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ABSTRACT 

 

For generalized cylinders (GC) defined by contours of discrete curves, we propose two algorithms 

to generate GC surfaces (1) in polygonal meshes and (2) in cylindrical type of developable surface 

patches. To solve the contour blending problem of generalized cylinder, the presented algorithms 

have adopted the algorithms and properties of LIDM (linear interpolation by direction map) that 

interpolate geometric shapes based on direction map merging and group scaling operations. 

Moreover, we propose an algorithm to develop generated developable surface patches on a plane. 

Proposed algorithms are fast to compute and easy to implement. 
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1. INTRODUCTION 

Generalized cylinder (GC) is a well-known modeling 

technique to design tube-like shapes whose surfaces are 

constructed over skeletal frames composed of a finite 

sequence of contours (2D cross-sectional curves) that 

are systematically arranged on a 3D spine curve. 

Generally, the spine curve determines the overall shape, 

and contours expresses detailed features on the surface. 

By interpolating (or blending) the given contours, we 

can generate a one-parameter family of contours which 

conceptually sweeps along the spine curve while 

changing its orientation and shape. Using this general 

sweep analogy, we can represent a GC as a tensor 

product surface with two parameters representing the 

spine and the contour directions, respectively. After 

generating the surface from the initial design, we can 

interact with the skeletal curves or the surface itself to 

change the shape characteristics. With these simple 

building blocks and mechanisms coupled with other 

geometric modeling techniques, we can design various 

kinds of artificial shapes (i.e., pipes, vessels, and tires) 

and natural shapes (i.e., human bodies, flowers, and 

seashells) as GC models for CAD and computer graphics 

applications.  

 

Previous researches have focused on various GC topics 

such as surface representations, deformation and 

interaction techniques, and orientation arrangements. 

Note that, to be integrated with general purpose 

geometric modeling tools, it is a common practice to 

generate surface models directly from the intrinsic 

definition of GC: i.e., a spine curve and a sequence of 

contour curves. Hence, there are abundant research 

works presenting how to represent GC surfaces as a 

polyhedral mesh [1], Bezier [6], B-spline [14], or 

NURBS surfaces [4] from the given skeletal frames. 

Some representation methods focus on the direct ray-

casting [14] without converting into specific 

representations. We can find researches presenting 

special representations suitable for interactive 

deformation [4],[6]. Contour arrangement with a 

smooth orientation change is simply achieved by 

embedding a contour on the normal plane [3] of the 

Frenet frame [4],[6],[14]. For better results, rotation 

minimizing frame can optimize distortion [7]. As a more 

sophisticated topic, Gansca et al. deals with the problem 

of self-intersection avoidance in the generation of GC 

surfaces [5]. 

 

Another important GC topic is contour blending, which 

is required to generate a one-parameter family of 

contours continuously. One of fundamental steps for 

contour blending is to set up correspondences between 

features of adjacent key-frame contours. However, in 

most of previous approaches, these correspondences are 

assumed to be described manually or implicitly. For 

example, although very complicated contours were 

illustrated in B-Spline surface approach of de Voogt et 

al. [14], no explicit step is specified for setting 

correspondences between every pair of control points 

from adjacent contours. This is partly because every 

contour has the same number of control points, which 

may lead to trivial correspondences in a certain case. 

However, this is not the case of real-world examples 
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where correspondences are rather complicated to be 

described manually or assumed implicitly.  

 

This correspondence problem is also fundamental in 

morphing. (Note that morphing is generally composed 

of two steps: (1) correspondences and (2) path 

interpolation.) When key-frames are not so complex, 

existing geometric morphing techniques works fine. 

However, we can hardly expect full automation: for 

better result, a human intervention is inevitable. For 

example, when we want to generate in-betweens 

interpolating given key-frames representing different 

postures of a dancer [12], we can not specify semantic 

constraint such as "an arm should not be morphed to a 

leg" based on geometric intelligence of previous 

algorithms. In addition, most of morphing techniques 

can not express interpolating path in the form of 

parametric curves. If we consider contours as key-

frames, the parametric representation of interpolating 

path is critical to generate the surfaces of a GC. 

