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ABSTRACT 

 

This paper studies geometric design of developable surfaces that consist of consecutive Bézier 

patches. It is shown that the number of degrees of freedom (DOF) for the surface design is 

independent of the degree of the surface. With a first boundary curve freely specified, (2m+3), 

(m+4), and five DOF’s are available for a second boundary curve of a developable surface 

containing m patches, when the surface is G0, G1, and G2, respectively. There remain five and 

(7−2m) DOF’s for C1 and C2 continuity. Four and three DOF’s are left for the patch design when 

the end ruling vanishes on one and both sides. Design examples are presented that fully utilize the 

corresponding DOF’s subject to various continuity conditions. This work provides the foundation 

for systematic implementation of a CAGD system for developable composite Bézier surfaces. 
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1. INTRODUCTION 

Developable surfaces are widely used in design and 

manufacturing of materials that do not stretch or tear. 

Applications include modeling of ship hulls, apparel, 

ducts, automobile, and aircraft components [1]. Products 

are first designed using developable surfaces in 3D 

space; then they are flattened and become a ‘pattern’ in 

a plane. The fabrication process starts with cutting 

materials (such as sheet metal, paper, leather, or 

plywood) according to the pattern. The planar patterned 

materials are simply bent or un-rolled back to the 

original 3D shapes. 

A ruled surface is generated by sweeping a straight 

line through 3D space [2]. This straight line is referred to 

as a ruling, or generator of the surface. Developable 

surfaces are a subset of ruled surfaces, which has a 

constant tangent plane at all points along any ruling. 

Mathematically a developable surface is defined as the 

envelope of a single family of planes. It is also known as 

a single curved surface, as one of its principal curvatures 

is null [3]. 

There are two main approaches to constructing 

developable surfaces. Aumann [4] proposed the 

condition under which a developable Bézier patch can 

be constructed with two boundary curves. They are 

restricted to lie in parallel planes and their projection in 

the x-y plane to be a rectangle. Lang and Röschel [5] 

obtained necessary conditions for the control nets and 

the weights of a rational Bézier surface to become 

developable. However, the result leads to a complex 

system of coupled equations that make it difficult to 

design developable surfaces with their method. Frey and 

Bindschadler [6] extended the results obtained by 

Aumann into developable Bézier strip patches that allow 

their projections to be general trapezoids in the x-y 

plane. Chalfant and Maekawa [7] studied design of a 

developable B-spline surface by joining m developable 

Bézier patches along their end rulings with C2 continuity, 

but their method restricts the two boundary curves to lie 

in parallel planes. Their later work [8] developed a 

method for design of developable surfaces with general 

3D boundary curves. Optimization techniques are 

employed to compute the remaining control points after 

the user has designated the first curve and the end points 

of the other, but the solved surface may not always be 

precisely developable. The second approach [9,10] 

constructs a developable surface in terms of plane 

geometry using the concept of duality between points 

and planes in 3D projective space. This method provides 

a compact representation for developable surfaces in the 

dual form, but it is difficult to apply the results to 

computer-aided geometric design of 3D shapes. 

All previous studies impose the original constraint − 

constant tangent plane at all points along any given 

ruling, on the control net of a surface to guarantee its 

developability. By doing so, they failed to infer 

important properties of a developable control polygon 

that facilitate the solution process of the surface design. 

As a result, to determine the constrained control points 

involves the solution of highly coupled non-linear 

systems of equations. More importantly, those studies 

lost insights into the  
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Fig. 1. A ruled surface patch 

 

degrees of freedom (DOF) for the surface design. Correct 

design ‘handles’ cannot be identified that match 

available DOF’s and fully utilize them for the surface 

design. Our recent findings [11] provide effective 

solutions for all these problems. It characterizes the 

degrees of freedom for the patch design, provides useful 

design methods without limitations in surface modeling, 

and derives simpler solutions for quick implementation. 

