
 657

Approximating Centroids

for the Maximum Intersection of Spherical Polygons

Jong S. Ha1 and Kwan H. Yoo2

1Woosuk University, jsha@woosuk.ac.kr

2Chungbuk National University, khyoo@cbucc.chungbuk.ac.kr

ABSTRACT

This paper considers the problem of investigating the spherical regions owned by the maximum

number of spherical polygons. We present a practical))((IvnO + time algorithm for finding the

approximating centroids for the maximum intersection of spherical polygons, where n , v , and I

are, respectively, the numbers of polygons, all vertices, and intersection points. In order to elude

topological errors and handle geometric degeneracies, our algorithm takes the approach of edge-

based partitioning of the sphere. Furthermore, the numerical complexity is avoided since the

algorithm is completely spherical.

Keywords: spherical algorithms, visibility maps, maximum intersection, computational geometry

1. INTRODUCTION

We can well establish many problems of orienting

models or equipments in manufacturing [3,4,28] with

the geometric technique of finding the maximum

intersection of visibility maps derived from the surface

normals of the models, which are represented as

spherical convex polygons on the unit sphere 2S .

For investigating the intersection of spherical convex

polygons, there have been two kinds of approaches:

tessellation approach [21,23] and partition approach

[3,15,22]. The tessellation approach is a digital-image-

oriented method that subdivides 2S into a set of small

triangles, and computes the ownership of each triangle.

The partition approach is a polygon-object-oriented

method that partitions 2S with the boundaries of

polygons into a set of faces and computes the ownership

of each face.

The tessellation approach has been used in practical

applications, since it can take robust computation. This

approach has trade-off between the accuracy of solutions

and the efficiency of computing time. Subdivision of the

sphere has a disadvantage in geometric computations for

choosing a preferred solution such as finding a centroid

of all solutions.

The partition approach is theoretically analyzed to be

able to obtain the exact boundaries of all solutions in an

efficient time complexity. Unfortunately, however, its

implementation may fall into the numerical complexity

as pointed out by Suh and Kang [21]. For example,

infinite values can be obtained when the central

projection is applied into points on 2S for using planar

algorithms. Another serious problem is the topological

violation of nearby neighboring intersection points of the

polygons, which is caused by the limit of numerical

computation. A topological error makes the boundary

representation [2,25,27] of the partition approach

inconsistent.

In this paper, we present a robust and practical algorithm

for computing the approximating centroids of maximally

intersected faces, which is a new method of the partition

approach. In order to achieve the robustness by eluding

topological errors such as the violation of nearby

intersection points and handling geometric degeneracies

such a point or an edge visibility map, our algorithm

updates the ownerships of edges rather than those of

faces whenever 2S is incrementally partitioned by each

polygon. The partition method of our algorithm will be

called edge-based partition, while the previous method

[3,15,22] is called face-based partition. Our edge-based

partition excludes the central projection of spherical

entities into 2S in order to avoid the numerical

complexity.

 658

2. PRELIMINARIES

2.1 Definitions and Notation

Two points are visible to each other if there is a line

segment joining them without any interference between

them. The visibility map of a surface is a set of spherical

points, which represents all directions in which any point

on the surface is visible from infinity. The visibility map is

closely related to the Gaussian map that is a set of

normal vectors to the surface. If the Gaussian map of a

surface iS is },,{ 1 mi ggG L= , the (positive) visibility

map of iS is obtained by)(1 k
m
k gHS=I , while the

negative visibility map of iS is)(1 k
m
k gHS−=I , where

)(kgHS is the hemisphere of }0{ ≥⋅ kgpp and kg is

called its pole.

Let iP and iV be, respectively, the convex hulls of the

Gaussian map and the visibility map of iS . Then, iP

and iV are dual to each other [13]. That is, a vertex kv

of iP corresponds to an edge ke of iV such that ke is

on the great circle defined by }0{ =⋅ kvxx , and the

vertices of iP are in the same order with the

corresponding edges of iV ; and vice versa.

Given a set of Gaussian maps },,{ 1 nGG L=� , we

denote their convex hulls with },,{ 1 nPP L=� . The duals

of �, i.e., the convex hulls of positive visibility maps of

� , are represented with },,{ 1 nVV L=� . We represent

the convex hulls of negative visibility maps of � with

},,{ 1 nVV −−=− L� .