 

In this paper, we suggest to adopt a geometric morphing 

technique referred to as LIDM (linear interpolation by 

direction map) proposed by Lee et al. [9] to solve both 

correspondence and parametric interpolation problems 

in contour blending. LIDM is closely related to previous 

morphing technique referred to as LIMS (linear 

interpolation by Minkowski sum) [8],[11], but more 

generalized and computationally efficient.  

 

In addition, we present methods to construct GC surface 

with (1) polygonal mesh and (2) cylindrical type of 

developable surface patches using the geometric 

properties of LIDM. The overall computation of 

proposed methods is fast enough to be applied in 

interactive geometric design applications. We also 

propose the algorithm to develop generated developable 

surface patches on a plane.  

 

The remainder of this paper is organized as follows. In 

Section 2, we describe a typical representation of 

parametric GC surface and explain why contour 

blending problem matters in GC. In Section 3, we 

propose to adopt LIDM as a contour blending method in 

GC design. In Section 4, we describe how to build a 

polygonal mesh of GC whose contours are blended by 

LIDM. In Section 5, we describe how to generate 

developable surface patches representing GC. In Section 

6, we explain how to develop generated developable 

surface patches on a plane. In Section 7, we 

demonstrate the example results. This template file 

contains all relevant information to process papers into 

the right format for the annual CAD conference 

proceedings. For ease of paper preparation, authors 

may want to cut and paste the relevant sections into this 

document. 

 

2. PARAMETRIC REPRESENTATION OF GC 

Let a contour curve be placed on a contour plane. For a 

spine curve parameterized as 3( )u ∈K � , we can choose 

a contour plane 3
0( )u ∈N � as the normal plane at 

0( )uK , which is intrinsically defined as a part of the 

Frenet frame [3]. (As in Chang et al. [4], we can define 

the orientation more generally—independently of 

differential characteristics of the given spine curve.) In 

this case, 0( )uN is spanned by its normal and binormal 

vectors, ( )x un and ( )y un , and its local origin is placed 

at 0( )uK . 

 

When a 2D contour curve 
0 0 0

( ( ), ( ))u u ux v y v=C is 

embedded in 0( )uN , it has the following parametric form 

in 3D:  

0 0 00 0( ) ( ) ( ) ( ) ( )u u x u yv x v u y v u= ⋅ + ⋅C n n                           (1)  

 

However, considering that every contour may have a 

different shape at ( )uK , above parametric form should 

be further generalized as follows:  

(2) 

(3) 

u u x u y

x y

v x v u y v u

u v

x u v u y u v u

( ) ( ) ( ) ( ) ( )

( , )

( , ) ( ) ( , ) ( ).

= × + ×

º

= × + ×

C n n

C

n n

 

(4) 

 

When we consider GC as a sweep surface of a moving 

contour, the parametric form of GC surface S is 

generated by sweeping ( )u vC along ( )uK as follows:  

u x u y

u v u v u

x v u y v u u

( , ) ( , ) ( )

( ) ( ) ( ) ( ) ( ).

= +

= × + × +

S C K

n n K
           (5) 

 

In the above equation, we assume that a pair of 

coordinate functions ( ( ), ( ))u ux v y v is defined at every 

point ( )uK of the spine curve; however, a human 

designer could not specify infinite number of coordinate 

functions manually at each value of u. This is the point 

where contour blending problem arises: how do we 

smoothly interpolate a finite set of key-frame contours to 

generate a certain number of in-between contours 

required to satisfy the given precision criteria? 