This paper extends these findings into geometric design 

of developable composite Bézier surfaces. Adjacent 

developable patches are joined along their end rulings 

while maintaining various geometric and parametric 

continuities across the patch boundaries. The DOF’s are 

generalized for developable surfaces constructed with m 

consecutive patches of degree n subject to continuity 

conditions including G0, G1, G2, C1, and C2. Design 

methods are proposed that make most use of the DOF’s 

in illustrative examples. The conditions for the 

developability of degenerate triangular Bézier patch are 

also investigated. This work provides a theoretical 

foundation for systematic implementation of CAGD 

systems for developable Bézier surfaces. The results are 

readily extensible to the design of developable B-spline 

surfaces. 

2. DEVELOPABILITY CONSTRAINTS IN BEZIER 

PATCHES 

Given any two Bézier boundary curves A(w) and 

B(w), a ruled Bézier surface is constructed by connecting 

each pair of corresponding points (with equal w) with a 

straight line segment AB as shown in Fig. 1. The line 

segment AB is referred to as the ruling at parameter 

value w. The surface is expressed as: X(t, w) = (1– t) 

A(w) + t B(w), 0 ≤ t ≤ 1 and 0 ≤ w ≤ 1, where t is the 

parameter along the rulings. If these tangent lines and 

the corresponding ruling remain coplanar at every w, 

then the surface becomes developable. Co-planarity can 

be represented in terms of the triple scalar product of the 

two tangent vectors and the ruling vector A(w)−B(w): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. The de Casteljau subdivision for a cubic Bézier patch 

 

                                                                                     (1) 

Substituting the Bézier representation of both curves into 

the above equation leads to a complicated system of 

equations that must be fulfilled by the Bézier control 

points to ensure its developability. All previous studies 

[4-10] impose Eqn. (1). directly on the control net of a 

surface, and thus non-linear systems of equations occur 

in the solution process. We have developed a new 

approach [11] to computing the constrained control 

points instead of solving them directly from Eqn. (1).. 

The developability condition is derived geometrically 

from the de Casteljau construction process of a Bézier 

patch. Cubic Bézier curves A(w) and B(w) contain 

control points A0-A1-A2-A3 and B0-B1-B2-B3, 

respectively, as shown in Fig. 2. Any value of w defines a 

quadratic Bézier control structure G0-G1-G2 and H0-H1-

H2 with 

 

Gi = (1–w)Ai + wAi+1 for i = 0, 1, and 2 

Hi = (1–w)Bi + wBi+1 for i = 0, 1, and 2                    (2)

            

For this Bézier patch, line segments IK and JL lie in the 

tangent direction at A(w) and B(w). Thus the 

developability condition indicates that I, J, K, and L lie 

in the same plane, and Eqn. (1). can be written as: 

 

IJ • KL × IK = 0                                             (3) 
 

I, J, K and L are now written as I = (1−w)G0 + wG1,  

J = (1−w)H0 + wH1, K = (1−w)G1 + wG2,  

L = (1−w)H1 + wH2, and, 

 

IJ = (1−w)(H0−G0) + w(H1−G1)  

= (1−w)2c0 + 2w(1−w)c1 + w2c2 

[A(w)–B(w)] = 0  A(w) × B(w) • • 
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KL = (1−w)(H1−G1) + w(H2−G2)  

= (1−w)2c1 + 2w(1−w)c2 + w2c3 

 

IK = (1−w)(G1−G0) + w(G2−G1)  

= (1−w)2a1 + 2w(1−w)a2 + w2a3                       

(4)  

where ai = Ai – Ai−1 for i = 1, 2, 3 and cj = Bj – Aj for j 

= 0, 1, 2, 3. 

 

Substituting Eqn. (4) into Eqn (3) results in a 

univariate polynomial in w of degree six. The coefficients 

of the polynomial must vanish for any w. Thus seven 

constraints are obtained that must impose on the Bézier 

control points: 

 

a1•c0×c1 = 0                                                (5) 

 

a3•c2×c3 = 0                     (6) 

      

a1•c0×c2 + a2•c0×c1 = 0                           (7) 

 

a2•c2×c3 + a3•c1×c3 = 0                           (8) 

a1•c0×c3 + 3a1•c1×c2 + 4a2•c0×c2 + a3•c0×c1 = 0        

(9) 

a1•c2×c3 + 4a2•c1×c3 + a3•c0×c3 + 3a3•c1×c2 = 0      

(10) 

a1•c1×c3 + a2•c0×c3 + 3a2•c1×c2 + a3•c0×c2 = 0        

(11) 

Note that Eqn. (5) indicates that the first two pairs of 

control points A0-B0 and A1-B1 lie in the same plane. 

