
 541

Modeling Generalized Cylinders using Direction Map Representation

Joo-Haeng Lee

Electronics and Telecommunications Research Institute (ETRI), joohaeng@etri.re.kr

ABSTRACT

For generalized cylinders (GC) defined by contours of discrete curves, we propose two algorithms

to generate GC surfaces (1) in polygonal meshes and (2) in cylindrical type of developable surface

patches. To solve the contour blending problem of generalized cylinder, the presented algorithms

have adopted the algorithms and properties of LIDM (linear interpolation by direction map) that

interpolate geometric shapes based on direction map merging and group scaling operations.

Moreover, we propose an algorithm to develop generated developable surface patches on a plane.

Proposed algorithms are fast to compute and easy to implement.

Keywords: generalized cylinder, direction map representation, developable surface

1. INTRODUCTION

Generalized cylinder (GC) is a well-known modeling

technique to design tube-like shapes whose surfaces are

constructed over skeletal frames composed of a finite

sequence of contours (2D cross-sectional curves) that

are systematically arranged on a 3D spine curve.

Generally, the spine curve determines the overall shape,

and contours expresses detailed features on the surface.

By interpolating (or blending) the given contours, we

can generate a one-parameter family of contours which

conceptually sweeps along the spine curve while

changing its orientation and shape. Using this general

sweep analogy, we can represent a GC as a tensor

product surface with two parameters representing the

spine and the contour directions, respectively. After

generating the surface from the initial design, we can

interact with the skeletal curves or the surface itself to

change the shape characteristics. With these simple

building blocks and mechanisms coupled with other

geometric modeling techniques, we can design various

kinds of artificial shapes (i.e., pipes, vessels, and tires)

and natural shapes (i.e., human bodies, flowers, and

seashells) as GC models for CAD and computer graphics

applications.

Previous researches have focused on various GC topics

such as surface representations, deformation and

interaction techniques, and orientation arrangements.

Note that, to be integrated with general purpose

geometric modeling tools, it is a common practice to

generate surface models directly from the intrinsic

definition of GC: i.e., a spine curve and a sequence of

contour curves. Hence, there are abundant research

works presenting how to represent GC surfaces as a

polyhedral mesh [1], Bezier [6], B-spline [14], or

NURBS surfaces [4] from the given skeletal frames.

Some representation methods focus on the direct ray-

casting [14] without converting into specific

representations. We can find researches presenting

special representations suitable for interactive

deformation [4],[6]. Contour arrangement with a

smooth orientation change is simply achieved by

embedding a contour on the normal plane [3] of the

Frenet frame [4],[6],[14]. For better results, rotation

minimizing frame can optimize distortion [7]. As a more

sophisticated topic, Gansca et al. deals with the problem

of self-intersection avoidance in the generation of GC

surfaces [5].

Another important GC topic is contour blending, which

is required to generate a one-parameter family of

contours continuously. One of fundamental steps for

contour blending is to set up correspondences between

features of adjacent key-frame contours. However, in

most of previous approaches, these correspondences are

assumed to be described manually or implicitly. For

example, although very complicated contours were

illustrated in B-Spline surface approach of de Voogt et

al. [14], no explicit step is specified for setting

correspondences between every pair of control points

from adjacent contours. This is partly because every

contour has the same number of control points, which

may lead to trivial correspondences in a certain case.

However, this is not the case of real-world examples

 542

where correspondences are rather complicated to be

described manually or assumed implicitly.

This correspondence problem is also fundamental in

morphing. (Note that morphing is generally composed

of two steps: (1) correspondences and (2) path

interpolation.) When key-frames are not so complex,

existing geometric morphing techniques works fine.

However, we can hardly expect full automation: for

better result, a human intervention is inevitable. For

example, when we want to generate in-betweens

interpolating given key-frames representing different

postures of a dancer [12], we can not specify semantic

constraint such as "an arm should not be morphed to a

leg" based on geometric intelligence of previous

algorithms. In addition, most of morphing techniques

can not express interpolating path in the form of

parametric curves. If we consider contours as key-

frames, the parametric representation of interpolating

path is critical to generate the surfaces of a GC.