 

In this paper, to be more focused on the blending 

problem itself, we can confine the bases of the contour 

plane to be fixed over u. In this case, a GC surface has a 

simple parametric form as follows:  
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u x u yu v x v y v u( , ) ( ) ( ) ( ).= × + × +S n n K                   (6)  
This is the typical case when the spine curve is a straight 

line segment. Specially, the developable surface 

examples in Section 5 and 6 are of this type. 

 

 
 

Fig. 1. An example output of LIDM (see Algorithm 1.): (a) smoothly changing polygons, (b) their direction 
maps, and (c) their normalized direction maps. 

 

3. CONTOUR BLENDING BY LIDM 

Recently, Lee et al. [9] proposed an efficient algorithm 

referred to as LIDM (linear interpolation by direction 

map) to interpolate two polygonal shapes. Moreover, a 

designer can specify additional control shapes, which 

enables a Bézier-curve or blossom-like control structure. 

The result of LIDM is a sequence of interpolated 

polygons—one parameter family of polygons in a 

parametric form. Specially, the automatic 

correspondences work quite well for relatively simple 

shapes rather than the complex ones of character 

animation applications. Note that GC does not require 

so complex contours as in character animations. Hence, 

we propose to adopt LIDM as a contour blending 

method in GC design.  

 

In LIDM, a polygon is represented by a circular list of 

direction vectors, which is referred to as a direction map. 

A direction vector is defined as a connecting vector of 

two neighboring polygon vertices. A group of 

consecutive direction vectors may represent a geometric 

feature such as pocket, chamfer, and fillet. We assume 

that, in LIDM, the direction of any direction vector is 

invariant although its length may change. Hence, (1) the 

sequence of directions and (2) lengths of individual 

direction vectors are key factors determining the actual 

shape of a feature.  

 

We can generate a new polygon by merging two 

direction maps representing different shapes. This step is 

analogous with blending features from different 

polygons. When merging direction maps, we change 

neither the direction nor the length of any direction 

vector; rather, the sequence of direction vectors is newly 

generated after merging with a certain geometric 

correspondence rule. Among various feature 

correspondence strategies, convolution merging is 

closely related to Minkowski sum or convolution 

operations, where vertex-wise feature correspondences 

are set up by geometric rules [9]. Note that LIMS (linear 

interpolation by Minkowski sum [8],[11]) is a special 

case of LIDM. 

 

To generate in-between shapes continuously, we have 

to smoothly change the degree of dominating features. 

In LIDM, this is accomplished by changing the length of 

direction vectors using group scaling operation where a 

scaling factor is assigned to a group of direction vectors. 

The examples of scaling factors are Bézier or blossom 

basis functions. Using both merging and group scaling 

operations, Lee et al. proposed interpolation algorithm 

(for details, we refer readers to [9]) as follows:  

Algorithm 1. LIDM 

InputInputInputInput (1) A merged direction map:  

0 mD D D¬ + +L ;  

(2) A set of scalar functions for the group scaling 

operation: 0( ) { ( ),... ( )}mt s t s t=s ; and  

(3) The blending parameter: t.  

OutputOutputOutputOutput A newly generated contour: C(t).  

ProcedureProcedureProcedureProcedure LIDM(D, s, t; C(t))  
 

Fig. 1. is an example output of LIDM algorithm applied 
for two direction maps of a triangle and an octagon: (a) 

a sequence of polygons changing from a triangle to an 

octagon; (b) by group scaling operations, dominating 

direction vectors become longer; however, (c) when the 

lengths are normalized into one, it is easy to find that the 

individual directions are invariant throughout the 

sequence. 

 

4. GC IN POLYGONAL MESHES 

In this section, we describe how to build a polygonal 

mesh of GC whose contours are blended by LIDM. For 
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the in-between shapes generated by LIDM, there exist 

two interesting geometric properties [9]: (1) all the in-

between shapes have the same normalized direction 

maps; and (2) the number of vertices (or edges) of 

generated polygons is constant. These two properties 

hold unless some edges vanish or shrink after trimming. 