The last two pairs of control points A2-B2 and A3-B3 are 

also coplanar because of Eqn. (6). These two constraints 

are referred to as the co-planarity condition. 

The developability condition Eqn. (3) must hold for 

a Bézier patch of any degree. Suppose the degree of the 

boundary curves is n. The coordinates of I, J, K and L 

are (n−1)-degree polynomials in the curve parameter w. 

Vectors IJ, KL, and IK also have coefficients that are 

(n−1)-degree polynomials in w. Substituting them into 

Equation (3) results in a 3(n−1)-degree polynomial with 

(3n−2) coefficients that must vanish for any w. 

Alternatively stated, there are (3n−2) independent 

constraints to fulfill the developability condition. The first 

as well as the second boundary curves, each has (n+1) 

control points in 3D space, contributing 3(n+1) degrees 

of freedom. After the first curve has been specified, the 

degrees of freedom available for the second one are 

3(n+1) − (3n−2) = 5, independent of the degree of the 

patch. 

3. CONSTRAINTS IN DEVELOPABLE COMPOS-

ITE BEZIER SURFACES 

A developable composite Bézier surface is 

constructed by joining consecutive patches along their 

end rulings. In addition to the developability constraints 

of each patch, the control points of the surface must 

satisfy certain constraints to maintain continuities across 

the patch boundary. The degrees of freedom available 

for the surface design are thus reduced. Suppose the 

user has specified the first boundary curve with a given 

continuity condition. It is advantageous to determine 

how many free design parameters remain in the control 

net of the second curve. We first examine a cubic 

developable surface consisting of two adjacent patches 

with various geometric and parametric continuities. The 

results are then generalized for a surface consisting of m 

patches of degree n. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Control polygon of a developable composite Bézier 

surface of degree three 

 

3.1 Geometric Continuity 

After a first boundary curve has been chosen, there 

are eight control points in 3D space to be determined for 

the other curve. Each patch must satisfy its seven 

developability constraints, Eqns. (5-11). Therefore, the 

number of the remaining DOF’s is 8(3) − 7 − 7 = 10. 

This simply reflects the conclusion that each developable 

Bézier patch has five DOF’s in general. Fig. 3 shows that 

the last control point of the first patch must coincide with 

the first control point of the second patch due to 

positional continuity, i.e. B3 = E0, using up three DOF’s. 

As a result, seven DOF’s are available for the design of 

the second curve. For gradient continuity, the tangent 

vector of the second patch must be collinear with that of 

the first patch at the end point, which is written as: 

 

B2B3 = µE0E1                                                       (12) 

 

where µ is the length ratio of the two tangent vectors. 

Note that A2, A3=D0, D1, B2, B3=E0, and E1, lie in the 

same plane due to the co-planarity condition. Hence to 

impose Eqn. (12) only consumes one DOF and thus six 

DOF’s remain for the surface design. The curvature 

continuity requires that B1, B2, B3=E0, E1, and E2 are 

coplanar [12]. Since E0 and E1 have already lied in the 

plane because of the gradient continuity, this imposes 

one more constraint on E2: it must be located in the
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plane determined by B1, B2, and B3. Consequently five 

DOF’s are left in this case. 

We generalize the above results for a developable 

composite surface consisting of m adjacent patches of 

degree n. Section 2 has shown that a developable Bézier 

patch of degree n has (3n−2) constraints in specifying the 

second boundary curve after the first one has been 

chosen. Thus the composite surface containing m 

patches must satisfy totally m(3n−2) equations to ensure 

its developability. Any two consecutive patches impose 

three more constraints on their common boundary for 

the positional continuity. There are (m−1) such 

boundaries in the surface, summing up to 3(m−1) 

constraints. The second boundary curve has m(n+1) 

control points, contributing 3m(n+1) degrees of 

freedom. The number of DOF’s thus becomes 3m(n+1) 

− m(3n−2) − 3(m−1) = 2m+3. 