In this paper, we suggest to adopt a geometric morphing

technique referred to as LIDM (linear interpolation by

direction map) proposed by Lee et al. [9] to solve both

correspondence and parametric interpolation problems

in contour blending. LIDM is closely related to previous

morphing technique referred to as LIMS (linear

interpolation by Minkowski sum) [8],[11], but more

generalized and computationally efficient.

In addition, we present methods to construct GC surface

with (1) polygonal mesh and (2) cylindrical type of

developable surface patches using the geometric

properties of LIDM. The overall computation of

proposed methods is fast enough to be applied in

interactive geometric design applications. We also

propose the algorithm to develop generated developable

surface patches on a plane.

The remainder of this paper is organized as follows. In

Section 2, we describe a typical representation of

parametric GC surface and explain why contour

blending problem matters in GC. In Section 3, we

propose to adopt LIDM as a contour blending method in

GC design. In Section 4, we describe how to build a

polygonal mesh of GC whose contours are blended by

LIDM. In Section 5, we describe how to generate

developable surface patches representing GC. In Section

6, we explain how to develop generated developable

surface patches on a plane. In Section 7, we

demonstrate the example results. This template file

contains all relevant information to process papers into

the right format for the annual CAD conference

proceedings. For ease of paper preparation, authors

may want to cut and paste the relevant sections into this

document.

2. PARAMETRIC REPRESENTATION OF GC

Let a contour curve be placed on a contour plane. For a

spine curve parameterized as 3()u ∈K � , we can choose

a contour plane 3
0()u ∈N � as the normal plane at

0()uK , which is intrinsically defined as a part of the

Frenet frame [3]. (As in Chang et al. [4], we can define

the orientation more generally—independently of

differential characteristics of the given spine curve.) In

this case, 0()uN is spanned by its normal and binormal

vectors, ()x un and ()y un , and its local origin is placed

at 0()uK .

When a 2D contour curve
0 0 0

((), ())u u ux v y v=C is

embedded in 0()uN , it has the following parametric form

in 3D:

0 0 00 0() () () () ()u u x u yv x v u y v u= ⋅ + ⋅C n n (1)

However, considering that every contour may have a

different shape at ()uK , above parametric form should

be further generalized as follows:

(2)

(3)

u u x u y

x y

v x v u y v u

u v

x u v u y u v u

() () () () ()

(,)

(,) () (,) ().

= × + ×

º

= × + ×

C n n

C

n n

(4)

When we consider GC as a sweep surface of a moving

contour, the parametric form of GC surface S is

generated by sweeping ()u vC along ()uK as follows:

u x u y

u v u v u

x v u y v u u

(,) (,) ()

() () () () ().

= +

= × + × +

S C K

n n K
 (5)

In the above equation, we assume that a pair of

coordinate functions ((), ())u ux v y v is defined at every

point ()uK of the spine curve; however, a human

designer could not specify infinite number of coordinate

functions manually at each value of u. This is the point

where contour blending problem arises: how do we

smoothly interpolate a finite set of key-frame contours to

generate a certain number of in-between contours

required to satisfy the given precision criteria?

In this paper, to be more focused on the blending

problem itself, we can confine the bases of the contour

plane to be fixed over u. In this case, a GC surface has a

simple parametric form as follows:

 543

u x u yu v x v y v u(,) () () ().= × + × +S n n K (6)
This is the typical case when the spine curve is a straight

line segment. Specially, the developable surface

examples in Section 5 and 6 are of this type.

Fig. 1. An example output of LIDM (see Algorithm 1.): (a) smoothly changing polygons, (b) their direction
maps, and (c) their normalized direction maps.

3. CONTOUR BLENDING BY LIDM

Recently, Lee et al. [9] proposed an efficient algorithm

referred to as LIDM (linear interpolation by direction

map) to interpolate two polygonal shapes. Moreover, a

designer can specify additional control shapes, which

enables a Bézier-curve or blossom-like control structure.