Based on these properties, it is straightforward to build 

triangular (or quad) meshes by connecting 

corresponding vertices from neighboring contours. See 

Algorithm 2. below. (When correspondences should be 

made for direction maps of trimmed contours, more 

sophisticated rules should be applied to handle 

exceptions. We skip details here.) 

  

    
(a) (b) (c) (d) 

 

Fig. 2. An example result of LIDM-GC-Mesh (see Algorithm 2.): (a) control contours (in pink) arranged on a 
spine line, (b) blended contours (in gray), (c) the generated polygonal mesh, and (d) shaded result of (c) 
 

 

Algorithm 2. LIDM-GC-Mesh 
InputInputInputInput (1) Two terminal contours and additional control contours: m0{ ,..., }=C C C ; 

(2) A set of scalar functions (i.e., Bernstein polynomials): mb t b t0{ ( ), ..., ( )}=B ; and  

(3) The number of in-between contours to be generated: n. 

OutputOutputOutputOutput A polygonal mesh interpolating given control contours: M . 

ProcedureProcedureProcedureProcedure 
1. mD D D0¬ + +L ;                  /* to merge directions maps: i iD A( )= DM  */ 

2. l D¬ ;                       /* the number of direction vectors in the merged direction map */ 

3. prev (0) ( , , 0);D¬ =C C bLIDM                             /* to compute the initial contour */ 

4. ForForForFor 1i =  totototo (n+1) 
5.  * ;it t t i¬ = D                                        /* 1/ ( 1)t nD = +  */ 

6.  curr it D t¬ =C C b( ) LIDM( , , ) ;        /* assuming DM( ( ))tC  is invariant. */ 

7.  i ¬ ÆM ;  /* the initial value of the i-th sub-mesh */ 

8.  ForForForFor 1j =  totototo l    /* to construct a sub-mesh iM connecting prevC  and currC  */ 

9. j ¬m two triangle (or a quadrangle) constructed using the corresponding 4 

vertices: j-th and (j+1)-th vertices of prevC  and currC ; 

10.   i i j¬ ÈM M m ;  /* incremental addition of mesh elements */ 

11.  i¬ ÈM M M ; 

12.  prev next ;¬C C   /* incremental addition of sub-mesh */ 

 
In Algorithm 2., each execution of LIDM at 

it  generates 

one intermediate contour ( )itC . Note that, however, 

direction map merging is computed just once during the 

whole execution since the feature correspondences are 

assumed to be static.  

 



 545 

Each sub-mesh 
iM Mi is generated by connecting two 

consecutive contours, prevC and currC . The edge 

connection rules are simple. For example, to generate 

two triangles: (1) connect two starting points, (2) two end 

points of corresponding edge, and (3) choose one 

diagonal. The final mesh M is generated by sequentially 

combining all the sub-meshes 
iM  (See Algorithm 2.)  

 

Fig. 2. illustrates the execution of LIDM-GC-Mesh 
algorithm. Fig. 2(a). shows four control contours (in 

pink) arranged on a spine curve. In Fig. 2(b)., gray 

contours are blended ones generated by LIDM. By 

connecting the result of Fig. 2(b)., LIDM-GC-Mesh 
generates a mesh surface (Fig. 2(c)). For display, we can 

apply standard mesh shading to the generated mesh 

(Fig. 2(d)).  

Algorithm 3. LIDM-GC-Dvlp 

InputInputInputInput Two terminal contours and additional control contours: 0{ , ..., }m=C C C ;  

OutpOutpOutpOutputututut Sets of control points defining boundary curves of developable surface patches: 1{ , ..., }l=P P P .   

where ,0 ,{ , ..., }i i i m=P p p and iP  defines a boundary curve iF . 