2.2 Ownership Vector and its Applications

Assume that 2S is partitioned with �� −U and the

ownerships of all faces are computed. We assign an

ownership vector per each face for representing which

visibility maps own (contain) the face. The i-th bit of the

ownership vector of a face is set to 1+ if the face is

owned by iV , while it is set to 1− if the face is owned by

iV− . The i-th bit will be set to 0 , if the face is owned by

neither of the two visibility maps. Let +
kn and −

kn be,

respectively, the numbers of 1+ bits and 1− bits of the

ownership vector of a partitioned face kF . We will call

these numbers ownership numbers.

Let � be the set of convex hulls of Gaussian maps

derived from pocket surfaces of a designed D3 model,

which is a set of faces obtained by the difference of the

model from the convex hull of the model. Then, we can

solve the geometric problems of orienting models or

equipments in manufacturing by counting +
kn and −

kn as

the follows.

In the mould design forming the seal of the model, the

maximum intersection of �� −U is the set of optimal

directions for orienting the model to minimize the

number of auxiliary devices. In other words, we have to

find the faces such that +
kn is maximized. See the

reference [4] for the details.

The optimal orientation problem on NC machining has

been formulated into five geometric problems [3] on the

sphere; find the densest hemispheres containing the

maximum subset of �, great circles separating �, great

circles bisecting �, and great circles intersecting the

minimum or the maximum subset of �. Surprisingly,

four problems among them are solved by computing the

maximum intersection of � or �� −U . (One problem

is solved by computing the minimum intersection of

�� −U .) The poles of the densest hemispheres

containing the maximum subset of � are in the

spherical region of the maximum intersection of � . To

determine the minimum subset intersection of � is to

find the spherical region of the maximum intersection of

�� −U . That is, we have to find the faces such that

−+ + kk nn is maximized. Determining the separators of �

is to find the faces such that nnn kk =+ −+ , where n is the

number of spherical polygons in �. Since nnn kk ≤+ −+ ,

the separators can be determined with the minimum

subset intersection of �. The bisectors of � are the

special separators such that 1≤+ −+
kk nn . See the

reference [3] for the details.

3. MAXIMUM INTERSECTION OF VISIBILITY

MAPS

For solving orientation problems with geometric

techniques on 2S , first we have to construct visibility

maps � and �− from a given Gaussian map � . Next
2S is partitioned with � and �− , and the ownership

of each partitioned face is computed for finding the faces

with the maximum ownership number.

A robust spherical algorithm for constructing � and �−

from � is described in Appendix. In this section,

focusing on the methods of partitioning 2S with

�� −U , we briefly review the previous approach

partitioning 2S for finding the faces with the maximum

ownership number. In order to make the partition

 659

approach practical, we present a robust algorithm that

finds approximating centroids for the maximum

intersection with efficient computations.

3.1 Limitations of Face-based Partition

In the previous partition approach [3,15,22] which we

call the face-based partition, they directly manipulates

the ownership vectors of partitioned faces. 2S is

incrementally partitioned into a set of faces by each

polygon of �� −U , and then the ownership of each

face is updated at each partitioning.

This approach is a fundamental solution to be analyzed

to get the boundary of all solutions in an efficient time

)log(nnvO , where n and v are, respectively, the

numbers of polygons and all vertices. Unfortunately,

however, its implementation has not been reported yet

as far as the authors know, since it has serious problems

from the practical viewpoint of implementation.

: intersection point

Fig. 1. Topological violation of nearby intersection points

A face can be described with ordered edges or ordered

vertices that form the face and their relations such as

topology. The typical data structure for representing the

face is the boundary representation [2,25,27]. These

kinds of data structures representing the face become

inconsistent to be useless under the topological violation

of nearby neighboring intersection points as illustrated in

Fig. 1. The treatment of this ill-condition remains an

active topic of research [1,10,12]; however, its

implementation needs a heavy computation burden.

There is another limitation of the face-based partition. It

stems from the degeneracy cases of the visibility maps

such as a point or an edge. Although these cases can be

found very often in CAD/CAM models including

orthogonal parts, they cannot be dealt with by this

approach.