The result of LIDM is a sequence of interpolated

polygons—one parameter family of polygons in a

parametric form. Specially, the automatic

correspondences work quite well for relatively simple

shapes rather than the complex ones of character

animation applications. Note that GC does not require

so complex contours as in character animations. Hence,

we propose to adopt LIDM as a contour blending

method in GC design.

In LIDM, a polygon is represented by a circular list of

direction vectors, which is referred to as a direction map.

A direction vector is defined as a connecting vector of

two neighboring polygon vertices. A group of

consecutive direction vectors may represent a geometric

feature such as pocket, chamfer, and fillet. We assume

that, in LIDM, the direction of any direction vector is

invariant although its length may change. Hence, (1) the

sequence of directions and (2) lengths of individual

direction vectors are key factors determining the actual

shape of a feature.

We can generate a new polygon by merging two

direction maps representing different shapes. This step is

analogous with blending features from different

polygons. When merging direction maps, we change

neither the direction nor the length of any direction

vector; rather, the sequence of direction vectors is newly

generated after merging with a certain geometric

correspondence rule. Among various feature

correspondence strategies, convolution merging is

closely related to Minkowski sum or convolution

operations, where vertex-wise feature correspondences

are set up by geometric rules [9]. Note that LIMS (linear

interpolation by Minkowski sum [8],[11]) is a special

case of LIDM.

To generate in-between shapes continuously, we have

to smoothly change the degree of dominating features.

In LIDM, this is accomplished by changing the length of

direction vectors using group scaling operation where a

scaling factor is assigned to a group of direction vectors.

The examples of scaling factors are Bézier or blossom

basis functions. Using both merging and group scaling

operations, Lee et al. proposed interpolation algorithm

(for details, we refer readers to [9]) as follows:

Algorithm 1. LIDM

InputInputInputInput (1) A merged direction map:

0 mD D D¬ + +L ;

(2) A set of scalar functions for the group scaling

operation: 0() { (),... ()}mt s t s t=s ; and

(3) The blending parameter: t.

OutputOutputOutputOutput A newly generated contour: C(t).

ProcedureProcedureProcedureProcedure LIDM(D, s, t; C(t))

Fig. 1. is an example output of LIDM algorithm applied
for two direction maps of a triangle and an octagon: (a)

a sequence of polygons changing from a triangle to an

octagon; (b) by group scaling operations, dominating

direction vectors become longer; however, (c) when the

lengths are normalized into one, it is easy to find that the

individual directions are invariant throughout the

sequence.

4. GC IN POLYGONAL MESHES

In this section, we describe how to build a polygonal

mesh of GC whose contours are blended by LIDM. For

 544

the in-between shapes generated by LIDM, there exist

two interesting geometric properties [9]: (1) all the in-

between shapes have the same normalized direction

maps; and (2) the number of vertices (or edges) of

generated polygons is constant. These two properties

hold unless some edges vanish or shrink after trimming.

Based on these properties, it is straightforward to build

triangular (or quad) meshes by connecting

corresponding vertices from neighboring contours. See

Algorithm 2. below. (When correspondences should be

made for direction maps of trimmed contours, more

sophisticated rules should be applied to handle

exceptions. We skip details here.)

(a) (b) (c) (d)

Fig. 2. An example result of LIDM-GC-Mesh (see Algorithm 2.): (a) control contours (in pink) arranged on a
spine line, (b) blended contours (in gray), (c) the generated polygonal mesh, and (d) shaded result of (c)

Algorithm 2. LIDM-GC-Mesh
InputInputInputInput (1) Two terminal contours and additional control contours: m0{ ,..., }=C C C ;

(2) A set of scalar functions (i.e., Bernstein polynomials): mb t b t0{ (), ..., ()}=B ; and

(3) The number of in-between contours to be generated: n.

OutputOutputOutputOutput A polygonal mesh interpolating given control contours: M .