ProcedureProcedureProcedureProcedure 
1. 0 mD D D¬ + +L ;                  /* merge directions maps: ( )DMi iD A=  */ 

2. l D¬ ;                      /* the number of direction vectors in D */ 
3. fffforororor 1i =  totototo l    /* for each profile curve iF  defined by a direction vector id  */ 

4.  i ¬d  the i-th direction vector of D; 

5.  i ¬ ÆP ; 

6.  fffforororor  j = 0  totototo  m                  /* find each set of control points iP  defining iF */ 

7. ¬d  find a direction vector of D that following two conditions:  
(1) the counter-clockwise nearest direction vector from id in D (including id ); and 

(2) its group id is j; /* selecting a sing vertex from 
j
C */ 

8. ,i j ¬p the vertex of 
j
C corresponding to the end point of d ; 

9. { },i i i j
¬ ÈP P p   /* finding each set of control points */ 

10.  { }i¬ ÈP P P ;  /* finding all the sets of control points */ 

 

5. GC IN DEVELOPABLE SURFACE PATCHES 

In this section, we describe how to generate developable 

surface patches representing GC. A developable surface 

is a special type of ruled surface, where all the points 

from one ruling have the same tangent plane [3]. 

Specially, a developable surface can be unfolded (or 

developed) into a plane without stretching or tearing. 

Hence, it has a wide-range of applications in 

manufacturing based on sheet metal-like materials. The 

recent works shows that a developable surface has a 

nice structure of controllability [2] and a neat 

representation in NURBS [10]. 

 

When every control contour has the same orientation 

(i.e., not on the normal plane of Frenet frame), 

corresponding edges of blended contours are parallel to 

each other since they are constructed by the same 

direction vector whose direction is invariant over 

blending. Hence, each direction vector 
id (moving along 

a certain directrix curve) defines one developable 

surface patch 
iS of cylindrical type. Note that, if a ruling 

direction is fixed over a directrix, it is a cylindrical 

developable surface. 

 

Each developable surface patch 
iS is bounded by two 

boundary curves: 1( )i u−F and ( )i uF . Let these curves be 

profile curves. Each profile curve ( )i uF is identical to the 

sweep trajectory of a vertex of a blended contour. Based 

on the properties of merged direction map and group 

scaling operation [9], each vertex of a blended contour 

is defined by blending some vertices ,0 ,{ ,..., }i i mp p  of 

control contours 0{ ,..., }mC C with the same blending 

function used in group scaling operation. 

 

For example, when applying Bernstein polynomials as 

blending functions, a profile curve is represented as 

follows:  

,
0

( ) ( )
m

m

i j i j

j

u B u
=

= ⋅∑F p .                                                 (7)  
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Actually, the type of boundary curve (or surface) is 

defined by how we blend contours using a certain 

scaling factors such as blossom or NURBS basis 

functions. 

 

It is clear that profile curves satisfy the following 

condition:  

1( ) ( ), 0i i iu u−− =F F d   .                                              (8)  

 

This leads to the following relation for every pair of 

neighboring control points:  

 

, 1, , 0i j i j i−− =p p d .                                                     (9)  

 

Hence, control points of 1( )i u−F and ( )i uF are identical 

except the pairs whose direction , 1,( ) 0i j i j−− ≠p p is 

parallel to
id .  

 

Using this property, Algorithm 3. can find control points 

of each profile curve regardless of convexity of control 

contours. 

 
 

 

(a) (b) (c) 

   
(d) (e) (f) 

 

Fig. 3. An example result of LIDM-GC-Dvlp (see Algorithm 3.): (a) control contours; (b) blended contours (in gray); (c)  
meshes (in gradient color) and a developable surface patch (in cyan); (d) control points (connected by green lines) of boundary 

curves; (e) the control points of all boundary curves; and (f) developable surface patches and their control points. 

 

If we apply Bernstein polynomials of degree m as scaling 

factors for the group scaling operation, each 

developable surface can be represented as Bézier 

surface of degree (m, 1) as follows: 

(10) 

 

1

1, ,
0 0

1
1

1 ,
0 0

( , ) (1 ) ( ) ( )

(1 ) ( ) ( )

( ) ( ) ,

i i i

m m
m m

j i j j i j

j j

m
m

j k i k j

j k

u v v u v u

v B u v B u

B u B u

−

−
= =

− +
= =

= − +

= − ⋅ + ⋅

= ⋅

∑ ∑

∑∑

S F F

p p

p

 

(11) 

where {1,..., }i l∈ . 