3.2 Edge-based Partition

We present another partition approach called edge-

based partition, which manipulates the ownership vector

of each partitioned edge rather than those of partitioned

faces. It does not employ the data structures for

representing the face, but uses a simpler data structure

such as circular lists for representing only edges in the

face boundary. This approach is freed from the

topological violation and also it can treat the degeneracy

cases of the visibility maps, since the edges are handled

discretely without constructing the face boundary; in

other words, their topological relations are not

represented. The face boundary representing the whole

region within the face can not be obtained directly.

Hence, we also develop a method to get a reasonable

point within the face by exploiting the discrete edges.

3.2.1 Updating the ownerships of partitioned edges

The most important procedure of edge-based partition is

to partition edges and compute ownerships of the

partitioned edges. Whenever a pair of polygons in

�� −U are intersected incrementally one by one, the

intersected edges are partitioned and ownership vectors

of edges within other polygon are updated. Since the

order of incremental intersections is independent of the

final result, the order of intersections can be randomized.

1

1
2

23

1

1

1

2

11

3
2

22

11

2

3

2

2

2
22

1

111

11

1

(d)(c)

(b)(a)

2

2

1

1

1

1

1

1

1

1

2
2

111

11

1

1

2

1

1

1

1
2

1

2

2

1

1

2

1

2

1

1

1
1

1

2

2

1

1

2

1

1

1

2

1

1

1
2

1

Fig. 2. Incremental intersection and the ownerships of edges

An example of edge-based partition including the

degeneracy case of an edge is illustrated in Fig. 2.

Conceptually, it starts from an empty space and

polygons come out one after another. Whenever a

polygon comes out, the polygon is intersected

respectively with every polygon in the space.

There are several linear algorithms [18,20,24] for

intersecting a pair of convex polygons in the plane. For

adapting those planar algorithms for the spherical case,

great circles are often mapped into lines in a plane by

the central projection. This projection technique is an

elegant technique from theoretical point of view, but it

results in the serious problem of unbounded numerical

values from the view of implementation.

In this paper we employ the algorithm of Ha and Shin

[9], inspired by the method in O’Rourke et al [18]. The

algorithm is based on an edge-advancing rule that

 660

proceeds edge by edge around the polygons for

computing the intersection. The main rule is to advance

an edge if it chases another edge, but this rule becomes

ambiguous in the spherical space since arcs on the

sphere always chase each other. The spherical algorithm

is based on the facing relation between edges and their

relative positions. See the reference [9] for the detailed

formulation and algorithm of the edge advancing

mechanism on the sphere.

3.2.2 Finding centroids for the maximum intersection

22
2

2

2

2

1 1

22

2 3

1

1 1

2

1

13

3 2

2
11

1

2

2
1

1
1

1

1

1

2
2

1

1

2
2

Fig. 3. Counting ownership numbers of partitioned edges

As illustrated in Fig. 3., assume that 2S is partitioned by

n2 number of polygons in �� −U and each

partitioned edge keeps the number of polygons owning it.

A spherical entity such as an edge or a face with k

ownership number is said to be k-intersected. We denote

MIN and MAX, respectively, the minimum and

maximum ownership numbers in the partition. The

interior and exterior of an edge are defined from the

view of the polygon containing the edge.

As shown in Tab. 1., we can observe that k-intersected

faces are in the interior of k-intersected edges or the

exterior of (k+1)-intersected edges. Theoretically, we

can construct the boundary of a k-intersected face by

gathering edges and then sorting them. However, the

boundary obtained by the sorting still has inconsistency

under the topological error of intersection points. In this

paper, we develop a robust method for finding the

approximating centroids of MAX-intersected faces, that is,

the maximum intersection.

Tab. 1. Edges forming k-intersected faces

MAX-intersected faces have nice properties for an

efficient computation as the following:

• MAX-intersected faces are always convex.

• MAX-intersected faces have no hole.

• The edges forming one particular MAX-

intersected face have the same ownership

vector. (In general, the MAX-intersected edges

may have ownership vectors differently to each

other.)

From this observation, our algorithm first determines the

maximum ownership number by examining all edges. All

edges are examined again for gathering edges with the

determined ownership number, and grouping the edges

according to the ownership vector. If we try to construct

the exact boundaries of all solution faces by ordering the

grouped edges, the topological error can not be avoided.

By exploiting their convexity and applying geometric

techniques, we find appropriate points within the

solution faces, which are more useful in practice.