ProcedureProcedureProcedureProcedure
1. mD D D0¬ + +L ; /* to merge directions maps: i iD A()= DM */

2. l D¬ ; /* the number of direction vectors in the merged direction map */

3. prev (0) (, , 0);D¬ =C C bLIDM /* to compute the initial contour */

4. ForForForFor 1i = totototo (n+1)
5. * ;it t t i¬ = D /* 1/ (1)t nD = + */

6. curr it D t¬ =C C b() LIDM(, ,) ; /* assuming DM(())tC is invariant. */

7. i ¬ ÆM ; /* the initial value of the i-th sub-mesh */

8. ForForForFor 1j = totototo l /* to construct a sub-mesh iM connecting prevC and currC */

9. j ¬m two triangle (or a quadrangle) constructed using the corresponding 4

vertices: j-th and (j+1)-th vertices of prevC and currC ;

10. i i j¬ ÈM M m ; /* incremental addition of mesh elements */

11. i¬ ÈM M M ;

12. prev next ;¬C C /* incremental addition of sub-mesh */

In Algorithm 2., each execution of LIDM at

it generates

one intermediate contour ()itC . Note that, however,

direction map merging is computed just once during the

whole execution since the feature correspondences are

assumed to be static.

 545

Each sub-mesh
iM Mi is generated by connecting two

consecutive contours, prevC and currC . The edge

connection rules are simple. For example, to generate

two triangles: (1) connect two starting points, (2) two end

points of corresponding edge, and (3) choose one

diagonal. The final mesh M is generated by sequentially

combining all the sub-meshes
iM (See Algorithm 2.)

Fig. 2. illustrates the execution of LIDM-GC-Mesh
algorithm. Fig. 2(a). shows four control contours (in

pink) arranged on a spine curve. In Fig. 2(b)., gray

contours are blended ones generated by LIDM. By

connecting the result of Fig. 2(b)., LIDM-GC-Mesh
generates a mesh surface (Fig. 2(c)). For display, we can

apply standard mesh shading to the generated mesh

(Fig. 2(d)).

Algorithm 3. LIDM-GC-Dvlp

InputInputInputInput Two terminal contours and additional control contours: 0{ , ..., }m=C C C ;

OutpOutpOutpOutputututut Sets of control points defining boundary curves of developable surface patches: 1{ , ..., }l=P P P .

where ,0 ,{ , ..., }i i i m=P p p and iP defines a boundary curve iF .

ProcedureProcedureProcedureProcedure
1. 0 mD D D¬ + +L ; /* merge directions maps: ()DMi iD A= */

2. l D¬ ; /* the number of direction vectors in D */
3. fffforororor 1i = totototo l /* for each profile curve iF defined by a direction vector id */

4. i ¬d the i-th direction vector of D;

5. i ¬ ÆP ;

6. fffforororor j = 0 totototo m /* find each set of control points iP defining iF */

7. ¬d find a direction vector of D that following two conditions:
(1) the counter-clockwise nearest direction vector from id in D (including id); and

(2) its group id is j; /* selecting a sing vertex from
j
C */

8. ,i j ¬p the vertex of
j
C corresponding to the end point of d ;

9. { },i i i j
¬ ÈP P p /* finding each set of control points */

10. { }i¬ ÈP P P ; /* finding all the sets of control points */

5. GC IN DEVELOPABLE SURFACE PATCHES

In this section, we describe how to generate developable

surface patches representing GC. A developable surface

is a special type of ruled surface, where all the points

from one ruling have the same tangent plane [3].

Specially, a developable surface can be unfolded (or

developed) into a plane without stretching or tearing.

Hence, it has a wide-range of applications in

manufacturing based on sheet metal-like materials. The

recent works shows that a developable surface has a

nice structure of controllability [2] and a neat

representation in NURBS [10].

When every control contour has the same orientation

(i.e., not on the normal plane of Frenet frame),

corresponding edges of blended contours are parallel to

each other since they are constructed by the same

direction vector whose direction is invariant over

blending. Hence, each direction vector
id (moving along

a certain directrix curve) defines one developable

surface patch
iS of cylindrical type. Note that, if a ruling

direction is fixed over a directrix, it is a cylindrical

developable surface.