To ensure the gradient continuity across each 

boundary gives additional (m−1) constraints. The 

degrees of freedom for the surface design are further 

reduced to (2m+3) − (m−1) = m+4. The curvature 

continuity across the patch boundaries imposes another 

(m−1) constraints. Therefore, the degrees of freedom for 

a developable composite Bézier surface with G2 

continuity become (m+4) − (m−1) = 5, regardless of the 

number of the comprising patches and the degree of the 

surface. Tab. 1 summarizes the results for G0, G1, and G2
 

continuities. 

 

Continuity Number of Degrees of Freedom 

G0 2m+3 

G1 m+4 

G2 5 

Tab. 1. Available degrees of freedom for various geometric 

continuities (m: number of patches) 

 

3.2 Parametric Continuity 

As derived previously, seven DOF’s are available for 

the design of the second boundary curve that satisfies 

positional continuity. The first derivative continuity 

requires:  

 

E1 − E0 = B3 − B2            (13) 

 

which uses up only two degrees of freedom. Notice that 

to specify the relationship of two vectors according to 

Eqn. (13) adds two more constraints, not three. Hence 

only five DOF’s remain in this case. The second 

derivative continuity fixes the position of the third control 

point E2 [13]: 

 

E2 − B1 = 4(B3 − B2)           (14) 

Similarly, this equation specifies the relative position of 

two vectors, consuming two more degrees of freedom for 

the control polygon. Only three DOF’s are left in this 

case. A developable Bézier patch of degree n has (3n−2) 

constraints in specifying the second boundary curve after 

the first one has been chosen. As stated previously, only 

(2m+3) DOF’s are available in order to maintain the 

positional continuity across m patches. The first 

derivative continuity imposes two constraints on each 

common boundary, for totally (m−1) boundaries. The 

remaining DOF’s are computed as (2m+3) − 2(m−1) = 

5, independent of the degree of the surface. The second 

derivative requires two more constraints to be satisfied 

across each boundary. The DOF’s left for the surface 

design is 5 − 2(m−1) = 7 − 2m. The result indicates that 

such a surface consists of at most three patches, 

regardless of the degree of the surface. Tab. 2 

summarizes the corresponding DOF’s for C0, C1, and C2 

continuities 

 

Continuity Number of Degrees of Freedom 

C0 2m+3 

C1 5 

C2 7-2m 

Tab. 2. Available degrees of freedom for various parametric 

continuities (m: number of patches) 

4. DEGENERATE DEVELOPABLE COMPOSITE 

BEZIER SURFACES 

Topologically triangular patches are often needed to 

create a desired shape. A three-sided patch is 

constructed by allowing the end points of two boundary 

curves to coincide. The number of DOF’s is changed for 

the design of such a degenerate surface, but it must still 

satisfy the Eqn. (3), IJ • KL × IK = 0. With the 

boundary curves of degree n, each I, J, K, and L can be 

expressed as a polynomial in curve parameter w of 

degree (n−1): 
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 and ai = Ai – Ai−1, ci = Bi 

– Ai for i = 0, 1, … n. Ai and Bi are the control points of 

the boundary curves. Since the end points coincide in a 

triangular patch, KL becomes: 
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KL = 
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Substituting the above expressions into Eqn. (3) leads to: 
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where the last term vanishes due to cn-1×cn-1 = 0. As a 

result, each term in the second bracket contains (1-w)2. 

When w ≠ 1, dividing the above equation by (1-w)2 

leads to: 
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which becomes a polynomial in w of degree (3n−5). In 

order to satisfy the developability condition, all 

coefficients must equal zero, imposing (3n−4) constraints 

on the control polygon of the patch. If the first boundary 

curve is freely chosen, then there are totally n control 

points to be specified for the design of the second curve, 

as the end points of the patches superimpose on one 

side. The available degrees of freedom become 3n − 

(3n−4) = 4. Hence, merely four additional DOF’s are 

available for the design of a degenerate developable 

Bézier patch with one end ruling vanishing. Similar 

derivations can be conducted on a patch with both end 

rulings vanishing. The corresponding developability 

condition becomes a polynomial in w of degree (3n−7) 

with (3n−6) coefficients that must equal zero. The second 

boundary curve has only (n−1) control points to be 

determined, since both end points of the first curve must 

coincide with those of the second curve. There remain 

3(n−1) − (3n−6) = 3 degrees of freedom for the design 

of the second curve, regardless of the degree of the 

patch. 