 

Fig. 3. shows an example result of where each patch is a 

Bézier surface of degree (3, 1). In Fig. 3(a)., four control 

contours—in this case, quadrangles of different sizes—

are placed on a straight line with the same orientation. 

In Fig. 3(b)., blended contours (in gray) are generated 

by LIDM-GC-Mesh algorithm using Bernstein 
polynomials as blending functions (i.e., scalar functions 

of group scaling operation) In Fig. 3(c)., when a mesh 
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(in gradient color) is displayed, we can easily observe an 

approximated developable surface patch (in cyan) 

bounded by two boundary curves. (Note that, although 

LIDM-GC-Mesh is used in Fig. 3(b). for illustration, it 

has no dependency on LIDM-GC-Dvlp.) 
 

In Fig. 3(d)., for each developable surface patch, we can 

select a set of control points (connected by green line) of 

each boundary curve among the vertices of control 

contours using LIDM-GC-Dvlp algorithm. In Fig. 3(e)., 
after we find all the control points, we can evaluate the 

boundary curves as Bézier curves. (Evaluated boundary 

curves give an impression of the GC shape.) Otherwise, 

as in Fig. 3(f)., we can adopt existing shading algorithms 

for Bézier surfaces. 

Note that LIDM-GC-Dvlp is more powerful than 

LIDM-GC-Mesh. If we want to generate in-between 

contours using LIDM-GC-Dvlp, we can connect the 
points from every boundary curves evaluated at the 

same value in sequential order. For example, a contour 

at the spine curve K(u) is defined by following vertices: 

1 2{ ( ), ( ),..., ( )}lu u uF F F . However, it is not easy to 

generate a parametric form of boundary curves using 

LIDM-GC-Mesh since it is based on contour-wise 
evaluations. 

 

 

 

(a) (b) (c) 

 

Fig. 4. Development of a developable surface patch on a plane: (a) finding the control points (connected in red line) of a normal 

directrix curve, (b) the normal directrix and its control points on a plane normal to the direction vector 
i
d , and (c) developing on a 

plane whose coordinate axis are defined by the normal directrix and direction vector. 

 

 

6. PLANE DEVELOPMENT OF GC 

In this section we explain plane development algorithm 

for the developable surface patches generated by 

LIDM-GC-Dvlp. In addition, we provide examples 
experimented with real paper patches. 

 

In Fig. 4(a)., a developable surface patch 
iS (the same 

one introduced in Fig. 3(d).) is defined by the ruling 

parallel to direction vector 
id along a certain directrix 

curve. 

 

For plane development, we define a special directrix 

curve ( )d

i
tF for each developable surface patch 

iS that is 

normal to 
id Such a directrix curve is referred to as 

normal directrix, which is the trace of principal direction 

along the maximum normal curvature We can derive 

control points ,
d

i jp (connect in red lines in Fig. 4(a).) of 

( )d

i
tF as follows:  

 

 

 

 

(12) 

(13) 

(14) 

(15) 

, 1,

1,0 ,0

1, , ,

, , ,

1, 1, 1

,      ( 0)

,

,

,

i i j i j i

d

i i

d L

i j i j i j i

d U

i j i j i j i

d L

i j i j i

h

h

h

−

−

−

+ + +

= − ≠

=

= + ⋅

= + ⋅

= + ⋅

d p p d

p p

p p d

p p d

p d

 

(16) 

where *
Lh  and *

Uh  are scalar values. 