Each developable surface patch
iS is bounded by two

boundary curves: 1()i u−F and ()i uF . Let these curves be

profile curves. Each profile curve ()i uF is identical to the

sweep trajectory of a vertex of a blended contour. Based

on the properties of merged direction map and group

scaling operation [9], each vertex of a blended contour

is defined by blending some vertices ,0 ,{ ,..., }i i mp p of

control contours 0{ ,..., }mC C with the same blending

function used in group scaling operation.

For example, when applying Bernstein polynomials as

blending functions, a profile curve is represented as

follows:

,
0

() ()
m

m

i j i j

j

u B u
=

= ⋅∑F p . (7)

 546

Actually, the type of boundary curve (or surface) is

defined by how we blend contours using a certain

scaling factors such as blossom or NURBS basis

functions.

It is clear that profile curves satisfy the following

condition:

1() (), 0i i iu u−− =F F d . (8)

This leads to the following relation for every pair of

neighboring control points:

, 1, , 0i j i j i−− =p p d . (9)

Hence, control points of 1()i u−F and ()i uF are identical

except the pairs whose direction , 1,() 0i j i j−− ≠p p is

parallel to
id .

Using this property, Algorithm 3. can find control points

of each profile curve regardless of convexity of control

contours.

(a) (b) (c)

(d) (e) (f)

Fig. 3. An example result of LIDM-GC-Dvlp (see Algorithm 3.): (a) control contours; (b) blended contours (in gray); (c)
meshes (in gradient color) and a developable surface patch (in cyan); (d) control points (connected by green lines) of boundary

curves; (e) the control points of all boundary curves; and (f) developable surface patches and their control points.

If we apply Bernstein polynomials of degree m as scaling

factors for the group scaling operation, each

developable surface can be represented as Bézier

surface of degree (m, 1) as follows:

(10)

1

1, ,
0 0

1
1

1 ,
0 0

(,) (1) () ()

(1) () ()

() () ,

i i i

m m
m m

j i j j i j

j j

m
m

j k i k j

j k

u v v u v u

v B u v B u

B u B u

−

−
= =

− +
= =

= − +

= − ⋅ + ⋅

= ⋅

∑ ∑

∑∑

S F F

p p

p

(11)

where {1,..., }i l∈ .

Fig. 3. shows an example result of where each patch is a

Bézier surface of degree (3, 1). In Fig. 3(a)., four control

contours—in this case, quadrangles of different sizes—

are placed on a straight line with the same orientation.

In Fig. 3(b)., blended contours (in gray) are generated

by LIDM-GC-Mesh algorithm using Bernstein
polynomials as blending functions (i.e., scalar functions

of group scaling operation) In Fig. 3(c)., when a mesh

 547

(in gradient color) is displayed, we can easily observe an

approximated developable surface patch (in cyan)

bounded by two boundary curves. (Note that, although

LIDM-GC-Mesh is used in Fig. 3(b). for illustration, it

has no dependency on LIDM-GC-Dvlp.)

In Fig. 3(d)., for each developable surface patch, we can

select a set of control points (connected by green line) of

each boundary curve among the vertices of control

contours using LIDM-GC-Dvlp algorithm. In Fig. 3(e).,
after we find all the control points, we can evaluate the

boundary curves as Bézier curves. (Evaluated boundary

curves give an impression of the GC shape.) Otherwise,

as in Fig. 3(f)., we can adopt existing shading algorithms

for Bézier surfaces.

Note that LIDM-GC-Dvlp is more powerful than

LIDM-GC-Mesh. If we want to generate in-between

contours using LIDM-GC-Dvlp, we can connect the
points from every boundary curves evaluated at the

same value in sequential order. For example, a contour

at the spine curve K(u) is defined by following vertices:

1 2{ (), (),..., ()}lu u uF F F . However, it is not easy to

generate a parametric form of boundary curves using

LIDM-GC-Mesh since it is based on contour-wise
evaluations.