Vi Pi

3

p
1

p

e

e
1 e2

2

p
3

Fig. 4. Inscribing and circumscribing circles of dual polygons

The center of the circle inscribing a convex polygon,

which is the largest circle within the polygon, is a good

approximation to the centroid of the polygon. The center

of the inscribing circle coincides with the center of the

circle circumscribing its dual polygon [13], as illustrated

in Fig. 3. Finding the inscribing circle is complicated

since there are many candidate edges in the polygon.

However, the circumscribing circle can be found in linear

time by finding the smallest enclosing sphere ［16］ of

the vertices of the polygon.

For each edge ie of a MAX-intersected face, we find a

vertex iv such that ie is on the great circle defined by

}0{ =⋅ ivxx . The vertex iv is the pole of the great circle

passing the edges ie . The set }{ iv is just the vertices of

the dual polygon of the MAX-intersected face. We can

treat the set }{ ie discretely, since the smallest enclosing

sphere algorithm does not use the order of }{ iv in the

boundary of the dual polygon. In other words, we get

the inscribing circle of the MAX-intersected face without

constructing the face boundary.

Case Edges forming k-intersected faces

k=MIN - the exterior of k-intersected edges

MIN<k

k <MAX

- the interior of k-intersected edges

- the interior of k-intersected edges and

the exterior of (k+1)-intersected edges

- the exterior of (k+1)-intersected edges

k=MAX - the interior of k- intersected edge

 661

Finally, we describe the algorithm of edge-based

partition for finding centroids of the maximum

intersection as follows.

Procedure MaximumIntersection (�� −U)

Input: A set of spherical convex visibility maps

},,,,,{ 211 nnn VVVV LL + (We replaced iV− with inV + for a

simpler description.)

Output: Approximating centroids of maximally intersected

faces

Initialize the ownership vectors of all edges �� −∈ U

for 1=i to 12 −n do

for 1+= ij to n2 do

Compute the intersection points between iV and jV [9].

Partition the edges ji VV U∈ .

if (ni ≤) then

Set the i-th bit of the positive ownership vector of each

edge jV∈ , if iV owns it.

else

Set the (i-n)-th bit of the negative ownership vector of

each edge jV∈ , if iV owns it.

endif

Update the ownership vector of each edge iV∈

symmetrically.

endfor

endfor

Find the maximum ownership number among all

edges �� −∈ U .

Gather edges with the maximum ownership number, and

group them into },,{ 1 lEE L according to their ownership

vectors.

for 1=i to l do

if (the number of edges of 3<iE) then

Compute a centroid directly.

else

Compute the poles of great circles passing each

edge iE∈ .

Find the smallest sphere enclosing those poles [16].

endif

endfor

endProcedure MaximumIntersection

3.3 Analysis of Time Complexity

The time complexity of the algorithm

MaximumIntersection is dominated by the reiterated

loop for intersecting all pairs of visibility maps in �� −U .

We can intersect a pair of iV and jV in linear time

)(ji vvO + [9], where iv and jv denote the numbers of

vertices of iV and jV , respectively. However, we have

to carefully analyze the time complexity of our algorithm,

since the number of edges of a polygon increases

whenever an edge is partitioned.

The total number of scanning all vertices in the reiterated

loop is ∑ +∑
+=

−

=

n

ij
ji

n

i

vv
2

1

12

1

)(. Each intersection point

generated in the loop is scanned at most)12(−n times.

Let I be the number of intersection points in �� −U .

Then, the time complexity is described as

Invv
n

ij
ji

n

i

×−+∑ +∑
+=

−

=
)12()(

2

1

12

1

 =))((IvnO + , where

∑=
=

n

i
ivv

2

1

 and)(2nOI = .

Finally, we get the following result.

Theorem 1. The approximating centroids of the

maximally intersected faces of spherical convex polygons

can be found in))((IvnO + time, where n , v , and I

are, respectively, the numbers of polygons, all vertices,

and intersection points.

3.3 Experimental results

Our algorithms for constructing visibility maps and

finding the centroids of the maximum intersection have

been implemented as a class of C++ programming

language in the environments of PC Windows 98. We

used the public codes of Hohmeyer [11], and Erickson

and Honda [8] for the two parts of the linear

programming and the smallest enclosing sphere. The

execution results of our implementation were visualized

in the IRIT system [7] as shown in Fig. 5. and Fig. 6.