 

Based on the planarity of ,
d

i jp , the following property 

holds: 

(17) 
1, 1,0

1, , 1,0

0 ( ),

( ),

d d

i j i i

L

i j i j i i ih

− −

− −

= −

= − ⋅ −

p p d

p d p d
 

(18) 

 

Using above property, we can sequentially derive the 

following equations: 
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(19) 

(20) 

1, 1,0

,

, 1, ,

, ,

,

( ),

,

( ),

,

i j i iL

i j

i i

d L

i j i j i j i

d

i j i j iU

i j

i i

h

h

h

− −

−

−
=

= − ⋅

−
=

p p d

d d

p p d

p p d

d d

 

(21) 

Now, we can derive the profile curve as follows:  

(22) 

(23) 

 

( )

3
1 1,

0

3
, ,

0

3 3
, ,

0 0

( ) ( )

( )

( ) ( )

( ) ( )

m

i j i j

j

m
d U

j i j i j i

j

m m
d L

j i j j i j i

j j

d L

i i i

t B t

B t h

B t B t h

t H t

− −
=

=

= =

= ⋅

= ⋅ + ⋅

 
= ⋅ + ⋅ ⋅ 

 

= + ⋅

∑

∑

∑ ∑

F p

p d

p d

F d

 

(24) 

 

Similarly, we can derive the neighboring profile curve as 

follows:  

i

U

i

d

ii dtHtFtF ⋅+= )()()(                                          (25) 

111 )()()( +++ ⋅+= i

L

i

d

ii dtHtFtF                                      (26) 

Let the development function satisfy the following two 

conditions:  

(i) When we develop the normal directrix curve ( )d

i
tF on 

a planeP , it becomes a straight line ( )i tL on the x-

axis of P  such that 

( )( ( )) ( ) ( ),0 ,d

i i i it t s t= =F LF                                   (27) 

where 

0

( ) ( ) .
t

d

i is t t dt= ∫ F&                                                   (28) 

(ii) When we develop the ruling vector 
id on P , it 

becomes a vector on the y-axis of P :  

( )( ) 0, .i i i i= =d y dF                                             (29) 

 

Algorithm 4. LIDM-GC-Plane-Dvlp 

InputInputInputInput (1) Output of LIDM-GC-Dvlp of Algorithm 3: P ; and 
(2) Number of samples for curve length approximation: n.  

OutputOutputOutputOutput A set of polygons representing planar boundary curves of developable surface patches: 

0{ ,..., }p p p

l
=C C C  where p

i
C is composed of a list of planar vertices 

,
{ }
i j
v . 

ProcedureProcedureProcedureProcedure 

1. fffforororor 1i =  totototo l     /* for each direction vector as the ruling of a developable surface patch */ 
2.  fffforororor  j = 0  totototo  m                  /* to find the ruling (or direction vector) of the i-th patch */ 
3. 1, ,

;
i i j i j-¬ -d p p  

4. if if if if 0
i
¹d then breakthen breakthen breakthen break; 

5.  fffforororor  j = 0  totototo  m                  /* find each set of control points iP  defining iF */  

6. 
1, 1,0

,

( ),
;

,
i j i iL

i j

i i

h
− −−

←
p p d

d d
 /* 0, ,

{ ,..., }L L L

i i i m
h h=h */ 

7. , 1, , ;d L

i j i j i j ih−← − ⋅p p d   /* 0, ,
{ ,..., }d d d

i i i m
=P p p */ 

8. 
, ,

,

( ),
;

,

d

i j i j iU

i j

i i

h
−

←
p p d

d d
  /* 0, ,

{ ,..., }U U U

i i i m
h h=h */ 

9. fffforororor  j = 0  totototo  n /* to get the vertices of 
,

{ }p

i i j
=C v */ 

10. * ;t t j←Δ  /* 1/t nΔ = */ 

11. ( , );CurveLengthBezierCurve3D d

i
x t← P  /* get the curve length of ( )d

i
tF from 0 to t */ 

12. ( , );BezierCurve1DL L

i iy t← ⋅d h  /* one dimensional Bézier curve */ 

13. ( ), , ;L

i j
x y¬v  /* the vertex in the lower developed boundary: ( )L

i
tD */ 

14. ( , );BezierCurve1DU U

i iy t← ⋅d h  /* one dimensional Bézier curve */ 

15. ( )2 1,( ) , ;U

i n j
x y+ - ¬v  /* the vertex in the upper developed boundary: ( )U

i
tD */ 
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(a) (b) (c) 