(a) (b) (c)

Fig. 4. Development of a developable surface patch on a plane: (a) finding the control points (connected in red line) of a normal

directrix curve, (b) the normal directrix and its control points on a plane normal to the direction vector
i
d , and (c) developing on a

plane whose coordinate axis are defined by the normal directrix and direction vector.

6. PLANE DEVELOPMENT OF GC

In this section we explain plane development algorithm

for the developable surface patches generated by

LIDM-GC-Dvlp. In addition, we provide examples
experimented with real paper patches.

In Fig. 4(a)., a developable surface patch
iS (the same

one introduced in Fig. 3(d).) is defined by the ruling

parallel to direction vector
id along a certain directrix

curve.

For plane development, we define a special directrix

curve ()d

i
tF for each developable surface patch

iS that is

normal to
id Such a directrix curve is referred to as

normal directrix, which is the trace of principal direction

along the maximum normal curvature We can derive

control points ,
d

i jp (connect in red lines in Fig. 4(a).) of

()d

i
tF as follows:

(12)

(13)

(14)

(15)

, 1,

1,0 ,0

1, , ,

, , ,

1, 1, 1

, (0)

,

,

,

i i j i j i

d

i i

d L

i j i j i j i

d U

i j i j i j i

d L

i j i j i

h

h

h

−

−

−

+ + +

= − ≠

=

= + ⋅

= + ⋅

= + ⋅

d p p d

p p

p p d

p p d

p d

(16)

where *
Lh and *

Uh are scalar values.

Based on the planarity of ,
d

i jp , the following property

holds:

(17)
1, 1,0

1, , 1,0

0 (),

(),

d d

i j i i

L

i j i j i i ih

− −

− −

= −

= − ⋅ −

p p d

p d p d

(18)

Using above property, we can sequentially derive the

following equations:

 548

(19)

(20)

1, 1,0

,

, 1, ,

, ,

,

(),

,

(),

,

i j i iL

i j

i i

d L

i j i j i j i

d

i j i j iU

i j

i i

h

h

h

− −

−

−
=

= − ⋅

−
=

p p d

d d

p p d

p p d

d d

(21)

Now, we can derive the profile curve as follows:

(22)

(23)

()

3
1 1,

0

3
, ,

0

3 3
, ,

0 0

() ()

()

() ()

() ()

m

i j i j

j

m
d U

j i j i j i

j

m m
d L

j i j j i j i

j j

d L

i i i

t B t

B t h

B t B t h

t H t

− −
=

=

= =

= ⋅

= ⋅ + ⋅

 
= ⋅ + ⋅ ⋅ 

 

= + ⋅

∑

∑

∑ ∑

F p

p d

p d

F d

(24)

Similarly, we can derive the neighboring profile curve as

follows:

i

U

i

d

ii dtHtFtF ⋅+=)()()((25)

111)()()(+++ ⋅+= i

L

i

d

ii dtHtFtF (26)

Let the development function satisfy the following two

conditions:

(i) When we develop the normal directrix curve ()d

i
tF on

a planeP , it becomes a straight line ()i tL on the x-

axis of P such that

()(()) () (),0 ,d

i i i it t s t= =F LF (27)

where

0

() () .
t

d

i is t t dt= ∫ F& (28)

(ii) When we develop the ruling vector
id on P , it

becomes a vector on the y-axis of P :

()() 0, .i i i i= =d y dF (29)

Algorithm 4. LIDM-GC-Plane-Dvlp

InputInputInputInput (1) Output of LIDM-GC-Dvlp of Algorithm 3: P ; and
(2) Number of samples for curve length approximation: n.

OutputOutputOutputOutput A set of polygons representing planar boundary curves of developable surface patches:

0{ ,..., }p p p

l
=C C C where p

i
C is composed of a list of planar vertices

,
{ }
i j
v .