(b)(a)

Fig 5. Construction of visibility maps

Fig. 5. illustrates a visibility map that was constructed by

our implementation for a given Gaussian map iG : (a) a

simple polygon that was generated by angular sorting

around an extreme point, and (b) the convex hull iP of

the polygon versus its dual polygon iV .

 662

(c)

(b)

(a)

Fig. 6. Finding the centroids of solution faces

Fig. 6. illustrates the maximum intersection that was

computed by our implementation: (a) the set � of

convex hulls for a given set � of Gaussian maps, (b) the

centroids of the maximum intersection of the set � of

visibility maps, and (c) the centroids of the maximum

intersection of �� −U .

We tested our implementation with randomly generated

data for comparing the time complexity))((IvnO + with

the running time in practical cases. The size of I is

)(2nO in the worst case, but the experimental running

time was almost proportional to)(nvO . This is because

vI < in our random data that is colser to practical cases.

4. CONCLUSIONS

We have presented a robust and practical algorithm for

partitioning a sphere with spherical convex polygons and

finding the maximum intersection of the polygons. To

avoid topological errors and numerical complexity, we

developed the approach of edge-based partition that

treats edges discretely and runs directly on the spherical

space. It also can handle geometric degeneracies such as

point or edge visibility maps that often appear in

CAD/CAM models.

Our algorithm for finding the approximating centroids of

all maximally intersected faces has the))((IvnO + time

complexity, while the algorithm of Chen et al. [3] for

finding the complete boundary of the faces takes

)log(nnvO time, where n , v , and I are, respectively,

the numbers of polygons, all vertices, and intersection

points. Note that the approximating centroids are

preferred to the boundary itself for the maximum

intersection in many manufacturing optimizations. We

also suggest that our algorithm runs more efficiently by

assuming that vI < in practical cases.

5. REFERENCES

[1] Barker, S.-M., Towards a topology for

computational geometry, Computer-Aided Design,

Vol. 27, No. 4, 1995, pp 311-318.

[2] Baumgart, B.-G., A polyhedron representation for

computer vision, In National Computer Conference,

Anaheim, CA, IFIPS, 1975, pp 589-596.

[3] Chen, L.-L., Chou, S.-Y. and Woo, T.-C.,

Separating and intersecting spherical polygons:

computing machinability on three- four- and five-

axis numerically controlled machines, ACM Tr. on

Graphics, Vol. 12, No. 14, 1993, pp 305-326.

[4] Chen, L.-L., Chou, S.-Y. and Woo, T.-C., Paring

directions for mould and die design, Computer-

Aided Design, 25(12), 1993, pp 762-768.

[5] Chen, L.-L. and Woo, T.-C., Computational

geometry on the sphere with application to

automated machining, Tr. ASME, J. Mechanical

Design, Vol. 114, 1992, pp 288-295.

[6] Dyer, M.-E., Linear time algorithms for two- and

three-variable linear programs, SIAM J. Computing,

Vol. 13, No. 1, 1984, pp 31-45.

[7] Elber, G., IRIT User's Manual, 1996.

[8] Erickson, J. and Honda, H., The implementation of

the smallest enclosing sphere, Source Code.

[9] Ha, J.-S. and Shin, S.-Y., Edge advancing rules for

intersecting spherical convex polygons, International

Journal of Computational Geometry and

Applications, Vol. 12, No. 3, 2002, pp 207-216.

[10] Hoffmann, C.-M., The problems of accuracy and

robustness in geometric computation, Computer,

Vol. 22, No. 3, 1989, pp 31-41.

[11] Hohmeyer, M.-E., The implementation of linear

programming, Source Code.

[12] Hu, C.-Y., Patikalakis, N.-M. and Ye, X., Robust

interval solid modeling part I: representations,

Computer-Aided Design, Vol. 28, No. 10, 1996, pp

807-817.

[13] Gan, J.-G., Woo, T.-C. and Tang, K., Spherical

maps: their construction, properties, and

approximation, ASME J. Mechanical Design, Vol.

116, 1994, pp 357-363.

[14]Graham, R.-L., An efficient algorithm for

determining the convex hull of finite planar set,

 663

Information Processing Letters, Vol. 1, 1972, pp

132-133.