5. DESIGN EXAMPLES 

A Bézier surface comprised of two cubic 

developable patches is used as a test example to verify 

the derived results. There are various ways to use 

available degrees of freedom in the surface design, each 

of which has different computational requirement in 

solving the constrained control points. This paper will not 

address the advantages of one particular design method 

over another. Instead, the focus is to demonstrate how to 

identify feasible “design handles” with the limited DOF’s 

that do not induce an over-constrained system in the 

solution process. The first and second boundary curves 

are referred to as the A-curve and B-curve respectively in 

the following examples. 
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G0 continuity: the A-curve is constructed with A0(-

15, 0, 5), A1(-5, 10, 5), A2(5, 12, 3), A3(15, 2, 7), D0(15, 

2, 7), D1(20, -3, 10), D2(23, -8, 11), and D3(27, -13, 

13). The user is allowed to specify B0(-6, 0, 2) and B1(-2, 

4, 2) of the first patch, consuming three and two DOF’s 

respectively. The remaining two DOF’s are used to place 

the control point E1 of the second patch at (12, -10.3, 7). 

Fig. 4 illustrates one resultant developable surface solved 

from the system with B2(2, 4.8, 1.2), B3(6, 0.8, 2.8), 

E2(14.3, -24.45, 7.6), and E3(18.35, -43.175, 10.1). The 

first and second patches are shown in gray and lavender 

respectively. Note that multiple solution may exist that all 

satisfy the developability constraints of the first patch 

[11]. 

G1 continuity: the A-curve is chosen as A0(-15, 0, 

5), A1(-5, 10, 5), A2(5, 12, 3), A3(15, 2, 7), D0(15, 2, 7), 

D1(20, -3, 9), D2(23, 0, 8), and D3(27, -5, 10). To place 

B0(6, 0.8, 2.8) and B1(14, -7.2, 6) for the first patch 

consumes three and two DOF’s respectively. B2(2, 4.8, 

1.2) and B3(6, 0.8, 2.8) are fully determined after these 

five DOF’s have been used up. The last DOF is used to 

locate the position of E1 at (14, -7.2, 6) along the B2B3 

direction. Fig. 5 shows one resulting surface with 

E2(18.8, -2.4, 4.4) and E1(25.2, -10.4, 7.6). 

G2 continuity: the A-curve is chosen as A0(-15, 0, 

5), A1(-5, 10, 5), A2(5, 12, 3), A3(15, 2, 7), D0(15, 2, 7), 

D1(20, -3, 9), D2(30, -7, 10), and D3(34, -12, 12). Five 

DOF’s are used in specifying B0(-6, 0, 2) and B1(-2, 4, 2) 

for the first patch. The other control points are 

automatically determined by the system. One solution 

set is obtained with B2(2, 4.8, 1.2), B3(6, 0.8, 2.8), E0(6, 

0.8, 2.8), E1(14, -7.2, 6), E2(30, -13.6, 7.6), and 

E3(36.4, -21.6, 10.8), as shown in Fig. 6. 

C1 continuity: the A-curve is specified as A0(-15, 

0, 5), A1(-5, 10, 5), A2(5, 12, 3), A3(15, 2, 7), D0(15, 2, 

7), D1(25, -8, 11), D2(28, -5, 10), and D3(32, -10, 12). 

Five DOF’s are consumed in specifying B0(-6, 0, 2) and 

B1(-2, 4, 2) for the first patch. B2(2, 4.8, 1.2) and B3(6, 

0.8, 2.8) are then automatically determined by the 

system. E0(6, 0.8, 2.8) and E1(10, -3.2, 4.4) are also fully 

defined because of C1 continuity. The remaining control 

points are computed as E2(11.2, -2, 4) and E3(12.8, -4, 

4.8). The resulting surface is shown in Fig. 7. 