ProcedureProcedureProcedureProcedure

1. fffforororor 1i = totototo l /* for each direction vector as the ruling of a developable surface patch */
2. fffforororor j = 0 totototo m /* to find the ruling (or direction vector) of the i-th patch */
3. 1, ,

;
i i j i j-¬ -d p p

4. if if if if 0
i
¹d then breakthen breakthen breakthen break;

5. fffforororor j = 0 totototo m /* find each set of control points iP defining iF */

6.
1, 1,0

,

(),
;

,
i j i iL

i j

i i

h
− −−

←
p p d

d d
 /* 0, ,

{ ,..., }L L L

i i i m
h h=h */

7. , 1, , ;d L

i j i j i j ih−← − ⋅p p d /* 0, ,
{ ,..., }d d d

i i i m
=P p p */

8.
, ,

,

(),
;

,

d

i j i j iU

i j

i i

h
−

←
p p d

d d
 /* 0, ,

{ ,..., }U U U

i i i m
h h=h */

9. fffforororor j = 0 totototo n /* to get the vertices of
,

{ }p

i i j
=C v */

10. * ;t t j←Δ /* 1/t nΔ = */

11. (,);CurveLengthBezierCurve3D d

i
x t← P /* get the curve length of ()d

i
tF from 0 to t */

12. (,);BezierCurve1DL L

i iy t← ⋅d h /* one dimensional Bézier curve */

13. (), , ;L

i j
x y¬v /* the vertex in the lower developed boundary: ()L

i
tD */

14. (,);BezierCurve1DU U

i iy t← ⋅d h /* one dimensional Bézier curve */

15. ()2 1,() , ;U

i n j
x y+ - ¬v /* the vertex in the upper developed boundary: ()U

i
tD */

 549

(a) (b) (c)

Fig. 5. Examples of plane development based on LIDM-GC-Plane-Dvlp (see Algorithm 4.): Computer-aided design of (a) a bottle
and (b) a bowl; and (c) corresponding physical models assembled using paper patches.

When we develop 1()i t−F on P using
iF , it becomes a

planar curve ()L

i
tD of the following coordinates of P :

(30)

(31) () ()
()

1(()) () () ()

(),0 () 0,

(), () .

L L

i i i i i i

L

i i i

L

i i i

t t t H t

s t H t

s t H t

− = = + ⋅

= + ⋅

= ⋅

F D L y

d

d

F

(32)

Similarly, we can develop 1()i t+F on P as ()U

i
tD as

follows:

(33)

(34)

(35)

()
()

()
()

1 1

1 1 1

() ()

(), () ,

() ()

(), () .

U

i i i

U

i i i

L

i i i

L

i i i

t t

s t H t

t t

s t H t

+ +

+ + +

=

= ⋅

=

= ⋅

F D

d

F D

d

F

F

(36)

LIDM-GC-Plane-Dvlp of Algorithm 4. can be used to
compute plane development of developable surface

patches that are generated by LIDM-GC-Dvlp of

Algorithm 3. Note that, however, LIDM-GC-Plane-

Dvlp can not produce the exact boundary curves on a
plane since there is no closed form solution to compute

the length of an arbitrary parametric curve as in Eqn.

(28). Hence, we have to approximate the curve lengths

using a known method. For example, we adopted the

circular arc method of Vincent et al. [13] in

CurveLengthBezierCurve3D algorithm which is used
in the body of Algorithm 4.

Fig. 5. shows real examples of plane development of

GC's. Fig. 5(a). is a bottle and Fig. 5(b). is a bowl. (They

are defined by four simple control contours to simplify

the paper manipulation.) Fig. 5(c). is a picture of

physical models made of real paper development of

developable surface patches of Fig. 5(a)-(b). After

designing the GC's using LIDM-GC-Dvlp, the result of

plane development using LIDM-GC-Plane-Dvlp was
printed on papers automatically, and then cut with

scissors and glued, of course, manually.