[15] Gupta, P. et al., Efficient geometric algorithms for

workpiece orientation in 4- and 5-axis NC

machining, Computer-Aided Design, Vol. 28, No. 8,

1996, pp 577-587.

[16] Megiddo, N., Linear-time algorithms for linear

programming in and related problems, In Proc.

23rd Annual IEEE Sym. Found. Comput. Sci., 1982,

pp 329-338.

[17] Megiddo, N., Linear programming in linear time

when the dimension is fixed, J. ACM, Vol. 31, No. 1,

1984, pp 114-127.

[18] O'Rourke, J., Chien, C.-B., Olson, T. and Naddor,

D., A new linear algorithm for intersecting convex

polygons, Computer Graphics and Image

Processing, Vol. 19, 1982, pp 384-391.

[19] Seidel, R., Small-dimensional linear programming

and convex hulls made easy, Discrete and

Computational Geometry, 1991, pp 423-434.

[20] Shamos, M.-I. and Hoey, D., Geometric intersection

problems, Seventeenth Annual IEEE Symposium on

Foundation of Computer Science, 1976, pp 208-

215.

[21] Suh, S.-H. and Kang, J.-K., Process planning for

multi-axis NC machining of free surfaces, Int. J.

Prod. Res., Vol. 33, No. 10, 1995, pp 2723-2738.

[22]Tang, K., Woo, T. and Gan, J., Maximum

intersection of spherical polygons and workpiece

orientation for 4- and 5-axis machining, ASME J.

Mechanical Design, Vol. 114, 1992, pp 477-485.

[23]Tangelder, J.-W.-H., Automated fabrication of shape

models of free-form objects with a sculpturing robot,

Ph. D. Thesis, Industrial Design Engineering of Delft

Univ. of Technology, 1998.

[24]Toussaint, G.-T., A simple linear algorithm for

intersecting convex polygons, The Visual Computer,

Vol. 1, 1985, pp 118-123.

[25]Weiler, K., Edge-based data structures for solid

modeling in curved-surface environments, IEEE

Computer Graphics and Application, Vol. 5, No. 1,

1985, pp 21-40.

[26]Welzl, E., Smallest enclosing disks (balls and

ellipsoids), New Results and New Trends in

Computer Science, Springer Lecture Notes in

Computer Science ,Vol. 555, 1991, pp 359-370.

[27]Woo, T.-C., A combinatorial analysis of boundary

data structure schema, IEEE Comput. Graph. Appl.,

Vol. 5, No. 3, 1985, pp 19-27.

[28]Woo, T.-C., Visibility maps and spherical algorithms,

Computer Aided Design, Vol. 26, No. 1, 1994, pp

6-16.

APPENDIX. ROBUST COMPUTATION OF

VISIBILITY MAPS

A spherical algorithm using the bounded values on 2S is

described for constructing the visibility maps without the

central projection causing the nemerical complexity.

Prior to computing the visibility map iV of a given

surface iS , we have to construct the convex hull iP of

its Gaussian map iG . We test the hemisphericity of iG

before constructing iP since iP exists if and only if iG is

hemispherical. After constructing iP , we test degenerate

cases such as a point or an edge. In ordinary cases, iV is

obtained by simple calculation with iP .

A1. Hemisphericity

iG is hemispherical if and only if ∅≠=)(1 k
m
k gHSI .

This intersection of hemispheres is represented by a

homogeneous system of linear inequalities:

0≥++ zzyyxx kkk for all ikkkk Gzyxg ∈),,(. If we

apply the linear programming (LP) to this system, it may

result in a trivial solution, since the LP algorithms

[6,16,17] always give an extreme point of the feasible

region.

 Using the central projection of iG , the hemisphericity

checking has been transformed into the 2D linear

separability between two sets of points in a plane [5].

