

smallest sphere enclosing iG . Let ),,( ccc zyx  denote the 

center of the smallest sphere. When )0,0,0(),,( ≠ccc zyx , 

which means that the smallest enclosing sphere cs  is 

strictly smaller than 2S , the convex hull of iG  can be 

constructed. However, when )0,0,0(),,( =ccc zyx , which 

means that cs  is 2S  itself, the convex hull of iG  is not 

defined. Let cgc  be the great circle bounding iG ; then 

the two degenerate cases can be determined by testing 

whether or not there exists any hemi-circle of 
cgc containing all points of iG  lying on cgc . The 

problem of identifying these subcases is exactly the D2  

version of the smallest enclosing sphere. 

    The linear-time algorithms for solving the LP in the 

fixed dimension have been presented by Megiddo [17] 

and Dyer [6]. Megiddo [14] has shown that the smallest 

enclosing sphere can be also obtained by extending the 

LP algorithm. Thereafter, Seidel [17] and Welzl [26], 

respectively, reported simpler randomized algorithms for 

each of them. 

 

A2. Spherical convex hull  

Once we know the Gaussian map iG  is hemispherical, 

we can construct the spherical convex hull iP . For 

avoiding numerical complexity, we adapt the planar 

algorithm of Graham [14] directly to the spherical space, 

which is mainly composed of 3 steps; find an extreme 

point from a set of points, sort the set of points by angles 

around the extreme point, and scan the set of points in 

the sorted order. 

    In order to find an extreme point from iG , we exploit 

the solution ),,( ccc zyx  of the smallest sphere enclosing 

iG , which has been computed in the hemisphericity 

checking. Let ),,( cba  be the farthest point from 

),,(
ccc
zyx  among all points in iG ; that is, ),,( cba  is an 

extreme point. 

 

The angular sort dominating the overall time complexity 

)log( mmO  needs the most careful computation. For 

robust and efficient computation of the angular sort, we 

use the orthogonal projection of iG  into a plane 

),,( cbaPL  that is tangential to 2S  at the point ),,( cba . 

If iG  is orthogonally projected into ),,( cbaPL , its order 

of angular sort does not change. Hence, this orthogonal 

projection makes it possible to use the D2  angular sort 

without any numerical difficulty. 

    The D2  coordinate values of iG  projected into 

),,( cbaPL  are computed by rotating iG  such that the 

point ),,( cba  corresponds to )0,0,0(  on Z -axis and 

then taking the values of x  and y  coordinates. Hence, 

the compound transformation matrix is obtained as: 
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 where 22 cbd += . 

 

In order to compute the angular sorting robustly, the 

slope of a line passing through two points ),( 11 yx  and 

),( 22 yx  is often replaced by another measure 
dydx

dy

+
, 

where 12 xxdx −=  and 12 yydy −= . Hence, the value 

used in the angular sorting for a point ),,( kkkk zyxg  is 

finally obtained as: 

kkkkk

kk

bzcyaczabyxcb

bzcy

−+−−+

−

)( 22
 

 

After constructing iP , we have to check two degenerate 

cases of only one or two vertices. In these cases, iV  is 

bounded only by a great circle or two hemi-circles, which 

means that a boundary edge includes anti-podal points. 

Hence, we partition the boundary edges into several 

edges to avoid the degeneracy. In ordinary cases, we can 

compute iV  simply using the duality [13] with iP ; a 

vertex kv  of iV  is determined by the cross product of 

two end vertices 1−ip  and ip  of the dual edge ke  of iP . 