C2 continuity: only three DOF’s are available in 

specifying the B-curve. The user may want to choose B0, 

consuming all these DOF’s. In this case, the remaining 

six control points (totally eighteen coordinate values in 

3D space) must be solved simultaneously from the 

system. To simplify the solution process, we let the 

system determine the last control point D3 and thus gain 

three extra DOF’s. The user cannot freely place this point 

any more. The A-curve contains A0(-15, 0, 5), A1(-5, 10, 

5), A2(5, 12, 3), A3(15, 2, 7), D0(15, 2, 7), D1(25, -8, 

11), and D2(35,-30,21). The three gained DOF’s are 

used to determine B0(-6, 0, 2). To specify B1(-2, 4, 2) 

consumes the remaining two DOF’s. B2(2, 4.8, 1.2) and 

B3(6, 0.8, 2.8) are determined by the developability 

constraints. E0(6, 0.8, 2.8), E1(10, -3.2, 4.4), and E2(14, 

-12, 8.4) of the second patch are also fully defined 

because of the C0, C1, and C2 conditions. The user can 

choose the length of D3E2 as 10 with the last DOF. The 

system will determine D3(43.373, -33.333, 16.667) and 

E3(17.349, -13.333, 6.667). The final surface is shown in 

Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Design example of G0 continuity 
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Fig. 7. Design example of C1 continuity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Design example of G1 continuity 

 

Fig. 6. Design example of G2 continuity 
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One-end degenerate patch: the A-curve contains 

A0(-10, -10, 0), A1(0, 0, 0), A2(10, 2, -2), and A3(20, 2, 

-12). To specify B0(0, -10, 0) consumes three DOF’s. 

The last DOF can be used to place B1 along a given 

direction (1, -1, 0). The length of the vector A1B1 and 

other control points are determined by the system: 

B1(11.67, -11.67, 0), B2(15.833, 10.167, 0.333), and 

B3 = A3. Fig. 9 shows the resulting patch. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. One-end degenerate cubic patch 

 

 

 

 

 

 

 

 

 

 

 

 

Both-end degenerate patch: the A-curve 

contains A0(-5, -10, 0), A1(0, 0, 0), A2(10, 2, -2), and 

A3(20, 2, -12). To specify B1(0, -10, 0) consumes only 

two DOF’s, because A1-A2-B1-B2 lie in the same plane. 

The last DOF is used to define the length of A2B2 (3 in 

this case). B2(10, 5, -2) is then solved from the system. 

The resulting patch is shown in Fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Both-end degenerate cubic patch 

 

Fig. 8. Design example of C2 continuity 
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6. DISCUSSION AND CONCLUSIONS 

This study investigates geometric design of 

developable surfaces that consist of consecutive Bézier 

patches joined along the end rulings. The developability 

condition has been combined with the de Casteljau 

algorithm, resulting in a set of constraints that must be 

fulfilled by the control polyhedron of each patch. 

Additional constraints are imposed on the patch 

boundaries due to various continuity conditions. 

Suppose a developable surface of degree n is comprised 

of m developable Bézier patches. The user can freely 

choose a first boundary curve. For a secondary 

boundary curve of the same degree, there remain 

(2m+3), (m+4), and five degrees of freedom for the 

design of the surface that is G0, G1, and G2 respectively. 

The degrees of freedom become five and (7−2m) when 

the surface is C1 and C2. The results are independent of 

the degree of the surface. Only four degrees of freedom 

are left for the design of a degenerate developable 

Bézier patch constructed by allowing one pair of the end 

points to superimpose. Three degrees of freedom remain 

if the end rulings on both sides of the control net vanish. 

These conclusions are also regardless of the degree of 

the surface. Several examples have been presented to 

illustrate the design of developable Bézier surfaces in 

which the degrees of freedom are fully utilized. The 

focus is to demonstrate practical design methods that 

provide the user intuitive design “handles” to control the 

surface shape while over-constrained systems are not 

induced in the solution process. In general there exist 

multiple solutions for the constrained control net. This 

work extends previous research on geometric design of 

developable Bézier patches to developable composite 

Bézier surfaces. It provides the foundation for an easy 

and, more importantly, systematic implementation of 

CAGD systems for developable surfaces. The results 

should also be readily extendable to design of 

developable shapes using B-spline surfaces. Our current 

research is focused on this. 
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