This transformation is very elegant in the geometrical

sense, but some points may be projected into infinitely

distant place. By exploiting the central projection from

another viewpoint, we develop two LP systems that can

be robustly implemented. The great circle bounding

)(kgHS is projected into two planes 1: =+ zE and

1: −=− zE , while the point kg is projected into one

plane +E in the previous transformation. The part of a

great circle in the half-space 0>z corresponds to a line

in +E , and the other part of the great circle corresponds

to a line in −E . Then, the inequality 0≥++ zzyyxx kkk

is represented as 0≥++ kkk zyyxx in +E and

0≥−+ kkk zyyxx in −E , respectively. Hence, we can

get a non-trivial solution by applying LP into the two

systems of linear inequalities as:

• Linear inequalities 1:

0≥++ kkk zyyxx for all kg in +E

• Linear inequalities 2:

0≥−+ kkk zyyxx for all kg in −E ,

The hemisphericity checking has only two degenerate

cases: there are two anti-podal points kg and lg such

that lk gg −= , or there are three points in the general

position of a great circle gc , that is, the three points are

 664

on gc but not on any hemi-circle of gc . In the former

case, the visibility map is composed of only one edge.

The latter case has only one hemisphere that contains

iG , i.e., the surface is visible from only one direction.

Hence, we do not construct iP , but directly compute iV

in these cases.

 In order to find the degeneracy, we exploit the

smallest sphere enclosing iG . Let),,(ccc zyx denote the

center of the smallest sphere. When)0,0,0(),,(≠ccc zyx ,

which means that the smallest enclosing sphere cs is

strictly smaller than 2S , the convex hull of iG can be

constructed. However, when)0,0,0(),,(=ccc zyx , which

means that cs is 2S itself, the convex hull of iG is not

defined. Let cgc be the great circle bounding iG ; then

the two degenerate cases can be determined by testing

whether or not there exists any hemi-circle of
cgc containing all points of iG lying on cgc . The

problem of identifying these subcases is exactly the D2

version of the smallest enclosing sphere.

 The linear-time algorithms for solving the LP in the

fixed dimension have been presented by Megiddo [17]

and Dyer [6]. Megiddo [14] has shown that the smallest

enclosing sphere can be also obtained by extending the

LP algorithm. Thereafter, Seidel [17] and Welzl [26],

respectively, reported simpler randomized algorithms for

each of them.

A2. Spherical convex hull

Once we know the Gaussian map iG is hemispherical,

we can construct the spherical convex hull iP . For

avoiding numerical complexity, we adapt the planar

algorithm of Graham [14] directly to the spherical space,

which is mainly composed of 3 steps; find an extreme

point from a set of points, sort the set of points by angles

around the extreme point, and scan the set of points in

the sorted order.

 In order to find an extreme point from iG , we exploit

the solution),,(ccc zyx of the smallest sphere enclosing

iG , which has been computed in the hemisphericity

checking. Let),,(cba be the farthest point from

),,(
ccc
zyx among all points in iG ; that is,),,(cba is an

extreme point.

The angular sort dominating the overall time complexity

)log(mmO needs the most careful computation. For

robust and efficient computation of the angular sort, we

use the orthogonal projection of iG into a plane

),,(cbaPL that is tangential to 2S at the point),,(cba .

If iG is orthogonally projected into),,(cbaPL , its order

of angular sort does not change. Hence, this orthogonal

projection makes it possible to use the D2 angular sort

without any numerical difficulty.

 The D2 coordinate values of iG projected into

),,(cbaPL are computed by rotating iG such that the

point),,(cba corresponds to)0,0,0(on Z -axis and

then taking the values of x and y coordinates. Hence,

the compound transformation matrix is obtained as:

−

−−
=⋅

1000

00

0010

00

1000

00

00

0001

da

ad

d

c

d

b
d

b

d

c

RR yx

−−

−
=

1000

0

0

00

c
d

b

d

ac

b
c

d

d

ab
ad

 where 22 cbd += .

In order to compute the angular sorting robustly, the

slope of a line passing through two points),(11 yx and

),(22 yx is often replaced by another measure
dydx

dy

+
,

where 12 xxdx −= and 12 yydy −= . Hence, the value

used in the angular sorting for a point),,(kkkk zyxg is

finally obtained as:

kkkkk

kk

bzcyaczabyxcb

bzcy

−+−−+

−

)(22

After constructing iP , we have to check two degenerate

cases of only one or two vertices. In these cases, iV is

bounded only by a great circle or two hemi-circles, which

means that a boundary edge includes anti-podal points.

Hence, we partition the boundary edges into several

edges to avoid the degeneracy. In ordinary cases, we can

compute iV simply using the duality [13] with iP ; a

vertex kv of iV is determined by the cross product of

two end vertices 1−ip and ip of the dual edge ke of iP .