7. DISCUSSION

In this paper, we proposed three algorithms regarding

GC based on direction map representations: (1) LIDM-

GC-Mesh, (2) LIDM-GC-Dvlp, (2) LIDM-GC-Plane-

Dvlp. The first algorithm generates polygonal meshes of

GC using the previous method called LIDM. This is a
simple procedure of O(n·l) where n and l are the

number of blended contours and the number of

direction vectors in a merged direction map, respectively.

The second algorithm generates cylindrical developable

surface patches of GC whose contour planes have the

same orientation. This algorithm has the complexity of

O(m·l) where m is the number of control contours. It

sequentially generates control points of each

developable surface patch.

The third algorithm computes plane development for the

result of the second algorithm. Although it is simple two-

fold loop of O(n·l), its performance depends on the

computation of curve length.

The implementation of proposed algorithms is

straightforward, and their overall computations are fast

enough to be implemented in interactive geometric

design applications.

As a further work, the supported developable surface

patches should include cone and tangent envelop types.

 550

8. ACKNOWLEDGEMENT

This work has been supported in part by grant no. A1-

03-0021-00 of Korean Ministry of Information and

Communication. The preliminary result of this work was

presented in IJCC Workshop on Digital Engineering,

Hyatt Hotel Jeju, Korea, in August 21, 2003.

9. REFERENCES

[1] Akman, V. and Arslan, A., Sweeping with all

graphical ingredients in a topological picturebook,

Computer & Graphics, 16, 1992, pp 273-281.

[2] Bodduluri, R.M.C. and Ravani, B., (1993) Design of

developable surfaces using duality between plane

and point geometries, Computer-Aided Design,

25(10), pp 621-632.

[3] Carmo, M.P. do, Differential Geometry of Curves

and Surfaces, Prentice-Hall, 1976.

[4] Chang T.-I., Lee, J.-H., Kim, M.-S. and Hong, S.J.,

Direct manipulation of generalized cylinders based

on B-spline motion, The Visual Computer, 14, 1998.

pp 228-239.

[5] Gansca, I., Bronsvoort W.F., Coman G. and

Tambulea, L. Self-intersection avoidance and

integral properties of generalized cylinders,

Computer Aided Geometric Design, 19(9), 2002, pp

695-707.

[6] Kim, M.-S., Park, E.-J., and Lee, H.-Y., Modeling

and animation of generalized cylinders with variable

radius offset space curves, Journal of Visualization

and Computer Animation, 5, 1994, pp 189-207.

[7] Klok F., Two moving coordinate frames for sweeping

along a 3D trajectory, Computer Aided Geometric

Design, 3, 1986, pp 217-229.

[8] Lee, J.-H., Lee, J.Y., Kim, H. and Kim, H.-S.,

Interactive Control of Geometric Shape Morphing

based on Minkowski Sum, Transactions on SCCE,

7(4), 2002, pp 317-380.

http://joohaeng.etri.re.kr/pub/ToSCCE-2002-

LIMS.pdf

[9] Lee, J.-H., Kim, H. and Kim, H.-S., Efficient

Computation and Control of Geometric Shape

Morphing based on Direction Map, Transactions on

SCCE, 8(4), 2003, pp 243-253.

http://joohaeng.etri.re.kr/pub/TR-2003-LIDM.pdf

[10] Pottman, H. and Wallner, J., Approximation

algorithms for developable surfaces, Computer

Aided Geometric Design, 16, 1999, pp 539-556.

[11] Rossignac, J. and Kaul, A., AGRELs and BIPs:

Metamorphosis as a Bezier curve in the space of

Polyhedra, in Proceedings of EUROGRAPHICS '94,

1994; C179-C184.

[12] Shapira, M. and Rappoport, A., Shape blending

using the star-skeleton representation, IEEE

Computer Graphics & Applications, 15(2), 1995, pp

44-50.

[13] Vincent, S. and Forsey, D., Fast and accurate

parametric curve length computation, Journal of

Graphics Tools, 6(4), 2001, pp 29-40.

[14] Voogt, E. de, Helm, A. van der and Bronsvoort

W.F., Ray tracing deformed generalized cylinders,

The Visual Computer, 16, 2000, pp 197-207.