 

Fig. 5. Examples of plane development based on LIDM-GC-Plane-Dvlp (see Algorithm 4.):  Computer-aided design of (a) a bottle 
and (b) a bowl; and (c) corresponding physical models assembled using paper patches. 

 

When we develop 1( )i t−F on P using 
iF , it becomes a 

planar curve ( )L

i
tD of the following coordinates of P :  

 

 

(30) 

(31) ( ) ( )
( )

1( ( )) ( ) ( ) ( )

( ),0 ( ) 0,

( ), ( ) .

L L

i i i i i i

L

i i i

L

i i i

t t t H t

s t H t

s t H t

− = = + ⋅

= + ⋅

= ⋅

F D L y

d

d

F

 

(32) 

Similarly, we can develop 1( )i t+F  on P  as ( )U

i
tD  as 

follows:  

(33) 

(34) 

(35) 

( )
( )

( )
( )

1 1

1 1 1

( ) ( )

( ), ( ) ,

( ) ( )

( ), ( ) .

U

i i i

U

i i i

L

i i i

L

i i i

t t

s t H t

t t

s t H t

+ +

+ + +

=

= ⋅

=

= ⋅

F D

d

F D

d

F

F
 

(36) 

 

LIDM-GC-Plane-Dvlp of Algorithm 4. can be used to 
compute plane development of developable surface 

patches that are generated by LIDM-GC-Dvlp of 

Algorithm 3. Note that, however, LIDM-GC-Plane-

Dvlp can not produce the exact boundary curves on a 
plane since there is no closed form solution to compute 

the length of an arbitrary parametric curve as in Eqn. 

(28). Hence, we have to approximate the curve lengths 

using a known method. For example, we adopted the 

circular arc method of Vincent et al. [13] in 

CurveLengthBezierCurve3D algorithm which is used 
in the body of  Algorithm 4.  

 

Fig. 5. shows real examples of plane development of 

GC's. Fig. 5(a). is a bottle and Fig. 5(b). is a bowl. (They 

are defined by four simple control contours to simplify 

the paper manipulation.) Fig. 5(c). is a picture of 

physical models made of real paper development of 

developable surface patches of Fig. 5(a)-(b). After 

designing the GC's using LIDM-GC-Dvlp, the result of 

plane development using LIDM-GC-Plane-Dvlp was 
printed on papers automatically, and then cut with 

scissors and glued, of course, manually. 

 

7. DISCUSSION 

In this paper, we proposed three algorithms regarding 

GC based on direction map representations: (1) LIDM-

GC-Mesh, (2) LIDM-GC-Dvlp, (2) LIDM-GC-Plane-

Dvlp. The first algorithm generates polygonal meshes of 

GC using the previous method called LIDM. This is a 
simple procedure of O(n·l) where n and l are the 

number of blended contours and the number of 

direction vectors in a merged direction map, respectively. 

 

The second algorithm generates cylindrical developable 

surface patches of GC whose contour planes have the 

same orientation. This algorithm has the complexity of 

O(m·l) where m is the number of control contours. It 

sequentially generates control points of each 

developable surface patch.  

 

The third algorithm computes plane development for the 

result of the second algorithm. Although it is simple two-

fold loop of O(n·l), its performance depends on the 

computation of curve length.  

 

The implementation of proposed algorithms is 

straightforward, and their overall computations are fast 

enough to be implemented in interactive geometric 

design applications.  

 

As a further work, the supported developable surface 

patches should include cone and tangent envelop types. 
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